JPH0639983B2 - Cryogenic cooling device - Google Patents

Cryogenic cooling device

Info

Publication number
JPH0639983B2
JPH0639983B2 JP61283532A JP28353286A JPH0639983B2 JP H0639983 B2 JPH0639983 B2 JP H0639983B2 JP 61283532 A JP61283532 A JP 61283532A JP 28353286 A JP28353286 A JP 28353286A JP H0639983 B2 JPH0639983 B2 JP H0639983B2
Authority
JP
Japan
Prior art keywords
heat transfer
expander
heat
terminal plate
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61283532A
Other languages
Japanese (ja)
Other versions
JPS63135768A (en
Inventor
義彦 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61283532A priority Critical patent/JPH0639983B2/en
Publication of JPS63135768A publication Critical patent/JPS63135768A/en
Publication of JPH0639983B2 publication Critical patent/JPH0639983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この考案は、例えば液体ヘリウム内に浸漬された超電導
マグネットを被冷却体として、この被冷却体を該被冷却
体を包囲する熱遮蔽体とともに真空容器内に一括収容
し、かつ真空容器に据付けた冷凍機により前記熱遮蔽体
を冷却して真空容器の外部より侵入する輻射熱を除熱す
ることにより、真空容器内の中心部に置かれた被冷却体
を極低温冷却状態に維持させるようにした冷凍機付きク
ライオスタットを対象とする極低温冷却装置の構成に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a superconducting magnet immersed in liquid helium as an object to be cooled, and this object to be cooled together with a heat shield surrounding the object to be cooled. It was placed in the center of the vacuum container by collectively storing it in a vacuum container and cooling the heat shield by a refrigerator installed in the vacuum container to remove radiant heat that entered from the outside of the vacuum container. The present invention relates to a configuration of a cryogenic cooling device for a cryostat with a refrigerator, which is designed to maintain a cooled object in a cryogenic cooling state.

〔従来の技術〕[Conventional technology]

まず頭記した極低温冷却装置の従来構成を第3図に示
す。図において1は極低温で作動する例えば磁気共鳴を
利用する医療機器の超電導マグネットである被冷却体、
2は前記被冷却体を液体ヘリウム3に浸漬して収容した
内部容器、4は前記内部容器2を中央に置いて収容した
真空容器であり、該真空容器4の内方には前記内部容器
3の外周を包囲してさらに内外複数段の熱遮蔽体5,6
が配備されている。なお7は真空容器内の高真空空間を
示し、また前記内部容器2および熱遮蔽体5,6は図示
されてない断熱支持体を介して真空容器4に支持されて
いる。
First, the conventional structure of the cryogenic cooling device described above is shown in FIG. In the figure, reference numeral 1 denotes a cooled object which is a superconducting magnet of a medical device which operates at a very low temperature and which utilizes magnetic resonance,
Reference numeral 2 denotes an internal container in which the object to be cooled is immersed in liquid helium 3 and accommodated therein, 4 is a vacuum container in which the internal container 2 is placed in the center, and the interior container 3 is provided inside the vacuum container 4. Surrounding the outer periphery of the heat shields 5, 6
Has been deployed. Reference numeral 7 denotes a high vacuum space in the vacuum container, and the inner container 2 and the heat shields 5 and 6 are supported by the vacuum container 4 via a heat insulating support (not shown).

一方、真空容器4の頂部中央には冷凍機据付用窓が開口
されており、この部分にギフォード・マクマホンサイク
ル,ソルベイサイクル,スターリング逆サイクル等の熱
サイクルに基づく閉サイクル冷凍機の膨張機8が取付け
フランジ8aにより前記開口窓を気密封止するように固定
ボルト8bを介して着脱可能にボルト締めして据付けられ
ており、かつ膨張機本体から真空容器内に突き出す上下
2段構造のシリンダの寒冷発生部9A,9Bの先端周面部に
は良熱伝導金属で作られたフランジ形の伝熱端子10A,10
Bが固着されている。
On the other hand, a refrigerator installation window is opened at the center of the top of the vacuum container 4, and an expander 8 of a closed-cycle refrigerator based on a heat cycle such as Gifford-McMahon cycle, Solvay cycle, Stirling reverse cycle, etc. is opened in this portion. Cylinder of the upper and lower two-stage structure which is detachably bolted and installed through the fixing bolt 8b so as to hermetically seal the opening window by the mounting flange 8a, and which projects from the expander body into the vacuum container. Flange-shaped heat transfer terminals 10A, 10 made of a good heat conductive metal are provided on the tip peripheral surface of the generators 9A, 9B.
B is stuck.

また後述する冷凍機のメインテナンス作業に際して真空
容器4内の高真空空間7の真空を破らずに膨張機8を真
空容器4から取り外すことができるようにするために、
真空容器4の内方には前記膨張機8の寒冷発生部9A,9B
を包囲して真空容器4の高真空空間7と膨張機8との間
を隔離するように有底形の気密内筒11が設置されてい
る。この気密内筒11はその内部空間が前記した真空容器
4の膨張機据付け面に開放しており、その構造は良熱伝
導金属製の底板フランジ12,リング状の中間フランジ1
3,前記フランジ12と13との間を気密結合した伝熱抵抗
の大きな材料で作られたベローズ14,および一端をフラ
ンジ13に他端を真空容器4の開口端に気密結合したベロ
ーズ15との組合せ体として成る。また前記フランジ12,1
3の外周端はそれぞれフレキシブルな伝熱導体16を介し
て先記した熱遮蔽体5,6に伝熱的に接続されており、
さらに気密内筒11の内部空間側にて前記フランジ12,13
の上面には先記した膨張機8側の伝熱端子10A,10Bの板
面に密着して伝熱的に接触し合う可動式の伝熱端子板18
A,18Bがフレキシブルな伝熱導体19,圧縮付勢ばね20を
介して取付け支持されている。なお21はベローズ14,15
の伸縮を許容して前記フランジ12,13を支持した断熱支
持脚である。
Further, in order to enable the expander 8 to be removed from the vacuum container 4 without breaking the vacuum of the high vacuum space 7 in the vacuum container 4 during maintenance work of the refrigerator described later,
Inside the vacuum container 4, the cold generating portions 9A and 9B of the expander 8 are provided.
A bottomed airtight inner cylinder 11 is installed so as to surround the space between the high vacuum space 7 of the vacuum container 4 and the expander 8. The inner space of the airtight inner cylinder 11 is open to the expander installation surface of the vacuum container 4 described above, and its structure is a bottom plate flange 12 made of a good heat conductive metal, and a ring-shaped intermediate flange 1
3, a bellows 14 made of a material having a large heat transfer resistance in which the flanges 12 and 13 are airtightly connected, and a bellows 15 having one end connected to the flange 13 and the other end airtightly connected to the open end of the vacuum container 4. Composed as a combination. Also, the flanges 12, 1
The outer peripheral ends of 3 are heat-conductively connected to the aforementioned heat shields 5 and 6 through flexible heat transfer conductors 16, respectively,
Further, the flanges 12 and 13 are provided on the inner space side of the airtight inner cylinder 11.
On the upper surface of the movable heat transfer terminal plate 18 which is in close contact with the plate surfaces of the heat transfer terminals 10A and 10B on the expander 8 side described above and is in heat transfer contact therewith.
A and 18B are mounted and supported via a flexible heat transfer conductor 19 and a compression biasing spring 20. 21 is bellows 14,15
Is a heat insulating support leg that supports the flanges 12 and 13 by allowing expansion and contraction of the.

なお、前記気密内筒11の内方空間に向けて真空容器4に
は外部よりガス導管21が引き込み配管されており、かつ
該ガス導管21は弁22,23を介して真空ポンプ24,および
ヘリウムガス等の不活性ガス源に接続されている。ここ
で真空ポンプ24は冷凍機の運転に際して気密内筒11の内
方空間を真空引きして空気を排除し、寒冷発生部,およ
びその周辺部材等に着氷が発生するのを抑えるためのも
のであり、また後述のようにメインテナンスに際して冷
凍機の膨張機8を真空容器4から取り出す場合には、ガ
ス導管21を通じて気密内筒11の内部への外気侵入を抑え
るように不活性ガスを送り込んでガス置換を行う。
A gas conduit 21 is drawn from the outside into the vacuum container 4 toward the inner space of the airtight inner cylinder 11, and the gas conduit 21 is connected via valves 22 and 23 to a vacuum pump 24 and helium. It is connected to a source of inert gas such as gas. Here, the vacuum pump 24 is for vacuuming the inner space of the airtight inner cylinder 11 during operation of the refrigerator to eliminate air, and to prevent icing from occurring in the cold generating part and its peripheral members. Further, as will be described later, when the expander 8 of the refrigerator is taken out from the vacuum container 4 during maintenance, an inert gas is sent through the gas conduit 21 so as to suppress the outside air from entering the inside of the airtight inner cylinder 11. Perform gas replacement.

かかる構造により膨張機8の寒冷発生部9A,9B 成される。ここで気密内筒11の内方空間を真空引きした
状態で冷凍機を運転して熱遮蔽体5,6を極低温に冷却
することにより、真空容器4を通じて外部より侵入した
輻射熱が被冷却体である超電導マグネット1および液体
ヘリウム2を収容した内部容器3に到達する以前の段階
で熱遮蔽体5,6より除熱され、超電導マグネット1を
極低温冷却状態に安定維持させることができるようにな
る。
With such a structure, the cold generating portions 9A and 9B of the expander 8 Is made. Here, by operating the refrigerator to cool the heat shields 5 and 6 to an extremely low temperature in a state where the inner space of the airtight inner cylinder 11 is evacuated, the radiant heat that has entered from the outside through the vacuum container 4 is cooled. The heat is removed from the heat shields 5 and 6 before reaching the inner container 3 accommodating the superconducting magnet 1 and the liquid helium 2, and the superconducting magnet 1 can be stably maintained in a cryogenic cooling state. Become.

一方、前記した冷凍機の膨張機8は規定の運転時間が経
過した時点で、そのシールリング交換等のメインテナン
スを行う必要があり、このためにには膨張機8を真空容
器4から一旦取り外し、メインテナンス後に再び真空容
器4に据付ける作業が必要となる。この場合には、前記
したガス導管21を通じて気密内筒11の内方空間へ外部よ
り寒冷発生部の冷却温度で凝縮しないヘリウム等の不活
性ガスをブローして外気の侵入を抑えるようにガス置換
しつつ膨張機8を真空容器4から引出し、その後に真空
容器4の頂部開口面を盲蓋で仮封止する。これより膨張
機8の取り外し過程で外気の侵入を抑えて寒冷発生部お
よびその周辺に着氷が発生するのが防止しつつ、さらに
冷凍機を取り外した期間中に外部からの熱侵入を抑えて
超電導マグネット1の極低温維持を図る。またメインテ
ナンス作業の終了後に再び冷凍機の膨張機8を組込む場
合には、気密内筒11内に不活性ガスをブローして外気の
侵入を防止しつつ、前記盲蓋を外して膨張機8を据付け
てその寒冷発生部9A,9B側の伝熱端子10A,10Bを相手側の
伝熱端子板18A,18Bに伝熱接合させ、この状態で再び気
密内筒11の内方を真空引きした上で冷凍機を運転再開す
る。
On the other hand, the expander 8 of the refrigerating machine needs to perform maintenance such as replacement of the seal ring at the time when the specified operation time has elapsed. For this purpose, the expander 8 is once removed from the vacuum container 4, After the maintenance, it is necessary to install the vacuum container 4 again. In this case, an inert gas such as helium that does not condense from the outside at the cooling temperature of the cold generation portion is blown from the outside into the inner space of the airtight inner cylinder 11 through the gas conduit 21 described above so as to suppress the invasion of the outside air. At the same time, the expander 8 is pulled out from the vacuum container 4, and then the top opening surface of the vacuum container 4 is temporarily sealed with a blind lid. As a result, the invasion of outside air is suppressed during the removal process of the expander 8 to prevent the formation of ice on the cold generation part and its surroundings, and the heat intrusion from the outside is further suppressed during the period when the refrigerator is removed. To maintain the cryogenic temperature of the superconducting magnet 1. When the expander 8 of the refrigerator is installed again after the maintenance work is completed, the blind lid is removed and the expander 8 is installed while the inert gas is blown into the airtight inner cylinder 11 to prevent outside air from entering. Install and heat-bond the heat transfer terminals 10A, 10B on the cold generating parts 9A, 9B to the heat transfer terminal plates 18A, 18B on the mating side, and then evacuate the inside of the airtight inner cylinder 11 again in this state. Then restart the refrigerator.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで上記した従来構成では、膨張機8の据付け状態
で膨張機8の寒冷発生部に固着した伝熱端子10A,10Bと
これに接触する相手側の伝熱端子板18A,18Bとは圧縮ば
ね20のばね力により加圧接触し合っている。しかしてこ
の場合にはばね荷重がそのまま膨張機8の寒冷発生部9
A,9Bに加わることから、付勢ばね20のばね力,したがっ
て膨張機側の伝熱端子10A,10Bと熱遮蔽体側の伝熱端子
板18A,18Bとの間の接触圧力は寒冷発生部9A,9Bの機械的
強度から規制された許容荷重以下に制限されることにな
り、この結果として伝熱端子相互間の伝熱抵抗を充分に
低めることが困難となる。しかも伝熱端子接触部の伝熱
抵抗が高いと、冷却運転時にはこの部分に温度降下が生
じて高い熱伝導性が得られず、熱遮蔽体5,6を効率よ
く極低温まで冷却することが困難となる。
By the way, in the above-mentioned conventional structure, the heat transfer terminals 10A and 10B fixed to the cold generating part of the expander 8 in the installed state of the expander 8 and the heat transfer terminal plates 18A and 18B on the other side in contact therewith are the compression spring 20. They are pressed against each other by the spring force of. However, in this case, the spring load remains as it is and the cold generating part 9 of the expander 8
Since it is applied to A and 9B, the spring force of the biasing spring 20, and therefore the contact pressure between the heat transfer terminals 10A and 10B on the expander side and the heat transfer terminal plates 18A and 18B on the heat shield side, is the cold generating portion 9A. The mechanical strength of 9B limits the load to below the allowable load, and as a result, it becomes difficult to sufficiently reduce the heat transfer resistance between the heat transfer terminals. Moreover, if the heat transfer resistance of the heat transfer terminal contact part is high, a temperature drop occurs in this part during the cooling operation, and high heat conductivity cannot be obtained, so that the heat shields 5 and 6 can be efficiently cooled to an extremely low temperature. It will be difficult.

この発明の目的は、膨張機の寒冷発生部に何等の機械的
な荷重を加えることなしに、膨張機側の伝熱端子と熱遮
蔽体に連なる固定側の伝熱端子板との間をボルト締結に
より強固に接合して該接触部の伝熱抵抗を低く抑え、こ
れにより膨張機の寒冷発生部と熱遮蔽体との間に伝熱性
の高い伝熱経路を確保して効率よく冷却運転できるよう
にした極低温冷却装置の構成を提供することにある。
An object of the present invention is to provide a bolt between the heat transfer terminal on the expander side and the heat transfer terminal plate on the fixed side connected to the heat shield without applying any mechanical load to the cold generating part of the expander. The heat transfer resistance of the contact part is suppressed to be low by fastening firmly and the heat transfer path having a high heat transfer property is secured between the cold generating part of the expander and the heat shield, whereby the cooling operation can be efficiently performed. An object of the present invention is to provide a configuration of such a cryogenic cooling device.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、この発明によれば、膨張
機の寒冷発生部にフレキシブルな伝熱導体を介して伝熱
端子板を相対変位自在に結合し、かつ膨張機の据付位置
で前記膨張機側の伝熱端子板をこれと対向する固定側の
伝熱端子板上に当接させ、この状態で伝熱端子の相互間
をボルト締結するとともに、膨張機が取付けフランジを
介して真空容器に据付けられており、かつ前記フランジ
には伝熱端子相互間を締結する締結ボルトを器外よりボ
ルト操作するための工具挿入穴,およびこの穴を封止す
る封栓を設けるものとする。
In order to solve the above problems, according to the present invention, a heat transfer terminal plate is relatively displaceably coupled to a cold generation part of an expander via a flexible heat transfer conductor, and the expander is installed at the installation position. The heat transfer terminal plate on the expander side is brought into contact with the heat transfer terminal plate on the fixed side that faces the expander side, and in this state, the heat transfer terminals are bolted together and the expander vacuums via the mounting flange. The flange is provided with a tool insertion hole that is installed in the container and that allows the fastening bolts that fasten the heat transfer terminals to be bolted from outside the vessel, and a sealing plug that seals this hole.

〔作用〕[Action]

上記の構成により、膨張機の据付け状態で膨張機寒冷発
生部側の伝熱端子板とこれに対向する固定側の伝熱端子
板との間を強固にボルト締結することにより両者間の接
触伝熱抵抗が低値に抑えられ、これにより膨張機と熱遮
蔽体との間には従来のばね加圧による接触方式と比べて
より伝熱性の高い伝熱経路を確保することができるよう
になる。しかも膨張機側の伝熱端子板はフレキシブルな
伝熱導体を介して寒冷発生部と相対変位自在に結合され
ているので、伝熱端子板相互間でのボルト締結に伴って
寒冷発生部に機械的な干渉力を加えることがなく、かつ
膨張機の据付位置のずれ等に阻害されることなしに伝熱
端子板間を間を正しく密着してボルト締結することが可
能となる。
With the above structure, when the expander is installed, the heat transfer terminal plate on the expander cold generator side and the heat transfer terminal plate on the fixed side opposite to the heat transfer terminal plate are firmly bolted to each other for contact transfer between them. The thermal resistance is suppressed to a low value, which makes it possible to secure a heat transfer path having a higher heat transfer property between the expander and the heat shield as compared with the conventional contact method using spring pressure. . Moreover, since the heat transfer terminal plate on the expander side is connected to the cold generation part via the flexible heat transfer conductor so as to be displaceable relative to each other, the bolts between the heat transfer terminal plates are fastened to the cold generation part. The heat transfer terminal plates can be bolted to each other with proper contact between the heat transfer terminal plates without being applied with a general interference force and without being hindered by the displacement of the installation position of the expander.

膨張機の寒冷発生部を構成している構造部は、外部より
の伝熱侵入熱を低減するため機械的強度は弱い。従っ
て、寒冷発生部には外力が極力付加されないことが望ま
しい。本発明の上記構成によれば、膨張機に固定側の伝
熱端子板の荷重が付加されることは無い。よって、膨張
機に過大な外力が加わることが防止できるので、正常な
運転が維持される。
The structural part that constitutes the cold-generating part of the expander has a low mechanical strength because it reduces heat transfer and intrusion heat from the outside. Therefore, it is desirable that the external force is not applied to the cold generating portion as much as possible. According to the above configuration of the present invention, the load of the heat transfer terminal plate on the fixed side is not applied to the expander. Therefore, it is possible to prevent an excessive external force from being applied to the expander, and normal operation is maintained.

〔実施例〕〔Example〕

第1図,第2図はこの発明の実施例による要部構成を示
すものであり、第3図に対応する同一部材には同じ符号
が付してある。すなわち図示実施例では第3図に示した
可動式伝熱端子板18A,18Bおよびこれに付属する伝熱導
体19,付勢ばね20が省略され、この代わりに膨張機8の
寒冷発生部9A,9Bにはそれぞれフレキシブルな伝熱導体2
5を介してリング状の伝熱端子板26および27が膨張機と
の間で相対変位自在に結合されており、さらにこの伝熱
端子板26,27が膨張機8の据付状態でそれぞれ気密内筒1
1のフランジを兼ねる固定側の伝熱端子板12,13の板面上
に当接され、ここで両者の間が締結ボルト28,29で強固
に締結結合されている。なお伝熱端子板12,13は第3図
と同様にフレキシブルな伝熱導体16を介して熱遮蔽体
5,6に伝熱結合されている。
FIGS. 1 and 2 show the structure of the main parts according to the embodiment of the present invention, and the same members corresponding to those in FIG. 3 are designated by the same reference numerals. That is, in the illustrated embodiment, the movable heat transfer terminal plates 18A, 18B shown in FIG. 3 and the heat transfer conductor 19 and the biasing spring 20 attached thereto are omitted, and instead the cold generating portion 9A of the expander 8, Flexible heat transfer conductors 2 for 9B
The ring-shaped heat transfer terminal plates 26 and 27 are connected to the expander via the 5 so as to be relatively displaceable, and the heat transfer terminal plates 26 and 27 are hermetically sealed in the installed state of the expander 8. Tube 1
The heat transfer terminal plates 12 and 13 on the fixed side, which also serve as the flange of 1, are brought into contact with the plate surfaces of the heat transfer terminal plates 12 and 13, and are fastened and coupled together by fastening bolts 28 and 29. The heat transfer terminal plates 12 and 13 are heat transfer-coupled to the heat shields 5 and 6 via the flexible heat transfer conductor 16 as in FIG.

ここで前記伝熱端子板26,27を装備した膨張機8の外形
斜視図を第2図に示すと、まず下段側の寒冷発生部9Aに
フレキシブルな伝熱導体25を介して結合された伝熱端子
板26には、寒冷発生部9Aを挟んでその両側位置に締結ボ
ルト28に対応するボルト穴30Aが穿孔されている。一
方、上段側の寒冷発生部9Bにフレキシブルな伝熱導体25
を介して結合された伝熱端子板27には、その板面上は前
記ボルト穴30Aと軸線を合わせてボルト28の締付用工具
を上方より挿入する工具挿入穴30Bと、該穴30Bと位相を
90度ずらした位置に締結ボルト29に対応するボルト穴31
Aが穿孔されている。さらに膨張機8の取付けフランジ8
aの周面上には膨張機8を真空容器4に据付け固定する
ための固定ボルト8b(第1図)に対応したボルト穴8cの
他に、前記のボルト穴30A,31Aに軸線を合わせて工具挿
入穴30C,31Bが穿孔されている。すなわち各締結ボルト2
8,29にそれぞれ対応して伝熱端子板26,27および取付け
フランジ8aには同一軸線上にボルト穴30A,工具挿入穴3
0B,30C、およびボルト穴31A,工具挿入穴31Bが並んで穿
孔されている。さらに膨張機8の取付フランジ8aに穿孔
した工具挿入穴30C,31Bにはそれぞれ第1図に示した気
密封止用の封栓32が着脱可能に取付けられている。なお
前記した締結ボルト28,29に対向して固定側の伝熱端子
板12,13上の所定位置にはボルト穴が穿孔されている。
Here, an external perspective view of the expander 8 equipped with the heat transfer terminal plates 26, 27 is shown in FIG. 2. First, the heat transfer unit which is connected to the cold generating section 9A on the lower stage side through the flexible heat transfer conductor 25 is used. Bolt holes 30A corresponding to the fastening bolts 28 are formed in both sides of the hot terminal plate 26 with the cold generating portion 9A interposed therebetween. On the other hand, the flexible heat transfer conductor 25
The heat transfer terminal plate 27 coupled via the, the plate surface on the plate hole is aligned with the bolt hole 30A tool insertion hole 30B for inserting the tightening tool of the bolt 28 from above, and the hole 30B. Phase
Bolt holes 31 corresponding to the fastening bolts 29 at positions shifted by 90 degrees
A is perforated. Furthermore, the mounting flange 8 for the expander 8
On the peripheral surface of a, in addition to the bolt holes 8c corresponding to the fixing bolts 8b (Fig. 1) for installing and fixing the expander 8 in the vacuum container 4, align the axes with the bolt holes 30A and 31A. Tool insertion holes 30C and 31B are drilled. Ie each fastening bolt 2
Corresponding to 8 and 29, heat transfer terminal plates 26 and 27 and mounting flange 8a have bolt hole 30A and tool insertion hole 3 on the same axis.
0B, 30C, a bolt hole 31A, and a tool insertion hole 31B are drilled side by side. Further, the tool insertion holes 30C and 31B formed in the mounting flange 8a of the expander 8 are removably attached with the sealing plugs 32 for airtight sealing shown in FIG. It should be noted that bolt holes are bored at predetermined positions on the fixed heat transfer terminal plates 12 and 13 facing the fastening bolts 28 and 29 described above.

次に上記構造による膨張機8の据付方法に付いて述べる
と、まず膨張機の寒冷発生部9A,9Bに結合された上下各
段の伝熱端子板26,27のボルト穴30A,31Aにそれぞれ締結
ボルト28,29を仮止めした状態で、真空容器4の上方よ
り気密内筒11の中へ膨張機8の寒冷発生部9A,9Bを吊り
降ろし、この途中で寒冷発生部9A,および伝熱端子板26
を第1図に示した固定側伝熱端子板13の中央に切欠かれ
た細長い切込み穴13aを透過させ、さらに膨張機全体の
向きを90度変えて固定側の伝熱端子板12の上に着地させ
る。この状態で次に膨張機8の取付けフランジ8aに穿孔
したボルト穴8aに固定ボルト8cを通して真空容器4の上
面に据付け固定する。続いて取付けフランジ8aおよび上
段の伝熱端子板27に穿孔した工具挿入穴30C,30Bを通し
て外方よりボルト締付工具を挿入し、締結ボルト28を締
付けて伝熱端子板26と相手側の伝熱端子板12とを強固に
締結する。さらに別な位置に穿孔されている工具挿入穴
31Bに締結工具を挿入して締結ボルト29を締付け、伝熱
端子板27と相手側の伝熱端子板13との間を強固に締結す
る。そして最後に取付けフランジ8aに開口している工具
挿入穴30C,31Bに封栓32を装着して気密封止する。しか
もこの据付状態では、膨張機8の各寒冷発生部9A,9Bと
伝熱端子板26,27との間がフレキシブルな伝熱導体25で
結ばれているので、寒冷発生部に対する何等の機械的な
干渉を加えること無しに、伝熱端子板の相互間を強固に
ボルト締結することができ、これにより該接触部の伝熱
抵抗を低値に抑えることができるようになる。
Next, the installation method of the expander 8 having the above structure will be described. First, in the bolt holes 30A and 31A of the heat transfer terminal plates 26 and 27 of the upper and lower stages, which are connected to the cold generating portions 9A and 9B of the expander, respectively. With the fastening bolts 28, 29 temporarily fixed, the cold generating portions 9A, 9B of the expander 8 are hung from above the vacuum container 4 into the airtight inner cylinder 11, and during this process, the cold generating portions 9A and the heat transfer are conducted. Terminal board 26
Through the elongated slit hole 13a cut out in the center of the fixed side heat transfer terminal plate 13 shown in FIG. Land. In this state, next, the fixing bolt 8c is passed through the bolt hole 8a formed in the mounting flange 8a of the expander 8 and fixed on the upper surface of the vacuum container 4. Then, insert a bolt tightening tool from the outside through the tool insertion holes 30C and 30B drilled in the mounting flange 8a and the upper heat transfer terminal plate 27, and tighten the fastening bolts 28 to transfer heat to the heat transfer terminal plate 26 and the mating side. The heat terminal board 12 is firmly fastened. Tool insertion hole drilled in another position
A fastening tool is inserted into 31B and a fastening bolt 29 is tightened to firmly fasten the heat transfer terminal plate 27 and the mating heat transfer terminal plate 13. Finally, a sealing plug 32 is attached to the tool insertion holes 30C and 31B opened in the mounting flange 8a to hermetically seal. Moreover, in this installed state, since the cold heat generating portions 9A and 9B of the expander 8 and the heat transfer terminal plates 26 and 27 are connected by the flexible heat transfer conductor 25, no mechanical operation is performed on the cold heat generating portion. It is possible to firmly fasten the heat transfer terminal plates to each other by bolts without adding any interference, and it is possible to suppress the heat transfer resistance of the contact portion to a low value.

また膨張機のメインテナンスに際して膨張機8を真空容
器4より取り外す場合には、前記操作を逆の順序で行う
ことにより伝熱端子間の締結ボルト28,29および固定ボ
ルト8cを外して膨張機8を真空容器外に取り出すことが
できる。
When the expander 8 is removed from the vacuum container 4 during maintenance of the expander, the fastening bolts 28 and 29 between the heat transfer terminals and the fixing bolt 8c are removed by performing the above operations in the reverse order to remove the expander 8. It can be taken out of the vacuum container.

〔発明の効果〕〔The invention's effect〕

以上述べたようにこの発明によれば、上記の構成を採用
した結果、冷凍機の膨張機を真空容器に据付けた状態
で、膨張機の寒冷発生部に何等機械的な荷重を加えるこ
となしに膨張機側の伝熱端子と熱遮蔽体に連なる固定側
の伝熱端子板との間の接触伝熱抵抗を低く抑えて結合す
ることができ、これにより冷凍機の膨張機と熱遮蔽体と
の間に熱伝導性の高い伝熱経路を確保して極低温冷却装
置の冷却性能の向上を図ることができる。
As described above, according to the present invention, as a result of adopting the above configuration, the expander of the refrigerator is installed in the vacuum container, without adding any mechanical load to the cold generating part of the expander. The contact heat transfer resistance between the heat transfer terminal on the expander side and the heat transfer terminal plate on the fixed side connected to the heat shield can be suppressed to be low, and thus the expander of the refrigerator and the heat shield can be connected. It is possible to improve the cooling performance of the cryogenic cooling device by securing a heat transfer path having high heat conductivity between the two.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す要部の構成断面図、第2
図は第1図における膨張機の外形斜視図、第3図は従来
における極低温冷却装置全体の構成断面図である。各図
において、 1:被冷却体、4:真空容器、5,6:熱遮蔽体、7:
高真空空間、8:冷凍機の膨張機、8a:膨張機の取付け
フランジ、8b:固定ボルト、8c:ボルト穴、9A,9B:寒
冷発生部、11:気密内筒、12,13:気密内筒のフランジ
を兼ねた固定側の伝熱端子板、14,15:ベローズ、25:
フレキシブル伝熱導体、26,27:伝熱端子板、28,29:締
結ボルト、30A,31A:ボルト穴、30B,30C,31B:締付工具
挿入穴、32:封栓。
FIG. 1 is a sectional view showing the construction of an essential part of an embodiment of the present invention,
1 is an external perspective view of the expander in FIG. 1, and FIG. 3 is a cross-sectional view of the entire structure of a conventional cryogenic cooling device. In each drawing, 1: cooled object, 4: vacuum container, 5, 6: heat shield, 7:
High vacuum space, 8: expander of refrigerator, 8a: mounting flange of expander, 8b: fixing bolt, 8c: bolt hole, 9A, 9B: cold generating part, 11: airtight inner cylinder, 12, 13: airtight Fixed side heat transfer terminal plate that doubles as a cylinder flange, 14, 15: Bellows, 25:
Flexible heat transfer conductor, 26,27: Heat transfer terminal board, 28,29: Fastening bolt, 30A, 31A: Bolt hole, 30B, 30C, 31B: Fastening tool insertion hole, 32: Sealing plug.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被冷却体および該被冷却体を包囲する熱遮
蔽体を一括収容した真空容器の内部に高真空空間と隔離
して有底形の気密内筒を設置し、かつ該気密内筒内へ真
空容器に据付けた冷凍機の膨張機の寒冷発生部を収容す
るとともに、前記熱遮蔽体に接続して気密内筒に配備さ
れた固定側の伝熱端子板と膨張機の寒冷発生部との間を
伝熱結合して膨張機の寒冷発生部と熱遮蔽体との間に伝
熱経路を形成し、この組立状態で冷凍機の運転により熱
遮蔽体を冷却するようにした極低温冷却装置において、
前記膨張機の寒冷発生部にフレキシブルな伝熱導体を介
して伝熱端子板を相対変位自在に結合し、かつ膨張機の
据付位置で前記膨張機側の伝熱端子板をこれと対向する
固定側の伝熱端子板上に当接させ、この状態で伝熱端子
の相互間をボルト締結するとともに、膨張機が取付けフ
ランジを介して真空容器に据付けられており、かつ前記
フランジには伝熱端子相互間を締結する締結ボルトを器
外よりボルト操作するための工具挿入穴,およびこの穴
を封止する封栓を設けたことを特徴とする極低温冷却装
置。
1. A bottomed airtight inner cylinder is installed inside a vacuum container accommodating an object to be cooled and a heat shield surrounding the object to be cooled so as to be isolated from a high vacuum space, and the inside of the airtight inside is sealed. The cold generation part of the expander of the refrigerator installed in the vacuum container is housed in the cylinder, and the heat transfer terminal plate on the fixed side and the expander of the expander connected to the heat shield are connected to the heat shield. A pole configured to form a heat transfer path between the cold generation part of the expander and the heat shield by heat transfer coupling with the heat shield part, and cool the heat shield by operating the refrigerator in this assembled state. In the low temperature cooling device,
A heat transfer terminal plate is relatively displaceably coupled to the cold-generating part of the expander via a flexible heat transfer conductor, and the heat transfer terminal plate on the expander side is fixed so as to face it at the installation position of the expander. Side heat contact terminal plate, and in this state, the heat transfer terminals are bolted together, and the expander is installed in the vacuum container via the mounting flange, and heat transfer is performed on the flange. A cryogenic cooling device comprising a tool insertion hole for operating a fastening bolt for fastening terminals to each other from outside the device and a plug for sealing the hole.
【請求項2】特許請求の範囲第1項記載の極低温冷却装
置において、気密内筒が熱遮蔽体側に接続された伝熱端
子板とベローズとの組合せ体として成ることを特徴とす
る極低温冷却装置。
2. The cryogenic cooling device according to claim 1, wherein the airtight inner cylinder is a combination of a heat transfer terminal plate connected to the heat shield side and a bellows. Cooling system.
JP61283532A 1986-11-28 1986-11-28 Cryogenic cooling device Expired - Lifetime JPH0639983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61283532A JPH0639983B2 (en) 1986-11-28 1986-11-28 Cryogenic cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283532A JPH0639983B2 (en) 1986-11-28 1986-11-28 Cryogenic cooling device

Publications (2)

Publication Number Publication Date
JPS63135768A JPS63135768A (en) 1988-06-08
JPH0639983B2 true JPH0639983B2 (en) 1994-05-25

Family

ID=17666750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283532A Expired - Lifetime JPH0639983B2 (en) 1986-11-28 1986-11-28 Cryogenic cooling device

Country Status (1)

Country Link
JP (1) JPH0639983B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172597A (en) * 2003-12-10 2005-06-30 Hitachi Ltd Nuclear magnetic resonance measurement apparatus
US9352320B2 (en) * 2007-08-28 2016-05-31 Qiagen Instruments Ag Thermal cycling device with selectively openable sample port
JP6773532B2 (en) * 2016-11-21 2020-10-21 株式会社東芝 Cryogenic cooling device
JP7068032B2 (en) * 2018-05-17 2022-05-16 株式会社東芝 Very low temperature cooling device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629635Y2 (en) * 1986-09-09 1994-08-10 古河電気工業株式会社 Cryostat

Also Published As

Publication number Publication date
JPS63135768A (en) 1988-06-08

Similar Documents

Publication Publication Date Title
JP2961619B2 (en) Cryostat with cooling means
JP6904609B2 (en) Removable cryostat
EP1460444B1 (en) Pulse tube cryocooler system for magnetic resonance superconducting magnets
US5744959A (en) NMR measurement apparatus with pulse tube cooler
US10181372B2 (en) Assembly comprising a two-stage cryogenic refrigerator and associated mounting arrangement
JP3824587B2 (en) Superconducting magnet device
JPH08510097A (en) Superconducting magnet with retractable cryocooler sleeve assembly
JPH11512512A (en) Indirect cooling of electrical equipment
US8844298B2 (en) Vibration reducing sample mount with thermal coupling
EP2085720B1 (en) Cryogenic container with built-in refrigerator
JPH0639983B2 (en) Cryogenic cooling device
JPH09287838A (en) Connecting structure of cryogenic refrigerating machine in cryostat
JP2000114028A (en) Refrigerator-cooled superconducting magnet device for single-crystal pulling equipment
CN216928214U (en) Superconducting magnet device
JPH0638008B2 (en) Cryogenic cooling device
JPH0640341Y2 (en) Seismic bellows for vacuum members
CN211041465U (en) Pluggable low-temperature container
JP6172979B2 (en) Superconducting device
JP3358376B2 (en) Cooling support device and method
JP2004294041A (en) Cryogenic refrigerator
JP3399202B2 (en) Detachable superconducting coil feeding device and superconducting electromagnet device
JP2562847B2 (en) Cryogenic cooling device
JPS63263707A (en) Detachable radiant heat shielding refrigerating apparatus for superconductive magnet
JPH02309171A (en) Freezer
JPS62258977A (en) Cryogenic device