JPH0640118B2 - Method of measuring leakage current of capacitors - Google Patents

Method of measuring leakage current of capacitors

Info

Publication number
JPH0640118B2
JPH0640118B2 JP25098487A JP25098487A JPH0640118B2 JP H0640118 B2 JPH0640118 B2 JP H0640118B2 JP 25098487 A JP25098487 A JP 25098487A JP 25098487 A JP25098487 A JP 25098487A JP H0640118 B2 JPH0640118 B2 JP H0640118B2
Authority
JP
Japan
Prior art keywords
measured
probe
capacitor
leakage current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25098487A
Other languages
Japanese (ja)
Other versions
JPH0192668A (en
Inventor
繁太郎 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25098487A priority Critical patent/JPH0640118B2/en
Publication of JPH0192668A publication Critical patent/JPH0192668A/en
Publication of JPH0640118B2 publication Critical patent/JPH0640118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 〔概 要〕 コンデンサの試験において漏洩電流を測定する方法に関
し、 測定装置を簡略化し作業効率を向上させることを目的と
し、 漏洩電流を測定するに際して被測定コンデンサ4を、プ
ローブ7と切換えスイッチ8を介して試験用電源1と電
流検出回路2に接続し、電流検出回路2により被測定コ
ンデンサ4の漏洩電流を測定した後、漏洩電流測定時に
被測定コンデンサ4に蓄積された電気を、プローブ7と
切換えスイッチ8を介して放電せしめてその電流値を検
出し、漏洩電流を測定した時の被測定コンデンサ4とプ
ローブ7との接触状態を、放電電流値から検知するよう
に構成する。
DETAILED DESCRIPTION OF THE INVENTION [Overview] Regarding a method for measuring a leakage current in a capacitor test, for the purpose of simplifying a measuring device and improving work efficiency, when measuring a leakage current, a measured capacitor 4 is It is connected to the test power supply 1 and the current detection circuit 2 via the probe 7 and the changeover switch 8, and after measuring the leakage current of the capacitor 4 to be measured by the current detection circuit 2, it is accumulated in the capacitor 4 to be measured at the time of measuring the leakage current. The generated electricity is discharged through the probe 7 and the changeover switch 8, the current value is detected, and the contact state between the capacitor 4 to be measured and the probe 7 when the leakage current is measured is detected from the discharge current value. To configure.

〔産業上の利用分野〕[Industrial application field]

本発明はコンデンサの試験において漏洩電流を測定する
方法に係り、特に測定装置を簡略化し作業効率を向上さ
せる漏洩電流の測定方法に関する。
The present invention relates to a method for measuring a leakage current in a capacitor test, and particularly to a method for measuring a leakage current that simplifies a measuring device and improves work efficiency.

半導体集積回路等と組合せて使用されるコンデンサで
は、漏洩電流が大きいと半導体集積回路が破壊される場
合があり、その製造工程における漏洩電流の測定は極め
て重要視されている。しかしかかる漏洩電流の測定にお
いて被測定コンデンサのリード端子と、試験電源や電流
検出回路との接続はプローブを介して行われ、例えば電
流検出回路において漏洩電流が検出されなくても、被測
定コンデンサの特性が優れていて検出できないのか、或
いはリード端子とプローブとの接触が悪くて検出できな
いのか判別できない。そこで漏洩電流と共にプローブの
接触状態を検出できる測定方法の確立が望まれている。
In a capacitor used in combination with a semiconductor integrated circuit or the like, if the leakage current is large, the semiconductor integrated circuit may be destroyed, and it is extremely important to measure the leakage current in the manufacturing process. However, in the measurement of such leakage current, the lead terminal of the capacitor to be measured is connected to the test power supply or the current detection circuit via a probe, and even if the leakage current is not detected in the current detection circuit, for example, It cannot be determined whether the characteristics are excellent and cannot be detected, or the contact between the lead terminal and the probe is poor and cannot be detected. Therefore, it is desired to establish a measuring method capable of detecting the contact state of the probe as well as the leakage current.

〔従来の技術〕[Conventional technology]

第3図は従来の漏洩電流測定方法を示す回路図である。 FIG. 3 is a circuit diagram showing a conventional leakage current measuring method.

従来の漏洩電流の測定には図示の如く試験電源1と電流
検出回路2と導通判定回路3が用いられ、電流検出回路
2は例えば増幅回路21と電流計22とで構成されている。
試験電源1および電流検出回路2或いは導通判定回路3
と被測定コンデンサ4とは、プローブ5とプローブの接
続先を切り換える切換えスイッチ6を介して接続されて
おり、プローブ5として2本の電極がそれぞれ同一リー
ド端子と接触する多極プローブが、また切換えスイッチ
6として他極プローブの各電極の接続先を、それぞれ同
時に切り換えられる多回路スイッチが用いられている。
As shown in the figure, a conventional test current source 1, a current detection circuit 2, and a continuity determination circuit 3 are used to measure the leakage current, and the current detection circuit 2 is composed of, for example, an amplifier circuit 21 and an ammeter 22.
Test power supply 1 and current detection circuit 2 or continuity determination circuit 3
The capacitor 5 to be measured and the capacitor 4 to be measured are connected via a probe 5 and a switch 6 for switching the connection destination of the probe. As the probe 5, a multipolar probe in which two electrodes are in contact with the same lead terminal is also switched. As the switch 6, a multi-circuit switch capable of simultaneously switching the connection destinations of the electrodes of the other pole probe is used.

図において多極プローブ5の電極はいずれも電流検出側
に接続されており、被測定コンデンサ4の一方のリード
端子には試験電源1が、また被測定コンデンサ4の他方
のリード端子には電流検出回路2が、それぞれ切換えス
イッチ6と多極プローブ5の2本の電極を介して接続さ
れている。この状態では被測定コンデンサ4に試験電圧
が印加されその時の漏洩電流を測定することができる。
In the figure, all electrodes of the multi-pole probe 5 are connected to the current detection side, the test power supply 1 is connected to one lead terminal of the capacitor 4 to be measured, and the current detection is connected to the other lead terminal of the capacitor 4 to be measured. The circuit 2 is connected via the changeover switch 6 and the two electrodes of the multipolar probe 5, respectively. In this state, a test voltage is applied to the capacitor to be measured 4 and the leak current at that time can be measured.

被測定コンデンサ4の漏洩電流を測定した後切換えスイ
ッチ6を切り換えると、多極プローブ5の全ての電極が
導通判定回路3に接続される。導通判定回路3はそれぞ
れの多極プローブ5に対応する導通チェック回路を具え
ており、同一多極プローブ5のそれぞれの電極が確実に
リード端子に接触していると、導通チェック回路は多極
プローブの電極とリード端子を介して接地される。しか
るにいずれか一本の電極がリード端子に接触していない
と、その電極に関連する導通チェック回路が接地されず
接触不良を容易に検出することができる。
When the changeover switch 6 is switched after measuring the leakage current of the capacitor to be measured 4, all electrodes of the multipolar probe 5 are connected to the continuity determination circuit 3. The continuity determination circuit 3 includes a continuity check circuit corresponding to each multipole probe 5, and when each electrode of the same multipole probe 5 is surely in contact with the lead terminal, the continuity check circuit 3 It is grounded through the electrode of the probe and the lead terminal. However, if any one of the electrodes is not in contact with the lead terminal, the continuity check circuit associated with the electrode is not grounded and the contact failure can be easily detected.

例えば前述の漏洩電流検出において漏洩電流が検出でき
ず、しかも導通判定においてプローブとリード端子との
接触に異常が無ければ、この被測定コンデンサは良品と
判定しても支障は無いが、導通判定においてプローブと
リード端子との接触に異常が発見された場合は、被測定
コンデンサと多極プローブの接触状態がチェックされ漏
洩電流の再測定が行われる。
For example, if the leakage current cannot be detected in the above-mentioned leakage current detection and there is no abnormality in the contact between the probe and the lead terminal in the continuity determination, there is no problem in deciding that this capacitor to be measured is a good product, but in the continuity determination When an abnormality is found in the contact between the probe and the lead terminal, the contact state between the capacitor to be measured and the multipolar probe is checked, and the leak current is measured again.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし従来の試験方法では多極プローブが用いられてお
り、多回路を同時に切り換えられる切換えスイッチを必
要とするなど回路構成が複雑で、しかも2本の電極のい
ずれか一方が接触していないと、漏洩電流の再測定が行
われ作動効率が極めて悪いという問題があった。
However, in the conventional test method, a multipole probe is used, and the circuit configuration is complicated such as requiring a changeover switch capable of simultaneously changing multiple circuits, and if either one of the two electrodes is not in contact, There was a problem that the leakage current was measured again and the operating efficiency was extremely poor.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明になる漏洩電流測定方法の原理を示す回
路図である。なお全図を通し同じ対象物は同一記号で表
している。
FIG. 1 is a circuit diagram showing the principle of the leakage current measuring method according to the present invention. Note that the same object is denoted by the same symbol throughout the drawings.

漏洩電流の測定時に被測定コンデンサに蓄積された電気
を放電するときの電流値から、プローブの接触状態を検
知できることに着目し上記問題点の解決を図ったもので
ある。即ち上記問題点は漏洩電流を測定するに際して被
測定コンデンサ4を、プローブ7と切換えスイッチ8を
介して試験用電源1と電流検出回路2に接続し、電流検
出回路2により被測定コンデンサ4の漏洩電流を測定し
た後、漏洩電流測定時に被測定コンデンサ4に蓄積され
た電気を、プローブ7と切換えスイッチ8を介して放電
せしめてその電流値を検出し、漏洩電流を測定した時の
被測定コンデンサ4とプローブ7との接触状態を、放電
電流値から検知する本発明になるコンデンサの漏洩電流
測定方法によって解決される。
This problem is solved by paying attention to the fact that the contact state of the probe can be detected from the current value at the time of discharging the electricity accumulated in the capacitor to be measured when measuring the leakage current. That is, the above problem is that when measuring the leakage current, the measured capacitor 4 is connected to the test power supply 1 and the current detection circuit 2 via the probe 7 and the changeover switch 8, and the leakage of the measured capacitor 4 is caused by the current detection circuit 2. After measuring the current, the electricity stored in the capacitor to be measured 4 at the time of measuring the leakage current is discharged through the probe 7 and the changeover switch 8 to detect the current value, and the capacitor to be measured at the time of measuring the leakage current. This is solved by the method for measuring the leakage current of the capacitor according to the present invention, which detects the contact state between the probe 4 and the probe 7 from the discharge current value.

〔作用〕[Action]

第1図において電流検出回路によって被測定コンデンサ
の漏洩電流を測定した後、被測定コンデンサに蓄積され
た電気を放電せしめて放電電流を検出し、放電電流値か
ら被測定コンデンサとプローブとの接触状態を検知する
ことによって、被測定コンデンサに接触させるプローブ
が単極のプローブになり、切換えスイッチの回路数が減
少して回路構成が簡略化されると共に、被測定コンデン
サのリード端子とプローブの接触が確実になり、漏洩電
流を再測定する回数が減って作業効率を向上させること
ができる。
In Fig. 1, after measuring the leak current of the capacitor to be measured by the current detection circuit, the electricity accumulated in the capacitor to be measured is discharged to detect the discharge current, and the contact state between the capacitor to be measured and the probe is detected from the discharge current value. By detecting, the probe to be brought into contact with the capacitor to be measured becomes a unipolar probe, the number of changeover switch circuits is reduced, the circuit configuration is simplified, and the contact between the lead terminal of the capacitor to be measured and the probe is made. As a result, the number of times of re-measurement of the leakage current is reduced and the work efficiency can be improved.

〔実施例〕〔Example〕

以下添付図により本発明の漏洩電流測定方法について詳
細に説明する。なお第2図は本発明の一実施例を示す回
路図である。
The leakage current measuring method of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 2 is a circuit diagram showing an embodiment of the present invention.

本発明になる漏洩電流の測定方法では第1図に示す如く
試験電源1と電流検出回路2が用いられ、被測定コンデ
ンサ4の一方のリード端子はプローブ7と切換えスイッ
チ8を介して試験電源1に、また他方のリード端子はプ
ローブ7を介して電流検出回路2に接続される。図にお
いて切換えスイッチ8は試験電源1側に接続されてお
り、かかる場合は被測定コンデンサ4に試験電圧が印加
されて、その時の漏洩電流を電流検出回路2において測
定することができる。
In the leakage current measuring method according to the present invention, a test power supply 1 and a current detection circuit 2 are used as shown in FIG. 1, and one lead terminal of a capacitor 4 to be measured is connected to the test power supply 1 via a probe 7 and a changeover switch 8. The other lead terminal is connected to the current detection circuit 2 via the probe 7. In the figure, the changeover switch 8 is connected to the test power supply 1 side, and in such a case, a test voltage is applied to the capacitor 4 to be measured, and the leak current at that time can be measured by the current detection circuit 2.

漏洩電流を測定した後切換えスイッチ8を切り換える
と、それまで試験電源1に接続されていたプローブ7が
抵抗Rを介して接地され、被測定コンデンサ4に蓄積さ
れていた電気が抵抗Rを介して放電されて、電流検出回
路2によってその時の放電電流が検出される。
When the changeover switch 8 is changed over after measuring the leakage current, the probe 7 which has been connected to the test power supply 1 until then is grounded via the resistor R, and the electricity stored in the capacitor 4 to be measured passes through the resistor R. After being discharged, the current detection circuit 2 detects the discharge current at that time.

切換えスイッチ8を切り換えることにより放電される電
気は、漏洩電流を測定する際にプローブ7とリード端子
の接触点を介して、被測定コンデンサ4に印加され蓄積
された電気であり、プローブ7とリード端子が確実に接
触していれば必ず放電電流が検出される。一方プローブ
7がリード端子に接触していない場合は、漏洩電流を測
定する際に被測定コンデンサ4に電気が蓄積されず、ま
た漏洩電流を測定する前に被測定コンデンサ4に電気が
蓄積されていても放電電流は流れない。接触不良の場合
は放電電流が流れてもその値が極めて微弱なため容易に
識別することができる。
The electricity discharged by switching the changeover switch 8 is the electricity applied to and accumulated in the capacitor 4 to be measured via the contact point between the probe 7 and the lead terminal when measuring the leakage current, and the electricity is stored in the probe 7 and the lead. The discharge current is always detected if the terminals are in good contact. On the other hand, when the probe 7 is not in contact with the lead terminal, electricity is not accumulated in the measured capacitor 4 when measuring the leakage current, and electricity is accumulated in the measured capacitor 4 before measuring the leakage current. However, no discharge current flows. In the case of poor contact, even if a discharge current flows, its value is extremely weak, so that it can be easily identified.

第2図に示す実施例では漏洩電流の測定と接触状態の検
出を一層安定化するために、試験電源1と電流検出回路
2の他に放電電流検知回路9を設けている。即ち被測定
コンデンサ4の一方のリード端子はプローブ7と切換え
スイッチ8を介して試験電源1に、また他方のリード端
子はプローブ7と切換えスイッチ8を介して電流検出回
路2に接続される。電流検出回路2は例えば増幅回路21
と電流形22とで構成されている。図において切換えスイ
ッチ8は試験電源1側と電流検出回路2側に接続されて
おり、かかる場合は被測定コンデンサ4に試験電圧が印
加されて、その時の漏洩電流を電流検出回路2において
測定することができる。
In the embodiment shown in FIG. 2, a discharge current detection circuit 9 is provided in addition to the test power supply 1 and the current detection circuit 2 in order to further stabilize the leakage current measurement and the contact state detection. That is, one lead terminal of the capacitor to be measured 4 is connected to the test power supply 1 via the probe 7 and the changeover switch 8, and the other lead terminal is connected to the current detection circuit 2 via the probe 7 and the changeover switch 8. The current detection circuit 2 is, for example, an amplifier circuit 21.
And current source 22. In the figure, the changeover switch 8 is connected to the test power supply 1 side and the current detection circuit 2 side. In such a case, the test voltage is applied to the capacitor 4 to be measured, and the leakage current at that time is measured by the current detection circuit 2. You can

漏洩電流を測定した後切換えスイッチ8を切り換える
と、それまで試験電源1に接続されていたプローブと電
流検出回路2に接続されていたプローブが、放電電流検
知回路9のホトカップラ91を介して短絡され、被測定コ
ンデンサ4に蓄積されていた電気がホトカップラ91を介
して放電される。放電電流検知回路9はホトカップラ91
と判定回路92とで構成されており、このホトカップラ91
の出力電流に基づいて判定回路92において、被測定コン
デンサ4とプローブ7の接触状態の良否が判定される。
When the changeover switch 8 is changed over after measuring the leak current, the probe connected to the test power supply 1 and the probe connected to the current detection circuit 2 are short-circuited via the photocoupler 91 of the discharge current detection circuit 9. The electricity stored in the measured capacitor 4 is discharged through the photocoupler 91. The discharge current detection circuit 9 is a photo coupler 91.
And a determination circuit 92, and this photo coupler 91
The determination circuit 92 determines whether the contact state between the capacitor 4 to be measured and the probe 7 is good or bad based on the output current of the.

このように電流検出回路によって被測定コンデンサの漏
洩電流を測定した後、被測定コンデンサに蓄積された電
気を放電せしめて放電電流を検出し、放電電流値から被
測定コンデンサとプローブとの接触状態を検知すること
によって、被測定コンデンサに接触させるプローブが単
極のプローブになり、切換えスイッチの回路数が減少し
て回路構成が簡略化されると共に、被測定コンデンサの
リード端子とプローブの接触が確実になり、漏洩電流を
再測定する回数が減って作業効率を向上させることがで
きる。
After measuring the leakage current of the capacitor to be measured by the current detection circuit in this way, discharge the electricity accumulated in the capacitor to be measured to detect the discharge current, and check the contact state between the capacitor to be measured and the probe from the discharge current value. By detecting, the probe that contacts the capacitor to be measured becomes a unipolar probe, the number of changeover switch circuits is reduced and the circuit configuration is simplified, and the contact between the lead terminal of the capacitor to be measured and the probe is ensured. Therefore, the number of times of re-measurement of the leakage current is reduced, and the work efficiency can be improved.

〔発明の効果〕〔The invention's effect〕

上述の如く本発明によれば測定装置を簡略化し作業効率
を向上させる漏洩電流の測定方法を提供することができ
る。
As described above, according to the present invention, it is possible to provide a leakage current measuring method that simplifies the measuring device and improves work efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明になる漏洩電流測定方法の原理を示す回
路図、 第2図は本発明の一実施例を示す回路図、 第3図は従来の漏洩電流測定方法を示す回路図、 である。図において 1は試験用電源、2は電流検出回路、 4は被測定コンデンサ、7はプローブ、 8は切換えスイッチ、9は放電電流検知回路、 21は増幅回路、22は電流計、 91はホトカップラ、92は判定回路、 をそれぞれ表す。
1 is a circuit diagram showing the principle of the leakage current measuring method according to the present invention, FIG. 2 is a circuit diagram showing an embodiment of the present invention, and FIG. 3 is a circuit diagram showing a conventional leakage current measuring method. is there. In the figure, 1 is a test power supply, 2 is a current detection circuit, 4 is a capacitor to be measured, 7 is a probe, 8 is a changeover switch, 9 is a discharge current detection circuit, 21 is an amplification circuit, 22 is an ammeter, 91 is a photocoupler, Denoted by 92 is a decision circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】漏洩電流を測定するに際して被測定コンデ
ンサ(4) を、プローブ(7) と切換えスイッチ(8) を介し
て試験用電源(1) と電流検出回路(2) に接続し、電流検
出回路(2) により該被測定コンデンサ(4) の漏洩電流を
測定した後、 漏洩電流測定時に該被測定コンデンサ(4) に蓄積された
電気を、該プローブ(7) と該切換えスイッチ(8) を介し
て放電せしめてその電流値を検出し、漏洩電流を測定し
た時の該被測定コンデンサ(4) と該プローブ(7) との接
触状態を、該放電電流値から検知することを特徴とした
コンデンサの漏洩電流測定方法。
1. When measuring a leakage current, a capacitor to be measured (4) is connected to a test power supply (1) and a current detection circuit (2) through a probe (7) and a changeover switch (8), and a current is measured. After measuring the leakage current of the capacitor to be measured (4) by the detection circuit (2), the electricity accumulated in the capacitor to be measured (4) at the time of measuring the leakage current is transferred to the probe (7) and the changeover switch (8). ), The current value is detected, and the contact state between the measured capacitor (4) and the probe (7) when the leakage current is measured is detected from the discharge current value. Method for measuring leakage current of capacitors.
JP25098487A 1987-10-05 1987-10-05 Method of measuring leakage current of capacitors Expired - Lifetime JPH0640118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25098487A JPH0640118B2 (en) 1987-10-05 1987-10-05 Method of measuring leakage current of capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25098487A JPH0640118B2 (en) 1987-10-05 1987-10-05 Method of measuring leakage current of capacitors

Publications (2)

Publication Number Publication Date
JPH0192668A JPH0192668A (en) 1989-04-11
JPH0640118B2 true JPH0640118B2 (en) 1994-05-25

Family

ID=17215944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25098487A Expired - Lifetime JPH0640118B2 (en) 1987-10-05 1987-10-05 Method of measuring leakage current of capacitors

Country Status (1)

Country Link
JP (1) JPH0640118B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333663A (en) * 1989-06-30 1991-02-13 Hioki Ee Corp Inspecting apparatus for circuit board
JP2016114612A (en) * 2016-01-26 2016-06-23 日置電機株式会社 Capacitor inspection method

Also Published As

Publication number Publication date
JPH0192668A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
EP0805487A3 (en) Multielectrode electrostatic chuck with fuses
JP3480019B2 (en) Leakage determination method and device
JP3939071B2 (en) Inspection method and connection circuit for circuits connected to multiple batteries
KR100363294B1 (en) Probe tangency detecting method and probe tangency detecting apparatus
JPH0640118B2 (en) Method of measuring leakage current of capacitors
KR940007922B1 (en) Insulation resistance detecting apparatus
JP2889264B2 (en) Four terminal measuring device
JP2992955B2 (en) Sensor device and operating method thereof
JP2001035759A (en) Apparatus for measuring impedance of capacitor
US20230396095A1 (en) Current Distribution Device Comprising A Load Detection Unit For Measuring A Detection Voltage
JP2000173880A (en) Polarity judging method and device for electrolytic capacitor
JP4013595B2 (en) Insulation resistance measuring device for electronic parts and overcurrent protection circuit for insulation resistance measurement
JPH02176574A (en) Electronic parts measuring instrument
JPH0524222Y2 (en)
JPH0234607Y2 (en)
JPH0814590B2 (en) Circuit element measuring device terminal connection state detection circuit
JPH08262076A (en) Measuring device of insulation resistance of capacitor
JPH0330829B2 (en)
SU1019376A1 (en) Electronic device electrode break and short-circuiting detecting device
SU385342A1 (en) DEVICE FOR TESTING RELAY FOR WEAR RESISTANCE
JPH0498161A (en) Polarity detection method for aluminum electrolytic capacitor
JPH06350092A (en) High-reliability integrated circuit structure for mos power device
JP2023107032A (en) Insulation resistance detector and fault detection method
JPH0814594B2 (en) Electrolytic capacitor failure determination circuit
JPS61155873A (en) Measuring instrument for semiconductor element