JPH0640953A - Method for aminating saccharide - Google Patents

Method for aminating saccharide

Info

Publication number
JPH0640953A
JPH0640953A JP21229192A JP21229192A JPH0640953A JP H0640953 A JPH0640953 A JP H0640953A JP 21229192 A JP21229192 A JP 21229192A JP 21229192 A JP21229192 A JP 21229192A JP H0640953 A JPH0640953 A JP H0640953A
Authority
JP
Japan
Prior art keywords
saccharide
sugar
represented
compound
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21229192A
Other languages
Japanese (ja)
Other versions
JP3408271B2 (en
Inventor
Sumihiro Hase
純宏 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP21229192A priority Critical patent/JP3408271B2/en
Publication of JPH0640953A publication Critical patent/JPH0640953A/en
Application granted granted Critical
Publication of JP3408271B2 publication Critical patent/JP3408271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Pyridine Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain an aminated saccharide derivative useful for synthesizing a reduced end labeled saccharide and an artificial complex glucide by reducing a 2-aminopyridine derivative saccharide and decomposing the resultant compound under an alkali condition. CONSTITUTION:A compound of the formula (R-CH2 is group derived from a saccharide of the formula R-CHO containing reduced end made into an aldehyde; R<1> to R<4> are H or lower alkyl) is reduced by using a catalyst such as palladium black at normal temperature to 100 deg.C and then decomposed in the presence of hydrazine at room temperature to 100 deg.C to give an aminated saccharide derivative of the formula R-CH2-NH2. A reduced end labeled saccharide obtained by reacting a saccharide containing an amino group at the reduced end, namely an aminated saccharide derivative with a labeled compound capable of reacting an amino group is useful for studying a receptor of a saccharide of organism tissue and studying lectin saccharide. An artificial complex glucide synthesizes neoglycoprotein, neoglycolipid, etc., and is useful as a medicine, an immune source, a studying reagent, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アミノ化糖誘導体を製
造するための糖のアミノ化法に関し、特に、特定構造の
糖類と、アミノ基と反応し得る各種試薬とを結合するた
めに有用なアミノ化糖誘導体を提供する方法および該結
合体、例えば、還元末端が標識化された糖類、人工複合
糖質の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sugar amination method for producing an aminated sugar derivative, and is particularly useful for combining a sugar having a specific structure with various reagents capable of reacting with an amino group. The present invention relates to a method for providing an aminated sugar derivative, and a method for producing the conjugate, for example, a sugar having a reducing end labeled, an artificial glycoconjugate.

【0002】[0002]

【従来の技術】近年、糖鎖の構造とその機能の関係を研
究するために、より高感度でしかも微量の試料で定量検
定が可能な方法が種々提案されている。例えば、糖鎖の
微量分析の方法としては、還元末端を糖アルコールに変
換する際にトリチウムを導入し、その放射活性を利用す
ることが挙げられる。この検出感度は、pmolレベル
であり、良好であるが、放射性物質であるために種々の
制約がある。
2. Description of the Related Art In recent years, in order to study the relationship between the structure of sugar chains and their functions, various methods with higher sensitivity and capable of quantitative assay with a small amount of sample have been proposed. For example, a method for microanalyzing sugar chains is to introduce tritium when converting the reducing end into sugar alcohol and utilize its radioactivity. This detection sensitivity is good at the pmol level, but it has various restrictions because it is a radioactive substance.

【0003】この制約がない高感度検定法として、2−
アミノピリジン等の有機化合物を蛍光標識剤として使用
する方法が公知である(例えば、Biochem. Biophys. Re
s. Commun.,85,257-263(1978))。この方法は、糖又は
糖鎖の還元末端に該2−アミノピリジンのアミノ基を反
応させてシッフ塩基とし、次いで還元して、蛍光により
検出するものであり、HPLCで分画し、蛍光ディテク
ターで検出する際の感度は数十fmolレベルであるこ
とが開示されている。
As a highly sensitive assay method without this limitation, 2-
A method using an organic compound such as aminopyridine as a fluorescent labeling agent is known (for example, Biochem. Biophys. Re
S. Commun., 85 , 257-263 (1978)). In this method, the reducing end of the sugar or sugar chain is reacted with the amino group of the 2-aminopyridine to form a Schiff base, which is then reduced and detected by fluorescence. Fractionation by HPLC and detection with a fluorescence detector are performed. It is disclosed that the sensitivity at the time of detection is several tens of fmol level.

【0004】しかしながら、該蛍光標識剤は、糖鎖の還
元末端を容易に蛍光標識化し得る点では優れているが得
られる蛍光標識化糖類の蛍光強度が弱く、例えば組織化
学的な糖類の解析に利用するには、十分であるとは言え
なかった。一方、糖鎖に対する抗体を作成するための免
疫原として、あるいは医薬品としての用途が期待される
人工的な複合糖質を合成するために、生体内等から分離
された多種類の糖鎖を含む混合物から特定構造の糖鎖を
分画し、構造の特定された糖鎖と蛋白質、ペプチド類、
脂質あるいはポリマー樹脂等の有機化合物とを結合する
有効な方法が求められている。この目的のために、糖鎖
の還元末端にアミノ基を導入し、該アミノ基と上記有機
化合物を結合することが可能である。単一の糖鎖の場合
には糖鎖の還元末端を直接アミノ化すればよいが、天然
から得られる様な多種類の糖鎖の混合物から特定構造の
糖鎖を分離することは困難である。また、天然に存在す
るような複雑な構造の糖鎖を人工的に大量に合成するこ
とは、非常に時間もかかり、また極めて困難である。
However, the fluorescent labeling agent is excellent in that the reducing end of the sugar chain can be easily fluorescently labeled, but the fluorescence intensity of the obtained fluorescently labeled saccharide is weak, and for example, for histochemical analysis of saccharides. It wasn't enough to use. On the other hand, it contains many types of sugar chains separated from the inside of the body to synthesize artificial glycoconjugates that are expected to be used as immunogens for producing antibodies against sugar chains or as pharmaceuticals. Fractionation of sugar chains with a specific structure from the mixture, sugar chains with a specified structure and proteins, peptides,
There is a need for an effective method of binding an organic compound such as a lipid or a polymer resin. For this purpose, it is possible to introduce an amino group into the reducing end of the sugar chain and combine the amino group with the above organic compound. In the case of a single sugar chain, the reducing end of the sugar chain may be directly aminated, but it is difficult to separate the sugar chain having a specific structure from a mixture of many kinds of sugar chains obtained from nature. . Further, it is very time-consuming and extremely difficult to artificially synthesize a large amount of sugar chains having a complicated structure as naturally occurring.

【0005】従って、生体内に存在する複雑な特定構造
の糖鎖を効率よく分画し、単一構造の糖化合物を容易に
アミノ化する方法が待望されている。
Therefore, a method for efficiently fractionating a complex sugar chain having a specific structure existing in a living body and easily aminating a sugar compound having a single structure has been desired.

【0006】[0006]

【発明が解決しようとする課題】本発明の第1の目的
は、簡易な方法で糖類をアミノ化してアミノ化糖誘導体
を得る糖のアミノ化法を提供することである。本発明の
第2の目的は、糖類の混合物から容易に単一構造のアミ
ノ化糖誘導体及びその標識化体を製造する方法もしくは
該アミノ化糖誘導体と蛋白質等の他の有機化合物と反応
させて人工複合糖質を製造する方法を提供することにあ
る。
SUMMARY OF THE INVENTION The first object of the present invention is to provide a method for amination of sugars which aminates sugars by a simple method to obtain aminated sugar derivatives. A second object of the present invention is to provide a method for easily producing an aminated sugar derivative having a single structure and a labeled form thereof from a mixture of sugars, or to react the aminated sugar derivative with another organic compound such as a protein. It is to provide a method for producing an artificial glycoconjugate.

【0007】[0007]

【課題を解決するための手段】本発明は、下記化3で示
される一般式(a)
The present invention provides a general formula (a) represented by the following chemical formula 3.

【0008】[0008]

【化3】 [Chemical 3]

【0009】(式中、R−CH2−は、還元末端がアル
デヒド化されてR−CHOで示され得る糖類に由来する
基を表し、R1 、R2 、R3 及びR4 は、互いに同一で
も異なっても良く、各々水素、低級アルキル基から選択
される基を表す。)で表される2−アミノピリジン誘導
体化糖類を還元反応に付し、次いでアルカリ条件下にお
いて分解反応に付して下記一般式(b) R−CH2−NH2(b)(式中、R−CH2−は前記と
同意義。)で表されるアミノ化糖誘導体を得ることを特
徴とする糖のアミノ化法を提供するものである。
(In the formula, R—CH 2 — represents a group derived from a saccharide which can be represented by R—CHO when the reducing end is aldehydized, and R 1 , R 2 , R 3 and R 4 are the same as each other. A 2-aminopyridine derivatized saccharide represented by hydrogen, a lower alkyl group, which may be the same or different and each represents a group selected from hydrogen and lower alkyl groups.) Is subjected to a reduction reaction, and then subjected to a decomposition reaction under alkaline conditions. To obtain an aminated sugar derivative represented by the following general formula (b) R—CH 2 —NH 2 (b) (wherein R—CH 2 — is as defined above). It provides an amination method.

【0010】また本発明は、上記の方法で得られた前記
一般式(b)で表される化合物と、アミノ基と反応し得
る標識化化合物とを反応させることを特徴とする還元末
端が標識化された糖類(以下、還元末端標識化糖類とも
いう)の製造方法を提供するものである。さらに本発明
は、上記の方法で得られた前記一般式(b)で表される
化合物と、蛋白質、ペプチド類または脂質とを反応させ
ることを特徴とする人工複合糖質の製造方法を提供する
ものである。
Further, the present invention is characterized in that the compound represented by the general formula (b) obtained by the above method is reacted with a labeled compound capable of reacting with an amino group, and the reducing end is labeled. The present invention provides a method for producing a modified saccharide (hereinafter, also referred to as a reducing end labeled saccharide). Further, the present invention provides a method for producing an artificial glycoconjugate, which comprises reacting the compound represented by the general formula (b) obtained by the above method with a protein, peptide or lipid. It is a thing.

【0011】すなわち本発明は、一般式(a)で表され
る2−アミノピリジン誘導体糖類を還元、分解して糖類
の還元末端にアミノ基を導入する方法を提供するもので
あり、本発明では該還元反応の後、アルカリ条件下、好
ましくはヒドラジン存在下で分解反応を行うことを特徴
とする。ここで、本発明に使用される2−アミノピリジ
ン誘導体化糖類は、単一種でも複数種でもよい。即ち、
R基(R−CH2 基でも同じ)が、単一でもそうでなく
ともよい。
That is, the present invention provides a method for reducing and decomposing a 2-aminopyridine derivative saccharide represented by the general formula (a) to introduce an amino group into the reducing end of the saccharide. After the reduction reaction, the decomposition reaction is carried out under alkaline conditions, preferably in the presence of hydrazine. Here, the 2-aminopyridine derivatized saccharide used in the present invention may be a single species or a plurality of species. That is,
The R group (the same applies to the R—CH 2 group) may or may not be single.

【0012】従って、本発明においては、実質的に単一
の2−アミノピリジン誘導体化糖類を出発物質として選
択して、実質的に単一なアミノ化糖誘導体を得ても、多
種類のアミノ化糖誘導体を得てからこれらを単一化して
もよく、前者の場合では、原料の糖類を2−アミノピリ
ジン化合物により蛍光標識し、特定構造の糖鎖を有する
2−アミノピリジン誘導体化糖類を分画した後、蛍光標
識された糖鎖を還元末端にアミノ基を有する糖鎖に変換
する方法が挙げられ、後者の場合では、生成された複数
のアミノ化糖誘導体混合物を好ましくは標識してからク
ロマトグラフィーにより分離して単一のアミノ化糖誘導
体あるいは還元末端標識化糖類およびその脱標識化によ
るアミノ化糖誘導体を精製度よく、かつ感度よく単離で
きるという著しい効果を有する。
Therefore, in the present invention, even if a substantially single 2-aminopyridine derivatized saccharide is selected as a starting material to obtain a substantially single aminated saccharide derivative, many kinds of amino groups can be obtained. These may be singularized after obtaining the derivatized sugar derivative. In the former case, the starting saccharide is fluorescently labeled with a 2-aminopyridine compound to give a 2-aminopyridine derivatized saccharide having a sugar chain of a specific structure. After the fractionation, there is a method of converting the fluorescently labeled sugar chain into a sugar chain having an amino group at the reducing end, and in the latter case, the produced aminated sugar derivative mixture is preferably labeled. It is remarkable that a single aminated saccharide derivative or a reducing end-labeled saccharide and an aminated saccharide derivative by delabeling thereof can be isolated with high purity and sensitivity by separating from the product by chromatography. With the results.

【0013】以下、本発明を具体的に説明する。 〔アミノ化糖誘導体(還元末端アミノ化糖)の合成〕 上記一般式(a)で示される2−アミノピリジン誘導体
化糖類は公知の方法 〔特開平1(昭64)−10177号公報;Agric. Bio
l. Chem.,54(8),2169-2170 (1990);Biochem. Biophys.
Res. Commun.,85,257-263(1978);J. Biochem.,90, 40
7-414(1981);J. Biochem.,95,197-203(1984);J. Bioc
hem.,112,No.1, 122-126(1992)〕で合成することができ
る。
The present invention will be specifically described below. [Synthesis of aminated sugar derivative (reducing terminal aminated sugar)] The 2-aminopyridine derivatized sugar represented by the general formula (a) is a known method [JP-A-1 (Sho-64) -10177; Agric. Bio
l. Chem., 54 (8), 2169-2170 (1990); Biochem. Biophys.
Res. Commun., 85 , 257-263 (1978); J. Biochem., 90 , 40
7-414 (1981); J. Biochem., 95 , 197-203 (1984); J. Bioc
hem., 112, No. 1, 122-126 (1992)].

【0014】すなわち、下記化4で示される一般式
(d)
That is, the general formula (d) represented by the following chemical formula 4

【0015】[0015]

【化4】 [Chemical 4]

【0016】(式中、R1 、R2 、R3 及びR4 は、互
いに同一でも異なっても良く、各々水素、低級アルキル
基から選択される基を表す。)で示される2−アミノピ
リジン誘導体の2位のアミノ基を還元末端がアルデヒド
化されて一般式(c);R−CHO(式中、Rは糖類残
基を表す。ただし、R−CHOは単一な糖化合物でも複
数種の糖化合物の集合でもよい。)で示され得る糖類
(単糖、オリゴ糖、多糖、グリコサミノグリカン等)の
還元末端に反応させてシッフ塩基を形成させ、次いで還
元することによってアミノアルキル(−CH2 NH−)
結合を形成させて糖類と上記化合物(d)の複合体であ
る上記一般式(a)で示される2−アミノピリジン誘導
体化糖類を合成できる。
(In the formula, R 1 , R 2 , R 3 and R 4, which may be the same or different, each represents a group selected from hydrogen and a lower alkyl group.) The reducing terminal of the amino group at the 2-position of the derivative is converted to an aldehyde to give a compound represented by the general formula (c); R-CHO (wherein R represents a sugar residue. However, R-CHO is a single sugar compound or plural kinds thereof). Of the saccharide compound (monosaccharides, oligosaccharides, polysaccharides, glycosaminoglycans, etc.) that can be represented by (1) to form a Schiff base, and then by reducing the aminoalkyl ( -CH 2 NH-)
By forming a bond, a 2-aminopyridine derivatized saccharide represented by the general formula (a), which is a complex of the saccharide and the compound (d), can be synthesized.

【0017】本発明において、低級アルキル基とは、炭
素数1〜6程度のアルキル基をいい、具体的にはメチル
基、エチル基、プロピル基、ブチル基、ペンチル基、ヘ
キシル基およびその異性体が挙げられる。本発明の糖の
アミノ化法において、単一な化合物(a)を使用する場
合は、好ましくは、その2−アミノピリジン誘導体化糖
類混合物を高速液体クロマトグラフィー(HPLC)等
(例、逆相HPLC)の分別手段によって分離精製し、
蛍光スペクトルによって目的とする複合体を検出して単
一の分画を使用する方法を一例に挙げることができる。
In the present invention, the lower alkyl group means an alkyl group having about 1 to 6 carbon atoms, specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group and isomers thereof. Is mentioned. When a single compound (a) is used in the sugar amination method of the present invention, the 2-aminopyridine derivatized saccharide mixture is preferably subjected to high performance liquid chromatography (HPLC) or the like (eg, reverse phase HPLC). ) Separation and purification by
An example is a method of detecting a target complex by a fluorescence spectrum and using a single fraction.

【0018】なお、上記シッフ塩基形成反応の方法とし
ては、塩酸、フッ化水素酸等の無機酸もしくは酢酸、ト
リフルオロ酢酸等の有機酸及びピリジン等の有機溶媒も
しくは水性溶媒中、常温〜100℃、数分〜数時間(好
ましくは、約90℃、1〜3時間、pH3〜6.4)の
反応条件下、糖類に対して20〜100当量程度の化合
物(d)を使用して反応させることによってシッフ塩基
を生成させる方法を例示することができる。シッフ塩基
の還元には、通常シッフ塩基の還元に使用されている還
元剤を使用することができ、とりわけ揮発性のボランコ
ンプレックス(例えば、ボランジメチルアミンコンプレ
ックス、ボラントリエチルアミンコンプレックス、ボラ
ンピリジンコンプレックス等)、水素化ホウ素ナトリウ
ム、シアノ水素化ホウ素ナトリウム(NaBH3CN)
等が好ましい。特に、シアル酸を含む糖類の場合には、
ボランジメチルアミンコンプレックスと水と酢酸を含む
還元剤で反応を行うとシアル酸の脱離を防止することが
できるので好ましい。還元反応は、常温〜100℃、1
時間〜10時間(好ましくは約80〜90℃、1時間程
度)で完了する。
The Schiff base forming reaction is carried out at room temperature to 100 ° C. in an inorganic acid such as hydrochloric acid or hydrofluoric acid or an acetic acid, an organic acid such as trifluoroacetic acid, an organic solvent such as pyridine or an aqueous solvent. Under a reaction condition of several minutes to several hours (preferably about 90 ° C., 1 to 3 hours, pH 3 to 6.4), using about 20 to 100 equivalents of the compound (d) with respect to the saccharide to react. Thus, a method of generating a Schiff base can be exemplified. For the reduction of the Schiff base, a reducing agent usually used for the reduction of the Schiff base can be used, and particularly volatile borane complex (for example, borane dimethylamine complex, borane triethylamine complex, borane pyridine complex, etc.), Sodium borohydride, sodium cyanoborohydride (NaBH 3 CN)
Etc. are preferred. Especially in the case of sugars containing sialic acid,
It is preferable to react the borane dimethylamine complex with a reducing agent containing water and acetic acid because elimination of sialic acid can be prevented. The reduction reaction is from room temperature to 100 ° C, 1
It is completed in 10 hours to 10 hours (preferably about 80 to 90 ° C. for about 1 hour).

【0019】なお、上記糖類は糖蛋白質、糖脂質等の複
合糖質から切り出された糖類であってもよい。複合糖質
から糖類を切り出す方法としては、ヒドラジン等の塩基
(アルカリ条件下)の存在下で複合糖質を分解し、必要
に応じてN−アセチル化する方法(Biochem. Biophys.
Acta, 121,417-420(1966) )の他、加トリフルオロ酢酸
分解する方法、酵素(エンドグリコシダーゼ、グリコペ
プチダーゼ,エンドグリコセラミダーゼ)等で消化する
方法などが挙げられる。
The saccharides may be saccharides cut out from complex carbohydrates such as glycoproteins and glycolipids. As a method for cleaving the sugar from the glycoconjugate, a method of decomposing the glycoconjugate in the presence of a base such as hydrazine (under alkaline conditions) and optionally N-acetylating (Biochem. Biophys.
Acta, 121, 417-420 (1966)), a method of decomposing trifluoroacetic acid, a method of digesting with an enzyme (endoglycosidase, glycopeptidase, endoglycoceramidase) and the like.

【0020】本発明によって、上記一般式(a)で示さ
れる2−アミノピリジン誘導体化糖類の(置換基を有す
ることもある)ピリジルアミノ基をアミノ基に変換する
反応は、先ず2−アミノピリジン誘導体化糖類を還元反
応に付し、次いでアルカリ条件下において分解反応に付
すことによって行うことができる。上記還元反応は、酸
性水溶液中(例えば、酢酸等を用いてpH3〜4とす
る)、水素化触媒(パラジウム黒等)の存在下、水素ガ
スを使用して行うことができ、室温付近で数時間(好ま
しくは3〜4時間)で完了する。
According to the present invention, the reaction for converting the pyridylamino group (which may have a substituent) of the 2-aminopyridine derivatized saccharide represented by the above general formula (a) into an amino group is first carried out. It can be carried out by subjecting the modified sugar to a reduction reaction and then a decomposition reaction under alkaline conditions. The above reduction reaction can be carried out in an acidic aqueous solution (for example, pH is adjusted to 3 to 4 using acetic acid or the like) using hydrogen gas in the presence of a hydrogenation catalyst (palladium black or the like), and the reaction can be performed at room temperature near several It is completed in time (preferably 3 to 4 hours).

【0021】上記反応後、触媒を濾過、遠心分離等の手
段で分離除去し、濃縮乾固し、反応生成物を分離せずに
引き続き、アルカリ条件下(例えば、ヒドラジン(N2
4)存在下)で分解反応に付し、目的とする上記一般
式(b)で示されるアミノ化糖誘導体を合成する。上記
反応は、上記還元反応の生成物を、例えば水非存在下、
無水ヒドラジンを用いて室温〜100℃程度(好ましく
は60〜100℃、より好ましくは70℃付近)の温度
で数秒〜1時間程度(好ましくは数分〜20分程度、よ
り好ましくは2〜3分程度)加熱もしくは加温すること
によって行うことができる。なお、ヒドラジンは反応溶
媒としても作用するので原料化合物に対して過剰量使用
すればよい。アルカリ条件下での分解反応をヒドラジン
を用いて行うと、反応後に反応液を減圧処理することに
よってヒドラジンを除去できるので好ましいが、ヒドラ
ジンの代わりにアンモニア水、ヒドロキシルアミン、水
酸化ナトリウム等を用いて分解反応を行うこともでき
る。
After the above reaction, the catalyst is separated and removed by means such as filtration and centrifugation, concentrated to dryness, and the reaction product is not separated but continuously under alkaline conditions (for example, hydrazine (N 2
In the presence of H 4 )), a decomposition reaction is performed to synthesize the desired aminated sugar derivative represented by the above general formula (b). The reaction, the product of the reduction reaction, for example, in the absence of water,
Using anhydrous hydrazine, the temperature is from room temperature to about 100 ° C. (preferably 60 to 100 ° C., more preferably about 70 ° C.) for several seconds to one hour (preferably several minutes to 20 minutes, more preferably 2-3 minutes). It can be performed by heating or heating. Since hydrazine also acts as a reaction solvent, it may be used in an excess amount with respect to the raw material compound. When the decomposition reaction under alkaline conditions is carried out using hydrazine, hydrazine can be removed by subjecting the reaction solution to reduced pressure treatment after the reaction, which is preferable, but ammonia water, hydroxylamine, sodium hydroxide or the like is used instead of hydrazine. A decomposition reaction can also be performed.

【0022】上記の方法の反応スキームを、還元末端糖
残基がN−アセチルグルコサミンである糖鎖の例につい
て下記化5に示す。尚、*を付した中間体は推定であ
り、その構造は確認されたものではない。
The reaction scheme of the above method is shown in Chemical Formula 5 below for an example of a sugar chain in which the reducing terminal sugar residue is N-acetylglucosamine. The intermediates marked with * are putative and their structures have not been confirmed.

【0023】[0023]

【化5】 [Chemical 5]

【0024】反応終了後、HPLC、TLC(薄層クロ
マトグラフィー)、ゲルクロマトグラフィー等のクロマ
トグラフィーによって目的化合物を分離精製することが
できる。 〔還元末端標識化糖の合成〕上記の本発明の方法で合成
した還元末端にアミノ基を有する糖類すなわちアミノ化
糖誘導体と、アミノ基と反応し得る標識化化合物とを反
応させることによって還元末端が標識化された糖類を合
成することができる。ここで、前記クロマトグラフィー
による分離精製前にアミノ化糖誘導体のアミノ基を標識
化化合物、例えば、好ましくは下記例示の蛍光標識化化
合物等により標識化し、その蛍光により混在する複数の
標識化糖誘導体を分別し、単一構造の還元末端標識化糖
誘導体を分画することができる。また、所望によりこの
還元末端標識化糖誘導体を脱標識してアミノ化糖誘導体
を得ることができる。
After completion of the reaction, the target compound can be separated and purified by chromatography such as HPLC, TLC (thin layer chromatography), gel chromatography and the like. [Synthesis of reducing end labeled sugar] The reducing end is synthesized by reacting a sugar having an amino group at the reducing end, that is, an aminated sugar derivative synthesized by the method of the present invention, with a labeling compound capable of reacting with the amino group. It is possible to synthesize a saccharide labeled with. Here, before separation and purification by the chromatography, the amino group of the aminated sugar derivative is labeled with a labeling compound, for example, a fluorescent labeling compound preferably exemplified below, and a plurality of labeled sugar derivatives mixed by the fluorescence. Can be fractionated to fractionate the reducing-end labeled sugar derivative having a single structure. If desired, this reducing end labeled sugar derivative can be delabeled to obtain an aminated sugar derivative.

【0025】かくして合成された、単一の特定の糖鎖の
還元末端が標識化された標識化糖類は、生体組織中の糖
類の受容体の研究、レクチンの糖結合特異性の研究に有
用である。標識化化合物としてはアミノ基と結合可能な
官能基を有し、発蛍光基、化学発光基、発色基、放射性
同位元素等を有する化合物が使用され、特に限定されな
い。具体的には、例えばビオチン化試薬(例えば、ビオ
チン・スルフォ−N−ヒドロキシスクシンイミド・エス
テル等の活性エステル)、フルオレセインイソチオシア
ネート(FITC)、フェニルイソチオシアネート、ダ
ンシル(DNS)化用試薬、ジニトロフェニル(DN
P)化用試薬等が挙げられる。
The thus-synthesized labeled saccharide having the reducing end of a single specific sugar chain labeled is useful for the study of saccharide receptors in living tissues and the study of lectin sugar-binding specificity. is there. As the labeling compound, a compound having a functional group capable of binding to an amino group and having a fluorescent group, a chemiluminescent group, a color forming group, a radioactive isotope, etc. is used, and is not particularly limited. Specifically, for example, a biotinylation reagent (for example, active ester such as biotin-sulfo-N-hydroxysuccinimide ester), fluorescein isothiocyanate (FITC), phenylisothiocyanate, dansyl (DNS) reagent, dinitrophenyl ( DN
P) a chemical reagent and the like.

【0026】アミノ化糖誘導体と、アミノ基と反応し得
る標識化化合物とを反応させる方法は公知の方法に従っ
て行うことができる。例えば、ビオチン・スルフォ−N
−ヒドロキシスクシンイミド・エステルとの反応は弱塩
基性(例、飽和炭酸水素ナトリウム溶液中)又は中性条
件において室温付近で反応させ、必要に応じて酸(例、
強酸性陽イオン交換樹脂)で中和する方法が挙げられる
(J. Nucl. Med.,28,1294-1302(1987))。また、例え
ば、FITCとの反応は塩基性(例、ピリジン中)又は
中性条件において加熱して反応させる方法が挙げられる
(Am. J. Pathol., 34,1081(1958) )。 〔人工複合糖質の合成〕上記の本発明の方法で合成した
還元末端にアミノ基を有する糖類と、蛋白質、ペプチド
類、脂質、ポリマー樹脂等とを、直接又は二官能性の架
橋剤を介して結合することができる。このような結合物
はネオグリコプロテイン、ネオグリコリピッドのような
人工複合糖質として、医薬品、免疫原、研究用試薬等の
種々の用途が期待される。具体的には、下記等の用途が
列挙できる。 (1) レクチン、糖結合蛋白質、抗体、糖転移酵素の生理
活性物質による糖鎖の分子識別現象(特異的構造識別現
象)を解析するための糖鎖プローブとしての用途。 (2) 糖鎖に対する抗体を作成するための免疫源としての
用途。 (3) 糖鎖に対する抗体をELISA 法等でスクリーニングす
るための固相化人工複合糖質としての用途。 (4) 細胞間相互作用における細胞表面糖蛋白質糖鎖の機
能解析のための糖鎖プローブとしての用途。 (5) 糖鎖固定アフニティー担体としての用途。
The aminated sugar derivative can be reacted with a labeled compound capable of reacting with an amino group by a known method. For example, biotin sulfo-N
-Reaction with hydroxysuccinimide ester is carried out at around room temperature under weakly basic (eg, saturated sodium hydrogen carbonate solution) or neutral conditions, and if necessary, acid (eg,
A strong acid cation exchange resin) is used for neutralization (J. Nucl. Med., 28 , 1294-1302 (1987)). Further, for example, the reaction with FITC may be carried out by heating under a basic (eg, in pyridine) or neutral condition to carry out the reaction (Am. J. Pathol., 34 , 1081 (1958)). [Synthesis of artificial glycoconjugate] A saccharide having an amino group at the reducing end synthesized by the method of the present invention and a protein, a peptide, a lipid, a polymer resin, or the like, directly or through a bifunctional crosslinking agent. Can be combined. Such conjugates are expected to have various uses such as pharmaceuticals, immunogens, research reagents, etc. as artificial glycoconjugates such as neoglycoprotein and neoglycolipid. Specifically, the following uses can be listed. (1) Use as a sugar chain probe for analyzing a molecular recognition phenomenon (specific structure recognition phenomenon) of a sugar chain by a physiologically active substance such as a lectin, a sugar-binding protein, an antibody, and a glycosyltransferase. (2) Use as an immunogen for producing an antibody against a sugar chain. (3) Use as a solid-phase artificial glycoconjugate for screening antibodies against sugar chains by ELISA or the like. (4) Use as a sugar chain probe for functional analysis of cell surface glycoprotein sugar chains in cell-cell interaction. (5) Use as a sugar chain-fixing affinity carrier.

【0027】上記人工複合糖質を各用途に利用する際の
形態としては、特に制限はないが、例えば、下記等が挙
げられる。 ・TLC プレート上、プラスチックプレート上、各種担体
に固相化(固定化)すること。 ・リポソーム、リピッドマイクロスフェアーとするこ
と。
The form in which the artificial glycoconjugate is used for each purpose is not particularly limited, but examples thereof include the following. -Immobilize (immobilize) on TLC plate, plastic plate, or various carriers.・ Use liposomes and lipid microspheres.

【0028】また、本発明の人工複合等質の用途に関し
ては、例えば、Trends in Glycoscience and Glycotech
nology(TIGG) Vol.3, No.14, 435-437(1991)、「新生化
学実験講座3」糖質I 糖タンパク質,人工複合糖質
(743〜760頁)((株)東京化学同人発行)を参
照することができる。架橋剤としてはジイソシアネート
化合物、ジイソチオシアネート化合物、ジハロゲン化化
合物、グルタルアルデヒド等のアミノ基同士を架橋する
架橋剤;N−(m−マレイミドベンゾイルオキシ)スク
シンイミドなどのアミノ基とチオール基を架橋する架橋
剤;ジカルボン酸などのアミノ基と水酸基を架橋する架
橋剤が使用できる(「続生化学実験講座」5,免疫生化
学研究法,83〜87頁,1986年,(株)東京化学
同人発行)。
Regarding the use of the artificial composite material of the present invention, for example, Trends in Glycoscience and Glycotech
nology (TIGG) Vol.3, No.14, 435-437 (1991), "Shinsei Chemistry Laboratory 3" Carbohydrate I Glycoprotein, Artificial glycoconjugate (Pages 743-760) (published by Tokyo Kagaku Doujin Co., Ltd.) ) Can be referred to. As a cross-linking agent, a cross-linking agent that cross-links amino groups such as diisocyanate compounds, diisothiocyanate compounds, dihalogenated compounds, and glutaraldehyde; cross-linking that cross-links amino groups and thiol groups such as N- (m-maleimidobenzoyloxy) succinimide. Agent: A crosslinking agent that crosslinks amino groups and hydroxyl groups, such as dicarboxylic acid, can be used (“Seikagaku Chemistry Laboratory” 5, Immunobiochemistry Research Method, pages 83-87, 1986, issued by Tokyo Kagaku Dojin). .

【0029】具体的には、例えば、カルボキシル基を有
する化合物(蛋白質、ペプチド類、脂質(例えば、水酸
基にジカルボン酸架橋剤を導入したリゾレシチン;アミ
ノ基にジカルボン酸架橋剤を導入したホスファチジルエ
タノールアミン等))のカルボキシル基をN−ヒドロキ
シスクシンイミドエステル(例えば、化6に記載の化合
物)、1−ヒドロキシベンゾトリアゾールエステル、p
−ニトロフェニルエステル等の活性エステル(「ペプチ
ド合成の基礎と実験」,1985年,丸善(株)発行)
として、本発明の還元末端にアミノ基を有する糖類と反
応させることができる。また、アミノ基を有する化合物
(例えば、ホスファチジルエタノールアミン等のリン脂
質、あるいはタンパク質、ペプチド等)とジアルデヒド
(例えば、グルタルアルデヒド)を反応させ、次いで、
本発明の還元末端にアミノ基を有する糖類と反応させる
こともできる。
Specifically, for example, compounds having a carboxyl group (proteins, peptides, lipids (for example, lysolecithin having a dicarboxylic acid crosslinking agent introduced in the hydroxyl group; phosphatidylethanolamine having a dicarboxylic acid crosslinking agent introduced in the amino group, etc. )) Carboxyl group is N-hydroxysuccinimide ester (for example, the compound described in Chemical formula 6), 1-hydroxybenzotriazole ester, p
-Active esters such as nitrophenyl ester ("Basics and experiments of peptide synthesis", 1985, published by Maruzen Co., Ltd.)
For example, it can be reacted with the saccharide having an amino group at the reducing end of the present invention. In addition, a compound having an amino group (for example, phospholipid such as phosphatidylethanolamine, or protein, peptide, etc.) is reacted with a dialdehyde (for example, glutaraldehyde), and then,
It is also possible to react with the saccharide having an amino group at the reducing end of the present invention.

【0030】[0030]

【化6】 [Chemical 6]

【0031】[0031]

〔実施例1:還元末端アミノ化単糖類の合成〕[Example 1: Synthesis of reducing end aminated monosaccharide]

実施例1−1 ラクトースと2−アミノピリジン〔以下「PA」と略す
こともある〕を原料として公知の方法(Biochem. Bioph
ys. Res. Commun.,85,257-263(1978))で合成した1−
ピリジルアミノ−1−デオキシラクチトール〔2−アミ
ノピリジンが結合したラクトース;以下「PA−ラクト
ース」ということもある〕4.5μmolを水1mlに
溶解し、酢酸を用いてpHを3に調整した。この溶液に
少量のパラジウム黒を添加し、水素ガス気流中、常圧下
で3時間還元反応を行った。反応液をTLC〔DC-Alufo
lien Kieselgel 60(メルク社製);メタノール/水/
アンモニア水(6:0.3:0.1 v/v)を用いて
展開し、硫酸を用い、加熱して目的物を発色させた〕を
用いて分析し、反応の経過をモニターした。反応生成物
の一部(55nmol)を減圧乾固し、これに無水ヒド
ラジンを添加して溶液とし、これを封管中70℃で2分
間加熱した。次いで過剰のヒドラジンを減圧下溜去して
1−アミノ−1−デオキシラクチトールを得た(収率9
5%)。このものは、他の方法(Anal. Biochem., 97,
166-172(1979))で合成した1−アミノ−1−デオキシ
ラクチトールと同一物質であることがアミノ酸分析機で
同定された。
Example 1-1 A known method using lactose and 2-aminopyridine [hereinafter sometimes abbreviated as "PA"] as raw materials (Biochem. Bioph.
ys. Res. Commun., 85 , 257-263 (1978)) 1-
4.5 μmol of pyridylamino-1-deoxylactitol [2-aminopyridine-bound lactose; sometimes referred to as “PA-lactose” below) was dissolved in 1 ml of water, and the pH was adjusted to 3 with acetic acid. A small amount of palladium black was added to this solution, and the reduction reaction was carried out in a hydrogen gas stream under normal pressure for 3 hours. The reaction solution was TLC [DC-Alufo
lien Kieselgel 60 (Merck); methanol / water /
It was developed using aqueous ammonia (6: 0.3: 0.1 v / v), and the target substance was colored by using sulfuric acid and heating] to analyze the progress of the reaction. A part (55 nmol) of the reaction product was evaporated to dryness under reduced pressure, and anhydrous hydrazine was added thereto to form a solution, which was heated in a sealed tube at 70 ° C. for 2 minutes. Then, excess hydrazine was distilled off under reduced pressure to obtain 1-amino-1-deoxylactitol (yield 9
5%). This is the other method (Anal. Biochem., 97 ,
It was identified by an amino acid analyzer as the same substance as 1-amino-1-deoxylactitol synthesized in 166-172 (1979)).

【0032】実施例1−2 1−ピリジルアミノ−1−デオキシ−N−アセチルグル
コサミニトールを原料として、ヒドラジンによる分解
を、より穏和な条件で行ったほかは上記実施例1−1と
ほぼ同様の方法で1−アミノ−1−デオキシ−N−アセ
チルグルコサミニトール(式(b1)において、Raが
Hである化合物)を合成した。
Example 1-2 Almost the same as Example 1-1 above, except that 1-pyridylamino-1-deoxy-N-acetylglucosaminitol was used as a starting material and decomposition with hydrazine was carried out under milder conditions. 1-amino-1-deoxy-N-acetylglucosaminitol (a compound of the formula (b1) in which Ra is H) was synthesized by the method.

【0033】〔実施例2:還元末端アミノ化オリゴ糖類
の合成〕オボアルブミンから分離精製された下式のオリ
ゴマンノースタイプの糖鎖(M6B)を原料として公知
の方法(J. Biochem.,90,407-414(1981);J. Biochem.,9
5,197-203(1984) )に準じて合成された還元末端残基
(末端GlcNAc)に2−アミノピリジンが結合したM6B
(M6B−PA)1.9μmolを用い、実施例1と同
様の方法で還元末端がアミノ化されたM6B(M6B−
N)(式(b1)において、Raが下記M6Bのアミノ
化される末端GlcNAcを除く部分からなる基である化合
物)を合成した。なお、還元はパラジウム黒を触媒とし
て使用し、水素ガス気流中、常圧下、3時間反応させる
ことによって行った。また、ヒドラジンによる分解は、
無水ヒドラジンを用い、封管中70℃で2分間反応させ
ることによって行った。反応終了後、実施例1−1と同
様に処理し、TLCで目的化合物を精製した(収率約5
0%)。
[Example 2: Synthesis of reducing end aminated oligosaccharides] A known method (J. Biochem., 90 , 90 , using an oligomannose type sugar chain (M6B) of the following formula separated and purified from ovalbumin as a raw material. 407-414 (1981); J. Biochem., 9
5, 197-203 (1984)) 2-aminopyridine in the synthesis reducing end residue (terminal GlcNAc) in accordance with bound M6B
(M6B-PA) was used in an amount of 1.9 μmol, and the reducing end was aminated in the same manner as in Example 1 (M6B-M6B-PA).
N) (a compound in which Ra is a group consisting of a moiety excluding the terminal GlcNAc of M6B to be aminated in the formula (b1)) was synthesized. The reduction was performed by using palladium black as a catalyst and reacting in a hydrogen gas stream under normal pressure for 3 hours. In addition, decomposition with hydrazine
The reaction was carried out by using anhydrous hydrazine at 70 ° C. for 2 minutes in a sealed tube. After completion of the reaction, the same treatment as in Example 1-1 was carried out to purify the target compound by TLC (yield: about 5
0%).

【0034】M6Bの構造:Manα1-6(Manα1-3)Manα1
-6(Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc 質量分析[M+Na]+:実測値m/z=1420.3
(計算値1420.5) 〔実施例3:フルオレセインイソチオシアネート標識オ
リゴ糖の合成〕実施例2で合成したM6B−N 20n
molを含む反応液を試験管中で濃縮乾固し、これにピ
リジン10μl及びフルオレセインイソチオシアネート
(FITC)1.3mgを添加した。70℃で2分間加
熱し、反応液を減圧下乾固した。濃縮残渣を少量の水に
溶かし、TLC用プレート〔DC-Alufolien Kieselgel6
0,4.5 ×7cm 〕に負荷し、メタノール/エタノール/
酢酸(2:1:0.05v/v)で展開した。次いで蛍
光性のバンドを水で溶出して還元末端残基のアミノ基が
FITCで標識されたM6B(M6B−F)の水溶液を
得た。
Structure of M6B: Manα1-6 (Manα1-3) Manα1
-6 (Manα1-2Manα1-3) Manβ1-4GlcNAc β1-4GlcNAc mass spectrometry [M + Na] + : measured value m / z = 1420.3
(Calculated value 1420.5) [Example 3: Synthesis of fluorescein isothiocyanate-labeled oligosaccharide] M6B-N 20n synthesized in Example 2
The reaction liquid containing mol was concentrated to dryness in a test tube, and 10 μl of pyridine and 1.3 mg of fluorescein isothiocyanate (FITC) were added thereto. It heated at 70 degreeC for 2 minutes, and dried the reaction liquid under reduced pressure. Dissolve the concentrated residue in a small amount of water and use it for a TLC plate [DC-Alufolien Kieselgel6
0,4.5 × 7cm], methanol / ethanol /
It was developed with acetic acid (2: 1: 0.05 v / v). Then, the fluorescent band was eluted with water to obtain an aqueous solution of M6B (M6B-F) in which the amino group of the reducing terminal residue was labeled with FITC.

【0035】〔実施例4:ビオチン標識オリゴ糖の合
成〕実施例2で合成したM6B−N 20nmolを含
む反応液を試験管中で濃縮乾固し、これに飽和炭酸水素
ナトリウム溶液10μl及びビオチン・スルフォ−N−
ヒドロキシスクシンイミド・エステル2mgを添加し
た。これを時々攪拌しながら室温で15分間反応させ
た。反応後、強酸性陽イオン交換樹脂ダウエックス(Do
wex)50×2〔ダウケミカル社製,100〜200メ
ッシュ,H+型〕を添加してpHを3に調整した。樹脂
を濾去するとともに5倍容の水で洗浄し、濾液と洗浄液
を合わせて実施例3と同様にTLCを用いて分画し、目
的化合物のバンドを水で溶出し、還元末端残基のアミノ
基がビオチン化されたM6B(M6B−B)の水溶液を
得た。
Example 4: Synthesis of biotin-labeled oligosaccharide The reaction solution containing 20 nmol of M6B-N synthesized in Example 2 was concentrated to dryness in a test tube, and 10 μl of saturated sodium hydrogen carbonate solution and biotin Sulfo-N-
2 mg of hydroxysuccinimide ester was added. This was reacted for 15 minutes at room temperature with occasional stirring. After the reaction, strong acid cation exchange resin Dowex (Do
Wex) 50 × 2 (manufactured by Dow Chemical Co., 100 to 200 mesh, H + type) was added to adjust the pH to 3. The resin was filtered off, washed with 5 volumes of water, and the filtrate and washings were combined and fractionated using TLC as in Example 3. The band of the desired compound was eluted with water to give An aqueous solution of M6B (M6B-B) in which the amino group was biotinylated was obtained.

【0036】〔実施例5:人工複合糖質の合成〕 実施例5−1:アミノ化糖誘導体とリゾレシチンの複合
体の合成 2−(4−ヒドロキシカルボニルブチロイル)リゾレシ
チン〔1位はパルミトイル基〕をDMFに溶解させ、0
℃に冷却し、該リゾレシチンに対し1当量のN−ヒドロ
キシスクシンイミドおよび1当量のジシクロヘキシルカ
ルボジイミド(DCC)を加える。トリエチルアミンで
pH6〜7に調整し、室温で15時間攪拌する。不溶物
をゼオライトで濾過し、活性エステル体のDMF溶液を
得る。
[Example 5: Synthesis of artificial glycoconjugate] Example 5-1: Synthesis of complex of aminated sugar derivative and lysolecithin 2- (4-hydroxycarbonylbutyroyl) lysolecithin [1st position is palmitoyl group] Dissolved in DMF,
Cool to ° C and add 1 equivalent of N-hydroxysuccinimide and 1 equivalent of dicyclohexylcarbodiimide (DCC) to the lysolecithin. Adjust the pH to 6-7 with triethylamine and stir at room temperature for 15 hours. The insoluble matter is filtered through zeolite to obtain a DMF solution of active ester form.

【0037】上記活性エステル体溶液の溶媒を留去し、
該活性エステル体に対し実施例2で合成した1当量のM
6B−Nの水溶液を加え、0℃で1時間、さらに室温で
一晩反応させ、M6B−Nと上記リゾレシチン誘導体の
結合物を得る。 実施例5−2 アミノ化誘導体とホスファチジルエタノールアミンの複
合体の合成 クロロホルム溶液に溶解したジパルミトイルホスファチ
ジルエタノールアミンに対し1当量の無水コハク酸およ
び2当量のトリエチルアミンを加え、室温で24時間反
応させ、シリカゲルカラムクロマトグラフィー(溶離
液:クロロホルム−メタノール)で精製する。次いで、
実施例5−2と同様に、N−ヒドロキシスクシンイミド
およびDCCを用いて活性エステル体を得、これと実施
例2で合成したM6B−Nを反応させてホスファチジル
エタノールアミンとの結合物を得る。
The solvent of the active ester solution was distilled off,
1 equivalent of M synthesized in Example 2 with respect to the active ester form
An aqueous solution of 6B-N is added, and the mixture is reacted at 0 ° C. for 1 hour and further at room temperature overnight to obtain a bound product of M6B-N and the above lysolecithin derivative. Example 5-2 Synthesis of complex of aminated derivative and phosphatidylethanolamine 1 equivalent of succinic anhydride and 2 equivalents of triethylamine were added to dipalmitoylphosphatidylethanolamine dissolved in a chloroform solution, and the mixture was reacted at room temperature for 24 hours. Purify by silica gel column chromatography (eluent: chloroform-methanol). Then
In the same manner as in Example 5-2, N-hydroxysuccinimide and DCC were used to obtain an active ester form, and this was reacted with M6B-N synthesized in Example 2 to obtain a conjugate with phosphatidylethanolamine.

【0038】〔参考例:ドットブロット法によるレクチ
ンの検出〕公知の方法(Proc. Natl. Acad. Sci. USA,
76, 4350-4354(1979);Biochem. J.,257, 43-49(1989)
)によってコンカナバリンA(ConA;生化学工業
(株)製)をニトロセルロース膜(バイオ−ラド社製)
上に固定し(スポットA,1μg(10pmol);ス
ポットB,0.5μg(5pmol);スポットC,
0.1μg(1pmol))、ウシ血清アルブミン(B
SA)でブロッキングした。この膜を、実施例3で得た
M6B−F(0.05mM)水溶液又は実施例4で得た
M6B−B(0.1mM)水溶液を加えた20mMトリ
ス塩酸緩衝液(pH7.5;1mM塩化カルシウム、1
mM塩化マグネシウム及び0.15M塩化ナトリウム含
有)中で30分間インキュベートした。
Reference Example: Detection of Lectin by Dot Blot Method Known method (Proc. Natl. Acad. Sci. USA,
76 , 4350-4354 (1979); Biochem. J., 257, 43-49 (1989).
), A concanavalin A (ConA; manufactured by Seikagaku Corp.) is used as a nitrocellulose membrane (manufactured by Bio-Rad).
Fixed on top (Spot A, 1 μg (10 pmol); Spot B, 0.5 μg (5 pmol); Spot C,
0.1 μg (1 pmol)), bovine serum albumin (B
Blocked with SA). This membrane was mixed with the M6B-F (0.05 mM) aqueous solution obtained in Example 3 or the M6B-B (0.1 mM) aqueous solution obtained in Example 4 in a 20 mM Tris-HCl buffer (pH 7.5; 1 mM chloride). Calcium, 1
Incubated for 30 minutes in mM magnesium chloride and 0.15 M sodium chloride).

【0039】反応後、M6B−Fを使用した場合はUV
ランプを照射し、ConAのスポットを肉眼的に検出し
た。その結果、スポットCはやや濃度が薄いもののスポ
ットA〜Cで全てConAの検出が可能であった。ま
た、M6B−Bを使用した場合は、さらにストレプトア
ビジン−西洋ワサビ・ペルオキシダーゼ結合物(以下
「St.Av-HRP」と略す;ベクター・ラボラトリース社
製)を反応させ、4−クロロ−1−ナフトールを含む基
質を用いて発色させ、肉眼的に検出するか、あるいはス
トレプトアビジン−フルオレセイン結合物(以下、「S
t.Av-FITC」と略す; ピース社製)を反応させ、UVラ
ンプを照射して肉眼的に検出した。その結果、St.Av-HR
P を用いた場合は、スポットCはやや濃度が薄いものの
スポットA〜Cで全てConAの検出が可能であり、S
t.Av-FITCを用いた場合は、スポットBは検出限界付近
であり、スポットAは明瞭に検出された。M6B−Bの
代わりに水を用いてインキュベートした対照において
は、何れもConAは検出されなかった。
After the reaction, UV was used when M6B-F was used.
The lamp was illuminated and the ConA spot was detected visually. As a result, it was possible to detect all ConA in the spots A to C although the spot C had a slightly low concentration. When M6B-B is used, a streptavidin-horseradish peroxidase conjugate (hereinafter abbreviated as “St.Av-HRP”; vector laboratory company) is further reacted to give 4-chloro-1-. Color is developed using a substrate containing naphthol and is detected macroscopically, or streptavidin-fluorescein conjugate (hereinafter referred to as "S
Abbreviated as "t.Av-FITC"; manufactured by Peace Co., Ltd.) and reacted with a UV lamp for macroscopic detection. As a result, St.Av-HR
When P is used, Con A can be detected in all of Spots A to C although the concentration of Spot C is slightly low.
When t.Av-FITC was used, spot B was near the detection limit and spot A was clearly detected. ConA was not detected in any of the controls incubated with water instead of M6B-B.

【0040】以上の結果、本発明による上記糖標識物を
使用した場合、5pmol以下のConAがドットブロ
ット法で検出可能であった。一方、M6B−PAを用い
て同様にドットブロット法(UVランプ検出)でCon
Aを肉眼的に検出したところ、0.5nmolが検出限
界であった。
From the above results, 5 pmol or less of ConA was detectable by the dot blot method when the above-mentioned sugar-labeled product according to the present invention was used. On the other hand, using the M6B-PA, the dot blot method (UV lamp detection) was performed in the same manner.
When A was visually detected, 0.5 nmol was the detection limit.

【0041】[0041]

【発明の効果】ピリジルアミノ化糖鎖(2−アミノピリ
ジン誘導体化オリゴ糖類)等の標識化した2−アミノ誘
導体化糖は天然の複合糖質よりHPLC等を用いて単一
に精製しやすい。本発明の方法でこのようなピリジルア
ミノ化糖鎖等から得られた還元末端にアミノ基を有する
糖鎖は、標識化化合物、蛋白質、ペプチド等と容易に反
応させることができるので、糖鎖の単一構造に関しての
組織化学的研究、レクチン等の研究、ネオグリコプロテ
イン、ネオグリコリピッドの作成等に有用である。
EFFECTS OF THE INVENTION A labeled 2-amino-derivatized sugar such as a pyridyl-aminated sugar chain (2-aminopyridine-derivatized oligosaccharide) is easily singly purified from a natural glycoconjugate using HPLC or the like. The sugar chain having an amino group at the reducing terminal obtained from such a pyridyl aminated sugar chain or the like by the method of the present invention can be easily reacted with a labeling compound, protein, peptide, etc. It is useful for histochemical studies on one structure, studies on lectins, etc., preparation of neoglycoprotein, neoglycolipid, etc.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 下記化1で示される一般式(a) 【化1】 (式中、R−CH2−は、還元末端がアルデヒド化され
てR−CHOで示され得る糖類に由来する基を表し、R
1 、R2 、R3 及びR4 は、互いに同一でも異なっても
良く、各々水素、低級アルキル基から選択される基を表
す。)で表される2−アミノピリジン誘導体化糖類を還
元反応に付し、次いでアルカリ条件下において分解反応
に付して下記一般式(b) R−CH2−NH2(b)(式中、R−CH2−は前記と
同意義。)で表されるアミノ化糖誘導体を得ることを特
徴とする糖のアミノ化法。
1. A general formula (a) represented by the following chemical formula 1 (Wherein, R-CH 2 -, the reducing end is aldehyde represents a group derived from a saccharide which may be represented by R-CHO, R
1 , R 2 , R 3 and R 4, which may be the same or different, each represents a group selected from hydrogen and a lower alkyl group. A 2-aminopyridine derivatized saccharide represented by the formula (1) is subjected to a reduction reaction, and then subjected to a decomposition reaction under alkaline conditions to give a compound represented by the following general formula (b) R—CH 2 —NH 2 (b) (wherein R-CH 2 - is amination of the sugar, characterized in that to obtain the aminated sugar derivative represented by the same defined above)..
【請求項2】 アルカリ条件下での分解反応が、ヒドラ
ジン存在下における分解反応である請求項1記載の糖の
アミノ化法。
2. The method for amination of sugar according to claim 1, wherein the decomposition reaction under alkaline conditions is a decomposition reaction in the presence of hydrazine.
【請求項3】 請求項1の化1で示される一般式(a)
の化合物は、還元末端がアルデヒド化されて下記一般式
(c) R−CHO(c)(式中、Rは糖類残基を表す。) で示され得る糖類と下記化2で示される一般式(d) 【化2】 (式中、R1 、R2 、R3 及びR4 は、互いに同一でも
異なっても良く、各々水素、低級アルキル基から選択さ
れる基を表す。)で表される2−アミノピリジン誘導体
とを反応させてシッフ塩基を形成させ、次いで還元反応
に付して得られた2−アミノピリジン誘導体化糖類であ
る請求項1記載の糖のアミノ化法。
3. The general formula (a) represented by the chemical formula 1 of claim 1.
The compound of (1) has a reducing terminal aldehyde, and a saccharide that can be represented by the following general formula (c) R-CHO (c) (wherein R represents a saccharide residue) and a general formula shown by the following chemical formula 2. (D) [Chemical formula 2] (In the formula, R 1 , R 2 , R 3 and R 4 may be the same or different and each represents a group selected from hydrogen and a lower alkyl group.) And a 2-aminopyridine derivative The method for amination of sugar according to claim 1, which is a 2-aminopyridine derivatized saccharide obtained by reacting with a Schiff base to form a Schiff base, and then subjecting it to a reduction reaction.
【請求項4】 前記一般式(a)の化合物は、異なる構
造の複数種の2−アミノピリジン誘導体化糖類の混合物
を蛍光クロマトグラフィーにかけることにより得られた
R基が実質的に単一な分画である2−アミノピリジン誘
導体化糖類である請求項1記載の糖のアミノ化法。
4. The compound of the general formula (a) has a substantially single R group obtained by subjecting a mixture of plural kinds of 2-aminopyridine derivatized saccharides having different structures to fluorescence chromatography. The method for aminating sugar according to claim 1, which is a fractionated 2-aminopyridine derivatized saccharide.
【請求項5】 請求項1の一般式(b)で表される化合
物と、アミノ基と反応し得る標識化化合物とを反応させ
ることを特徴とする還元末端が標識化された糖類の製造
方法。
5. A method for producing a saccharide labeled at a reducing end, which comprises reacting a compound represented by the general formula (b) according to claim 1 with a labeled compound capable of reacting with an amino group. .
【請求項6】 標識化化合物が、フルオレセインイソチ
オシアネート、フェニルイソチオシアネートまたはビオ
チンである請求項7の製造方法。
6. The method according to claim 7, wherein the labeled compound is fluorescein isothiocyanate, phenyl isothiocyanate or biotin.
【請求項7】 請求項1の一般式(b)で表される化合
物と、蛋白質、ペプチド類または脂質とを反応させるこ
とを特徴とする人工複合糖質の製造方法。
7. A method for producing an artificial glycoconjugate, which comprises reacting the compound represented by the general formula (b) according to claim 1 with a protein, a peptide or a lipid.
JP21229192A 1992-07-17 1992-07-17 Amination method of sugar Expired - Fee Related JP3408271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21229192A JP3408271B2 (en) 1992-07-17 1992-07-17 Amination method of sugar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21229192A JP3408271B2 (en) 1992-07-17 1992-07-17 Amination method of sugar

Publications (2)

Publication Number Publication Date
JPH0640953A true JPH0640953A (en) 1994-02-15
JP3408271B2 JP3408271B2 (en) 2003-05-19

Family

ID=16620164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21229192A Expired - Fee Related JP3408271B2 (en) 1992-07-17 1992-07-17 Amination method of sugar

Country Status (1)

Country Link
JP (1) JP3408271B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241389A (en) * 2004-02-25 2005-09-08 Ochiyanomizu Jiyoshi Univ Specific immobilization reagent for fluorescence-labeled sugar chain and immobilization method
JP2006022191A (en) * 2004-07-07 2006-01-26 Yasuhiro Kajiwara Three-branched sugar chain asparagine derivative, the sugar chain asparagine, the sugar chain and their preparation methods
JP2007530532A (en) * 2004-03-22 2007-11-01 コード バイオテック リミテッド Synthetic membrane anchor
WO2011078302A1 (en) * 2009-12-24 2011-06-30 生化学工業株式会社 METHOD FOR PRODUCING N-ALKYL-β-VALIENAMINE ANALOGUE
JP2011140466A (en) * 2010-01-07 2011-07-21 Kagawa Univ Method for producing schiff base of aldose or of derivative thereof, and method for producing aldose or derivative thereof
US8070466B2 (en) 2006-10-11 2011-12-06 Freund Corporation Seamless capsule manufacturing apparatus
US10858384B2 (en) 2004-03-22 2020-12-08 Kode Biotech Limited Synthetic molecule constructs

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241389A (en) * 2004-02-25 2005-09-08 Ochiyanomizu Jiyoshi Univ Specific immobilization reagent for fluorescence-labeled sugar chain and immobilization method
JP2007530532A (en) * 2004-03-22 2007-11-01 コード バイオテック リミテッド Synthetic membrane anchor
US8013131B2 (en) 2004-03-22 2011-09-06 Kode Biotech Limited Synthetic membrane anchors
US8637473B2 (en) 2004-03-22 2014-01-28 Kode Biotech Limited Synthetic membrane anchors
US9353349B2 (en) 2004-03-22 2016-05-31 Kode Biotech Limited Synthetic membrane anchors
US9809614B2 (en) 2004-03-22 2017-11-07 Kode Biotech Limited Synthetic membrane anchors
US10414786B2 (en) 2004-03-22 2019-09-17 Kode Biotech Limited Synthetic membrane anchors
US10858384B2 (en) 2004-03-22 2020-12-08 Kode Biotech Limited Synthetic molecule constructs
JP2006022191A (en) * 2004-07-07 2006-01-26 Yasuhiro Kajiwara Three-branched sugar chain asparagine derivative, the sugar chain asparagine, the sugar chain and their preparation methods
US8070466B2 (en) 2006-10-11 2011-12-06 Freund Corporation Seamless capsule manufacturing apparatus
WO2011078302A1 (en) * 2009-12-24 2011-06-30 生化学工業株式会社 METHOD FOR PRODUCING N-ALKYL-β-VALIENAMINE ANALOGUE
JP2011140466A (en) * 2010-01-07 2011-07-21 Kagawa Univ Method for producing schiff base of aldose or of derivative thereof, and method for producing aldose or derivative thereof

Also Published As

Publication number Publication date
JP3408271B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US10317393B2 (en) Alkynyl sugar analogs for labeling and visualization of glycoconjugates in cells
JP5139085B2 (en) Solid-phase oligosaccharide tagging: manipulation techniques for immobilized carbohydrates
Harvey Identification of protein‐bound carbohydrates by mass spectrometry
AU602275B2 (en) Sialic acid glycosides, antigens, immunoadsorbents, and methods for their preparation
JP3345401B2 (en) Rapid quantitative analysis of proteins or protein functions in complex mixtures
JP6602747B2 (en) Synthesis and use of isotopically labeled glycans
CA1291423C (en) Biochemical reagent
US4563445A (en) 3-Fucosyl-N-acetyl lactosamine derivatives, and their biological applications
KR0147845B1 (en) Glycosphingolipids with a group capable of coupling in the sphingoid portion, the preparation and use thereof
Poulter et al. [36] Desorption mass spectrometry of oligosaccharides coupled with hydrophobic chromophores
JPH05507191A (en) CMP-activated fluorescent sialic acid and its production method
Sparks et al. Synthesis of potential inhibitors of hemagglutination by influenza virus: chemoenzymic preparation of N-5 analogs of N-acetylneuraminic acid.
Chai et al. Neoglycolipid technology: deciphering information content of glycome
JP4340423B2 (en) Photoreactive sugar compound, labeled photoreactive sugar compound, and method for capturing and measuring sugar receptor
US5668272A (en) Method for producing synthetic N-linked glycoconjugates
JP3408271B2 (en) Amination method of sugar
TWI547486B (en) Compounds and methods for analysis and synthesis of saccharide compounds
EP0234799A2 (en) Method of protein detection or isolation
Vermeer et al. Synthesis and conjugation of a sulfated disaccharide involved in the aggregation process of the marine sponge Microciona prolifera
US5214138A (en) Imidazopyridinium compound and processes for isolating, identifying, and chemically synthesizing same
CN112778194A (en) Universal low-cost quaternary ammonium salt sugar chain isotope labeling reagent and synthetic method thereof
Sano et al. Isolation and Identification of α‐(γ‐Aminobutyryl)‐Hypusine
SCHNELLER et al. An effective method for the synthesis of neoglycoproteins and neogangliosideproteins by use of reductively aminated sulfhydryl-containing carbohydrate conjugates
US5374712A (en) Imidazopyridinium compound and processes for isolating, identifying, and chemically synthesizing same
Lee et al. Recognition of Carbohydrates in Biological Systems, Part A: General Procedures

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090314

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees