JPH0640070B2 - Fourier transform infrared spectrophotometer measuring device with differential scanning calorimeter - Google Patents

Fourier transform infrared spectrophotometer measuring device with differential scanning calorimeter

Info

Publication number
JPH0640070B2
JPH0640070B2 JP1251398A JP25139889A JPH0640070B2 JP H0640070 B2 JPH0640070 B2 JP H0640070B2 JP 1251398 A JP1251398 A JP 1251398A JP 25139889 A JP25139889 A JP 25139889A JP H0640070 B2 JPH0640070 B2 JP H0640070B2
Authority
JP
Japan
Prior art keywords
infrared
sample
scanning calorimeter
dsc
differential scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1251398A
Other languages
Japanese (ja)
Other versions
JPH03111740A (en
Inventor
孝博 田島
誠治 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1251398A priority Critical patent/JPH0640070B2/en
Publication of JPH03111740A publication Critical patent/JPH03111740A/en
Publication of JPH0640070B2 publication Critical patent/JPH0640070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は示差走査熱量計(以下DSC)と、反射形の赤
外顕微鏡を付属したフーリエ変換赤外分光光度形(以下
FTIR)測定装置に関する。
The present invention relates to a Fourier transform infrared spectrophotometric (FTIR) measuring apparatus equipped with a differential scanning calorimeter (hereinafter DSC) and a reflection type infrared microscope. .

[従来の技術] FTIRは従来の赤外分光光度計(分散形IR)と同じ
ように赤外吸収スペクトルを得ることが目的である。す
なわち分散形IRでは光源から出た光を試料に当てた後
に分光器に導入し、回折格子で単色光に分光してスペク
トルを得るのに対し、フーリエ変換形というのはこのよ
うな分散素子のかわりに干渉計を用いて干渉光を発生さ
せ、試料に当てる方式である。
[Prior Art] The purpose of FTIR is to obtain an infrared absorption spectrum similarly to a conventional infrared spectrophotometer (dispersive IR). That is, in the dispersion type IR, the light emitted from the light source is applied to the sample and then introduced into the spectroscope, and the spectrum is obtained by dispersing the light into a monochromatic light by the diffraction grating. Instead, an interferometer is used to generate interference light and apply it to the sample.

FTIRの場合は検出器から直接スペクトル信号が得ら
れるのではなくインターフェログラムと呼ばれる干渉波
形が得られる。これは干渉計の移動鏡を前後に往復運動
させるに伴なって得られる波形である。得られたインタ
ーフェログラムからスペクトルを得るにはフーリエ変換
という数学計算が必要である。これをコンピュータが高
速で計算する。
In the case of FTIR, an interference waveform called an interferogram is obtained instead of a spectrum signal obtained directly from the detector. This is a waveform obtained by reciprocating the moving mirror of the interferometer back and forth. In order to obtain a spectrum from the obtained interferogram, mathematical calculation called Fourier transform is necessary. The computer calculates this at high speed.

一方熱分析は、従来主として研究開発のための測定用と
して利用されてきたが、現在では、熱分析を用いた試験
規格が制定され、実用的な応用、すなわち、生産現場に
おける品質管理、工程管理、材料の受入れ検査などへ利
用される時代となった。
On the other hand, thermal analysis has hitherto been mainly used for measurement for research and development, but nowadays, a test standard using thermal analysis has been established, and practical application, that is, quality control and process control at the production site. It has become an era when it is used for acceptance inspection of materials.

その分野も、高分子をはじめ、ガラス・セラミックス・
金属・火薬・半導体・医薬品・食品などきわめて広範囲
にわたっている。
In that field, we have started with polymers, glass, ceramics,
It covers a wide range of fields including metals, gunpowder, semiconductors, pharmaceuticals, and foods.

DSCには、(A)熱流束形、(B)熱補償形の2つの種類が
装置化されているが、現在では、熱流束形が多く使用さ
れている。
Two types of (A) heat-flux type and (B) heat-compensating type have been incorporated into the DSC, but at present, the heat-flux type is widely used.

熱流束DSCでは、ヒートシンクである加熱炉に接続さ
れた金属板(一般には、熱電対用材料であるコンスタン
タン)上に、試料と基準物質が置かれ、試料と基準物質
の温度差が測定されている。ヒートシンクから試料およ
び基準物質に流入する熱量の差は、試料と基準物質の温
度差に比例していることから、温度差を測定することに
よって、間接的に、熱流量(mJ/sec)を測定して
いることになる。
In the heat flux DSC, a sample and a reference substance are placed on a metal plate (generally constantan, which is a thermocouple material) connected to a heating furnace that is a heat sink, and the temperature difference between the sample and the reference substance is measured. There is. Since the difference in the amount of heat flowing into the sample and the reference substance from the heat sink is proportional to the temperature difference between the sample and the reference substance, the heat flow rate (mJ / sec) is indirectly measured by measuring the temperature difference. You are doing it.

熱流束DSCでは、試料と基準物質が、温度分布のよい
加熱炉内に設置してあるため、加熱炉の温度変動による
ノイズや、対流の変化によるノイズなどが、極めて小さ
く、さらに、ベースラインが安定しているので、高感度
測定が可能である。
In the heat flux DSC, since the sample and the reference material are installed in a heating furnace with a good temperature distribution, noise due to temperature fluctuations in the heating furnace and noise due to changes in convection are extremely small. Since it is stable, highly sensitive measurement is possible.

一方、熱補償形DSCでは、試料と基準物質とをそれぞ
れ別個に加熱できるマイクロヒーターが設けられ、両者
を定速で昇・降温させ、そのとき、試料と基準物質の温
度差が常に零となるようにマイクロヒーターへの電力供
給量が制御される。この電力供給量の差(mJ/se
c)が、記憶される。
On the other hand, in the heat-compensated DSC, a micro-heater that can separately heat the sample and the reference substance is provided to raise and lower both of them at a constant speed, and at that time, the temperature difference between the sample and the reference substance is always zero. Thus, the amount of power supplied to the micro heater is controlled. This difference in power supply (mJ / se
c) is stored.

熱補償形DSCでは、ホルダーやマイクロヒーターの熱
容量が、小さいので、温度追従性が良く、また、ヒータ
ーから試料までの熱抵抗が小さいので、ピークがシャー
プとなり、いわゆるピーク分解能に優れている。
In the heat compensation type DSC, the heat capacity of the holder and the micro-heater is small, so that the temperature followability is good, and the thermal resistance from the heater to the sample is small, so that the peak is sharp and the so-called peak resolution is excellent.

いづれの方式においても、DSCは熱量の測定精度が高
く、また比熱測定が可能であるなど、データを定量的に
扱えるという特長をもつ。
Regardless of which method is used, the DSC has the feature of being able to quantitatively handle data, such as high measurement accuracy of calorific value and specific heat measurement.

しかし、分解反応の測定には適さないため、試料を分解
させないという注意が必要である。
However, care must be taken not to decompose the sample, because it is not suitable for measuring decomposition reactions.

DSC測定の試料は、フィルム状、繊維状、粒子状など
その形態は問わず、またサンプル量も数mgという少量
でよい。
The sample for DSC measurement may have any form such as film, fiber or particle, and the sample amount may be as small as several mg.

そして測定チャートにより、例えばポリエーテルエーテ
ルケトン(PEEK)の場合、142.4℃にガラス転
移点(吸熱)、176.1℃に低温結晶化点(発熱)、
340.8℃に融解点(吸熱)がある。結晶化熱量は、
97.5mJ、融解熱は150.2mJである。これら
の熱量は、ピーク面積から求められるが、データ処理内
では、DSC信号を時間で積分している。
According to the measurement chart, for example, in the case of polyetheretherketone (PEEK), the glass transition point (endotherm) at 142.4 ° C, the low temperature crystallization point (exothermic) at 176.1 ° C,
There is a melting point (endotherm) at 340.8 ° C. The heat of crystallization is
The heat of fusion is 97.5 mJ and the heat of fusion is 150.2 mJ. These amounts of heat are obtained from the peak area, but the DSC signal is integrated with time in the data processing.

前記DSCとFTIRを直結させると、昇温や降温時の
試料の熱量変化と赤外スペクトルを同時に測定すること
ができる。
By directly connecting the DSC and FTIR, it is possible to simultaneously measure the change in the amount of heat of the sample and the infrared spectrum when the temperature is raised or lowered.

従来、行われているDSC/FTIR測定は、DSCの
セル部が赤外光の透過が可能な構造になっており、赤外
スペクトルは透過形赤外顕微鏡により測定されている。
In the conventional DSC / FTIR measurement, the cell portion of the DSC has a structure capable of transmitting infrared light, and the infrared spectrum is measured by a transmission infrared microscope.

[発明が解決しようとする課題] 従来の方法では、DSCのセル部に赤外光の透過が可能
な構造のものを採用しているため、測定できる試料は、
透明なフィルムのようなものに限られてしまうという課
題があった。DSC測定の対象となる試料としては、粉
末状のものが多く、これらの試料の赤外スペクトルを透
過法で測定するのは困難である。
[Problems to be Solved by the Invention] In the conventional method, since the cell part of the DSC has a structure capable of transmitting infrared light, the measurable sample is
There was a problem that it was limited to something like a transparent film. Many samples to be subjected to DSC measurement are in powder form, and it is difficult to measure the infrared spectrum of these samples by a transmission method.

本発明は反射法で赤外スペクトルの測定を行うことによ
り、粉末試料でも測定できるDSC/FTIR装置を提
供することを目的とする。
An object of the present invention is to provide a DSC / FTIR device that can measure even a powder sample by measuring an infrared spectrum by a reflection method.

[課題を解決するための手段] 前記目的を達成するため、本発明は下記の構成からな
る。すなわち本発明は、示差走査熱量計と、反射計赤外
顕微鏡を付属したフーリエ変換赤外分光光度計とから構
成され、示差走査熱量計の検出部は赤外顕微鏡のサンプ
ルステージに設置され、示差走査熱量計のセル部のサン
プルカップ上部は、反射法による赤外線を透過させるた
め赤外線スペクトル透過材料からなる窓板が設けられて
なることを特徴とする示差走査熱量計付フーリエ変換赤
外分光光度計測定装置である。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following constitution. That is, the present invention comprises a differential scanning calorimeter and a Fourier transform infrared spectrophotometer attached with a reflectometer infrared microscope, the detection unit of the differential scanning calorimeter is installed on the sample stage of the infrared microscope, A Fourier transform infrared spectrophotometer with a differential scanning calorimeter characterized in that a window plate made of an infrared spectrum transmitting material is provided on the upper portion of the sample cup of the cell part of the scanning calorimeter to transmit infrared rays by the reflection method. It is a measuring device.

[作用] 本発明は、反射形赤外顕微鏡を付属したFTIRとDS
Cとから構成され、DSCの検出部は、赤外顕微鏡のサ
ンプルステージに設置され、DSCのセル部は、反射法
による赤外スペクトルの測定が可能なように、反射法に
よる赤外線を透過させるため赤外線スペクトル透過材料
からなる窓板が設けたことにより、温度変化に伴ない分
子構造あるいは結晶構造が変化するような試料に対し、
試料の熱量変化と赤外スペクトルを同時に測定すること
ができる。
[Operation] The present invention relates to FTIR and DS equipped with a reflection infrared microscope.
The detection part of the DSC is installed on the sample stage of the infrared microscope, and the cell part of the DSC transmits infrared rays by the reflection method so that the infrared spectrum can be measured by the reflection method. By providing a window plate made of infrared spectrum transmitting material, for samples whose molecular structure or crystal structure changes with temperature change,
The calorific value change and infrared spectrum of the sample can be measured simultaneously.

本発明においては、赤外線透過材料からなる窓板が、B
aF製の結晶プレートであり、かつ不活性ガス流通孔
を有してなることが好ましい。BaF製の結晶プレー
トは、反射法による赤外線を透過させる機能に優れてい
るからである。他にKBr製の結晶プレート等も使用で
きるが、水分管理等が面倒である。
In the present invention, the window plate made of the infrared transmitting material is B
It is preferably a crystal plate made of aF 2 and having an inert gas flow hole. This is because the BaF 2 crystal plate has an excellent function of transmitting infrared rays by the reflection method. Alternatively, a KBr crystal plate or the like can be used, but water management is troublesome.

不活性ガス流通孔を設けるのは、試料にNガスやヘリ
ウムガスを流してサンプルの熱分解を防ぐためである。
The provision of the inert gas flow hole is to prevent the thermal decomposition of the sample by flowing N 2 gas or helium gas to the sample.

[実施例] 以下実施例を用いて本発明をさらに具体的に説明する。
なお本発明は下記の実施例に限定されるものではない。
[Examples] The present invention will be described in more detail with reference to the following examples.
The present invention is not limited to the following examples.

第1図および第2図は本発明の一実施態様を示すもの
で、赤外顕微鏡のステージにDSC検出部を設置したと
ころを示したものである。すなわち、DSCの検出部4
は赤外顕微鏡1のサンプルステージ6に設置され、DS
Cのセル部8のサンプルカップ上部は、反射法による赤
外線を透過させるため赤外線スペクトル透過材料からな
る窓板9が設けられている。
FIG. 1 and FIG. 2 show one embodiment of the present invention, showing a DSC detector installed on the stage of an infrared microscope. That is, the detection unit 4 of the DSC
Is installed on the sample stage 6 of the infrared microscope 1, and the DS
A window plate 9 made of an infrared spectrum transmitting material is provided on the upper portion of the sample cup of the cell portion 8 of C for transmitting infrared rays by the reflection method.

DSCの検出部は、第2図のように赤外顕微鏡の光軸が
サンプル側のアルミニウムセル(サンプルセル8)の中
央にくるよう設置する。DSC測定を始める前に、赤外
スペクトルのリファレンス(対照)としてKBr粉末を
サンプルセル8に入れて測定しておく。次に粉末試料を
入れたサンプルセル8と基準物質を入れたリファレンス
セル7を熱電対板12の上に置き、通気孔のあいたBa
の窓板9で蓋をしてDSC測定を開始する。赤外ス
ペクトルの測定はDSCの測定開始と同時に連続的に行
うか、あるいは、任意の温度領域において随時行うこと
ができる。
The detection part of the DSC is installed so that the optical axis of the infrared microscope is at the center of the aluminum cell (sample cell 8) on the sample side as shown in FIG. Before starting the DSC measurement, KBr powder is put in the sample cell 8 as a reference of the infrared spectrum and measured. Next, the sample cell 8 containing the powder sample and the reference cell 7 containing the reference substance were placed on the thermocouple plate 12, and Ba with a vent was provided.
Cover with the window plate 9 of F 2 and start the DSC measurement. The infrared spectrum can be measured continuously at the same time as the DSC measurement is started, or can be performed at any time in any temperature range.

なおBaFの窓板9は、BaFの結晶をスライスし
て作製した。大きさは直径29mm、厚さ2mm、不活
性ガス流通孔の大きさは直径1mmのものを2つ設け
た。
The BaF 2 window plate 9 was prepared by slicing a BaF 2 crystal. Two pieces having a diameter of 29 mm, a thickness of 2 mm, and an inert gas flow hole having a diameter of 1 mm were provided.

[発明の効果] 本発明は、反射形赤外顕微鏡を付属したFTIRとDS
Cとを直結し、DSCの検出部は、赤外顕微鏡のサンプ
ルステージに設置され、DSCのセル部は、反射法によ
る赤外スペクトルの測定が可能なように、反射法による
赤外線を透過させるため赤外線スペクトル透過材料から
なる窓板が設けたことにより、温度変化に伴ない分子構
造あるいは結晶構造が変化するような試料に対し、試料
の熱量変化と赤外スペクトルを同時に効率よく測定する
ことができるという顕著な効果を達成することができ
た。
[Advantages of the Invention] The present invention relates to FTIR and DS equipped with a reflection infrared microscope.
Directly connected to C, the detection part of the DSC is installed on the sample stage of the infrared microscope, and the cell part of the DSC transmits infrared rays by the reflection method so that the infrared spectrum can be measured by the reflection method. By providing a window plate made of an infrared spectrum transmitting material, it is possible to efficiently measure the heat quantity change and infrared spectrum of the sample at the same time for the sample whose molecular structure or crystal structure changes with temperature change. It was possible to achieve the remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本発明の一実施態様を示す。 1:赤外顕微鏡、2:対物鏡 3:検出器、4:DSC検出部 5:DSC加熱炉、6:サンプルステージ 7:リファレンスセル 8:サンプルセル、9:BaF窓板 10:対物鏡、11:通気孔 12:熱電対板1 and 2 show an embodiment of the present invention. 1: Infrared microscope 2: Objective mirror 3: Detector 4: DSC detector 5: DSC heating furnace 6: Sample stage 7: Reference cell 8: Sample cell 9: BaF 2 window plate 10: Objective mirror 11: Vent hole 12: Thermocouple plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】示差走査熱量計と、反射形赤外顕微鏡を付
属したフーリエ変換赤外分光光度計とから構成され、示
差走査熱量計の検出部は赤外顕微鏡のサンプルステージ
に設置され、示差走査熱量計のセル部のサンプルカップ
上部は、反射法による赤外線を透過させるため赤外線ス
ペクトル透過材料からなる窓板が設けられてなることを
特徴とする示差走査熱量計付フーリエ変換赤外分光光度
計測定装置。
1. A differential scanning calorimeter and a Fourier transform infrared spectrophotometer equipped with a reflection infrared microscope, wherein the detection unit of the differential scanning calorimeter is installed on a sample stage of the infrared microscope. A Fourier transform infrared spectrophotometer with a differential scanning calorimeter characterized in that a window plate made of an infrared spectrum transmitting material is provided on the upper portion of the sample cup of the cell part of the scanning calorimeter to transmit infrared rays by the reflection method. measuring device.
JP1251398A 1989-09-27 1989-09-27 Fourier transform infrared spectrophotometer measuring device with differential scanning calorimeter Expired - Fee Related JPH0640070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1251398A JPH0640070B2 (en) 1989-09-27 1989-09-27 Fourier transform infrared spectrophotometer measuring device with differential scanning calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251398A JPH0640070B2 (en) 1989-09-27 1989-09-27 Fourier transform infrared spectrophotometer measuring device with differential scanning calorimeter

Publications (2)

Publication Number Publication Date
JPH03111740A JPH03111740A (en) 1991-05-13
JPH0640070B2 true JPH0640070B2 (en) 1994-05-25

Family

ID=17222253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251398A Expired - Fee Related JPH0640070B2 (en) 1989-09-27 1989-09-27 Fourier transform infrared spectrophotometer measuring device with differential scanning calorimeter

Country Status (1)

Country Link
JP (1) JPH0640070B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599844A (en) * 1991-07-18 1993-04-23 Nippon Bio Ratsudo Lab Kk Fourier transformation type infrared spectral analysis method and device
CN110118743B (en) * 2019-06-04 2024-08-16 上海市质量监督检验技术研究院 Analysis method of multilayer composite film material for food packaging

Also Published As

Publication number Publication date
JPH03111740A (en) 1991-05-13

Similar Documents

Publication Publication Date Title
US5439291A (en) Method and apparatus for AC Differential thermal analysis
US5141331A (en) Ultrasonic temperature measurement and uses in optical spectroscopy and calorimetry
US4009962A (en) Emission spectroscopic system having compensation for background radiation
Veber et al. Combined Differential scanning calorimetry, Raman and Brillouin spectroscopies: A multiscale approach for materials investigation
Loarer et al. Noncontact surface temperature measurement by means of a modulated photothermal effect
US5191215A (en) Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials
CN109164136A (en) Thermoelectricity transports parameter high pass system for measuring quantity and method
Hernandez A concept to determine the true temperature of opaque materials using a tricolor pyroreflectometer
Loarer et al. Application of the pulsed photothermal effect to fast surface temperature measurements
Hernandez et al. Analysis and experimental results of solar-blind temperature measurements in solar furnaces
WO1994025861A1 (en) Raman analysis apparatus and methods
US6443616B1 (en) Material melting point determination apparatus
US4185497A (en) Adiabatic laser calorimeter
JPH0640070B2 (en) Fourier transform infrared spectrophotometer measuring device with differential scanning calorimeter
US6375349B1 (en) Instrument configured to test multiple samples for the determination of thermophysical properties by the flash method
MacBride et al. Effect of temperature variation on FT-IR spectrometer stability
RU2664969C1 (en) Laser radiation with structural materials interaction parameters examination test bench
JPH09222404A (en) Method and device for measuring specific heat capacity
Jaworske et al. Portable infrared reflectometer for evaluating emittance
Klein Techniques for measuring absorption coefficients in crystalline materials
Decker et al. The design and operation of a precise, high sensitivity adiabatic laser calorimeter for window and mirror material evaluation
Atkinson Development of a wavelength scanning laser calorimeter
US7283218B2 (en) Method and apparatus for the determination of characteristic layer parameters at high temperatures
JP2000180356A (en) Infrared spectrum analyser
JPH0676922B2 (en) Radiation temperature measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees