JPH0639396B2 - Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons - Google Patents

Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons

Info

Publication number
JPH0639396B2
JPH0639396B2 JP60066559A JP6655985A JPH0639396B2 JP H0639396 B2 JPH0639396 B2 JP H0639396B2 JP 60066559 A JP60066559 A JP 60066559A JP 6655985 A JP6655985 A JP 6655985A JP H0639396 B2 JPH0639396 B2 JP H0639396B2
Authority
JP
Japan
Prior art keywords
powder
potassium carbonate
catalyst
particle size
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60066559A
Other languages
Japanese (ja)
Other versions
JPS61227536A (en
Inventor
捷生 谷口
健治 島本
憲治 佐伯
Original Assignee
三井石油化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井石油化学工業株式会社 filed Critical 三井石油化学工業株式会社
Priority to JP60066559A priority Critical patent/JPH0639396B2/en
Publication of JPS61227536A publication Critical patent/JPS61227536A/en
Publication of JPH0639396B2 publication Critical patent/JPH0639396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、特定の炭酸カリウム粉体にアルカリ金属を担
持して調製される触媒の存在下に、アルキル置換芳香族
炭化水素(a)と脂肪族モノオレフインを反応させて側鎖
アルキル化反応によつて、医農薬、樹脂用モノマー等を
製造する際の中間体として用途がある炭素数を増したア
ルキル置換芳香族炭化水素(b)を製造する方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to an alkyl-substituted aromatic hydrocarbon (a) and an aliphatic monocarbonate in the presence of a catalyst prepared by supporting an alkali metal on a specific potassium carbonate powder. A method for producing an alkyl-substituted aromatic hydrocarbon (b) having an increased carbon number, which has a use as an intermediate in the production of medical and agricultural chemicals, monomers for resins, etc., by reacting olefin with a side chain alkylation reaction. Regarding

〔従来の技術〕[Conventional technology]

アルキル置換芳香族炭化水素と脂肪族モノオレフインを
反応させ側鎖アルキル化反応によつて炭素数を増したア
ルキル置換芳香族炭化水素を製造する従来の方法として
は、例えば米国特許明細書第 3316315号にはグラフアイ
トと金属ナトリウム又は金属カリウムからなる触媒を用
いる方法が開示されているが、該触媒は発火し易く取り
扱いにくいなど問題がある。また英国特許明細書第1269
280 号には、触媒として炭酸カリウムに金属ナトリウム
を担持したものを用いる方法が開示されているが、該公
報には炭酸カリウムとしてどのような性状のものを使用
すればよいかについては何も記載されておらず、実際、
そこに具体的に示されている方法では原料であるアルキ
ル置換芳香族炭化水素(a)の転化率が30〜40%と低く、
従つて目的生成物のアルキル置換芳香族炭化水素(b)の
収量が低い、すなわち触媒の活性が充分でないなど問題
がある。
As a conventional method for producing an alkyl-substituted aromatic hydrocarbon having an increased number of carbon atoms by a side chain alkylation reaction by reacting an alkyl-substituted aromatic hydrocarbon with an aliphatic monoolefin, for example, U.S. Pat. Discloses a method of using a catalyst composed of graphite and metallic sodium or metallic potassium, but there is a problem in that the catalyst easily ignites and is difficult to handle. Also, British Patent Specification No. 1269
No. 280 discloses a method of using a catalyst in which metallic sodium is supported on potassium carbonate, but the publication describes nothing about what kind of property should be used as potassium carbonate. Not actually done,
In the method specifically shown there, the conversion rate of the alkyl-substituted aromatic hydrocarbon (a) as a raw material is as low as 30 to 40%,
Therefore, there is a problem that the yield of the alkyl-substituted aromatic hydrocarbon (b) as the target product is low, that is, the activity of the catalyst is insufficient.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明者等は、側鎖アルキル化反応によつて炭素数を増
したアルキル置換芳香族炭化水素を製造する際に触媒と
して使用される、炭酸カリウムにアルカリ金属を担持し
た従来の触媒はその活性が充分ではないことを認めた。
そこでこの触媒を改良すべく種々の性状を有する炭酸カ
リウム粉体を用いてこれにアルカリ金属を担持した触媒
を調製し、触媒の活性と調製法の関係について調べ、そ
の結果を基に側鎖アルキル化反応によつて炭素数を増し
たアルキル置換芳香族炭化水素を従来に比べて高活性で
製造できる触媒について検討した。
The inventors of the present invention have found that a conventional catalyst in which an alkali metal is supported on potassium carbonate, which is used as a catalyst when producing an alkyl-substituted aromatic hydrocarbon having an increased number of carbon atoms by a side chain alkylation reaction, has its activity. Admitted that it was not enough.
Therefore, in order to improve this catalyst, potassium carbonate powder having various properties was used to prepare a catalyst carrying an alkali metal on it, and the relationship between the activity of the catalyst and the preparation method was investigated. The catalyst which can produce an alkyl-substituted aromatic hydrocarbon having an increased number of carbon atoms by a chemical reaction with higher activity than before was investigated.

〔発明の概要〕[Outline of Invention]

その結果、下記方法を採用すれば前記目的を達成できる
ことを見出し本発明を完成するに到つた。すなわち本発
明の方法によれば、アルカリ置換芳香族炭化水素を脂肪
族モノオレフインにより側鎖アルキル化するに際し、嵩
密度が0.85g/cm3以下、平均粒径 100ないし 800μで
かつ粒径 100ないし 800μの範囲にある粉体重量が全粉
体重量の60重量%以上を占める炭酸カリウム粉体にアル
カリ金属を担持せしめた触媒を用いることを特徴とする
アルキル置換芳香族炭化水素の側鎖アルキル化方法、が
提供される。
As a result, they have found that the above object can be achieved by adopting the following method, and completed the present invention. That is, according to the method of the present invention, in the side chain alkylation of an alkali-substituted aromatic hydrocarbon with an aliphatic monoolefin, the bulk density is 0.85 g / cm 3 or less, the average particle size is 100 to 800 μ, and the particle size is 100 to 800 μm. Side chain alkylation of alkyl-substituted aromatic hydrocarbons characterized by using a catalyst prepared by supporting an alkali metal on a powder of potassium carbonate whose powder weight in the range of 800μ accounts for 60% by weight or more of the total powder weight. A method is provided.

〔触媒〕〔catalyst〕

本発明で使用される触媒は、担体として以下に述べる特
定の性状を有する炭酸カリウム粉体にアルカリ金属を担
持して得られる触媒である。
The catalyst used in the present invention is a catalyst obtained by supporting an alkali metal on a potassium carbonate powder having the following specific properties as a carrier.

以下、該触媒について詳述する。Hereinafter, the catalyst will be described in detail.

本発明で用いられる炭酸カリウム粉体は、嵩密度が通常
は0.85g/cm3以下、好ましくは0.40ないし0.80g/cm3
の範囲にある炭酸カリウム粉体が用いられる。嵩密度が
通常0.85g/cm3を越えるような炭酸カリウム粉体を使
用した場合には、これに担持されるアルカリ金属の分散
状態が悪いためか高活性な触媒を得ることができないの
で好ましくない。本発明では炭酸カリウムの嵩密度の下
限は特に限定されるものではないが、工業的に入手が容
易であるところから嵩密度が通常 0.4g/cm3以上のも
のを用いるものが好ましい。
The potassium carbonate powder used in the present invention has a bulk density of usually 0.85 g / cm 3 or less, preferably 0.40 to 0.80 g / cm 3.
Potassium carbonate powder in the range of is used. If potassium carbonate powder having a bulk density of more than 0.85 g / cm 3 is used, a highly active catalyst cannot be obtained, probably because the dispersed state of the alkali metal carried on the powder is not preferable. . In the present invention, the lower limit of the bulk density of potassium carbonate is not particularly limited, but it is preferable to use one having a bulk density of 0.4 g / cm 3 or more because it is industrially easily available.

本発明で使用される炭酸カリウム粉体は、平均粒径が通
常 100ないし 800μの範囲にあり、かつ該粒径範囲にあ
る粉体重量が全粉体重量の60重量%以上を占めている。
炭酸カリウム粉体の平均粒径が通常 100μ以下の場合お
よび平均粒径が通常800 μ以上の場合には、このような
炭酸カリウム粉体にアルカリ金属を担持しても得られる
触媒の活性が低いので好ましくない。また平均粒径が通
常 100ないし 800μの範囲にあつても該粒径範囲にある
粉体重量が全粉体重量の通常60%未満の場合には、該粉
体にアルカリ金属を担持した触媒の活性が低いので好ま
しくない。
The potassium carbonate powder used in the present invention generally has an average particle size in the range of 100 to 800 μ, and the weight of the powder in the particle size range accounts for 60% by weight or more of the total powder weight.
When the average particle size of the potassium carbonate powder is usually 100 μ or less and when the average particle size is usually 800 μ or more, the activity of the catalyst obtained by supporting an alkali metal on such potassium carbonate powder is low. It is not preferable. Further, even if the average particle diameter is usually in the range of 100 to 800 μ, if the weight of the powder in the particle diameter range is usually less than 60% of the total weight of the powder, the catalyst of the alkali metal-supported powder is It is not preferable because of low activity.

本発明で使用される炭酸カリウム粉体は、前記した条件
を満たすものの中でも、粉度分布の最大値が粒径 100な
いし 800μの範囲にあるものが特に好ましい。
Among the potassium carbonate powders used in the present invention, among those satisfying the above-mentioned conditions, it is particularly preferable that the maximum value of the fineness distribution is in the particle size range of 100 to 800μ.

ここで粒度分布とは、大小さまざまな粒径から構成され
ている炭酸カリウム粉体の試料について、ある大きさの
粒径範囲に属する粒子の個数あるいは重量などで示され
るいわゆる頻度と粒径との関係を調べて、横軸に粒径
を、縦軸に頻度をプロツトして得られる従来から知られ
ているグラフである。該グラフを求める方法としては、
例えばJIS規格に定められたふるい分け法によつて試
料をふるい目の開きに対応した大きさの粒子群に分配
し、各粒子群の重量を測定し、これが通過、および残存
したふるい目の開きの大きさを知り、この結果を柱状図
(ヒストグラム)にまとめる公知の方法を示すことがで
き、本発明では該方法によつて得られる粒度分布が使用
される。また、本発明では粒度分布の最大値とは、先の
ヒストグラムで表わされた粒度分布にあいて最も頻度の
高い部分を指し、本発明では前記炭酸カリウム粉体の中
でも該粒度分布図において最も頻度の高い部分の柱が属
する区間(級)に対応する範囲にある全ての粒径が前記
した粒径 100ないし 800μの範囲にあるような炭酸カリ
ウム粉体を使用することが好ましい。
Here, the particle size distribution refers to a so-called frequency and particle size, which is represented by the number or weight of particles belonging to a particle size range of a certain size, for a sample of potassium carbonate powder composed of various particle sizes. It is a conventionally known graph obtained by examining the relationship and plotting the particle diameter on the horizontal axis and the frequency on the vertical axis. As a method of obtaining the graph,
For example, the sample is divided into particle groups of a size corresponding to the opening of the sieve by the sieving method defined in JIS standard, the weight of each particle group is measured, and this is passed and the remaining sieve opening is analyzed. A known method of knowing the size and compiling the results in a column diagram (histogram) can be shown, and the particle size distribution obtained by the method is used in the present invention. Further, in the present invention, the maximum value of the particle size distribution refers to the most frequent part in the particle size distribution represented by the above histogram, and in the present invention, it is the most in the particle size distribution chart among the potassium carbonate powders. It is preferable to use a potassium carbonate powder in which all the particle sizes in the range corresponding to the section (class) to which the column of the high frequency part belongs belong to the above-mentioned particle size range of 100 to 800 μm.

本発明では炭酸カリウム粉体の平均粒径が 100μよりも
小さい範囲にある場合、これを換言すると、粉体を構成
する主要な大部分を占める粒子の粒径が通常 100μ未満
と小さい領域にあり、粒径の小さい粒子から主として構
成される炭酸カリウム粉体を使用した場合には、該粉体
を担体としてこれにアリカリ金属を担持して触媒を調製
する場合に炭酸カリウム粉体の流動性が悪いため触媒を
調製するのに支障となる他に、熔融したアルカリ金属と
該粉体との親和性が悪くなるためにアルカリ金属の担持
上への分散性が低下し、極端な場合にはアルカリ金属が
担体の一部分にしか担持されなかつたり、アルカリ金属
が球状の塊となつて分離したりするため活性の高い触媒
は得られない。一方、炭酸カリウム粉体の平均粒径が 8
00μよりも大きい範囲にある場合、これを換言すると、
粉体を構成する主要な大部分の粒子径が通常 800μ以上
と大きい領域にあり、粒径の大きい粒子から主として構
成される炭酸カリウム粉体を使用した場合には、該粉体
を担体としてこれにアルカリ金属を担持して触媒を調製
しても、炭酸カリウム粒子の外表面が小粒径の粉末に比
較して小さくなるため炭酸カリウム粉体とアルカリ金属
の親和性が充分でないため担持状態が不均一となり易
く、このため高活性な触媒を調製することは困難である
ため好ましくない。
In the present invention, when the average particle size of the potassium carbonate powder is in the range of less than 100μ, in other words, the particle size of the particles that make up the major part of the powder is usually less than 100μ. When a potassium carbonate powder mainly composed of particles having a small particle size is used, the fluidity of the potassium carbonate powder is reduced when the catalyst is prepared by supporting the alkaline metal on this powder as a carrier. In addition to being a hindrance to the preparation of the catalyst because it is bad, since the affinity of the molten alkali metal with the powder is poor, the dispersibility of the alkali metal on the support decreases, and in extreme cases, alkali A catalyst having a high activity cannot be obtained because the metal is supported on only a part of the carrier and the alkali metal is separated into spherical spheres. On the other hand, the average particle size of potassium carbonate powder is 8
In the range greater than 00μ, in other words,
Most of the major particles composing the powder are in the large area of 800 μm or more, and when potassium carbonate powder mainly composed of large particles is used, this powder is used as a carrier. Even if the catalyst is prepared by supporting alkali metal on the above, the outer surface of the potassium carbonate particles becomes smaller than that of the powder having a small particle size, so that the compatibility of the potassium carbonate powder and the alkali metal is not sufficient, so that the supported state is It is not preferable because it tends to be non-uniform, which makes it difficult to prepare a highly active catalyst.

本発明で使用される炭酸カリウム粉体は、その粒度分布
において粒径 100ないし 800μの範囲にある粉体の重量
が全粉体重量の通常60重量%以上、好ましくは80重量%
以上であることが必要である。該粒径範囲にある粉体の
重量が全粉体重量の通常60%未満と少なく、粒径の小さ
い微粉体又は/および粒径の大きい粉体の占める割合が
多い場合には、粒径の小さい粒子を含む粉体部分につい
ては前記したと同様にアルカリ金属との親和性が悪いた
めにアルカリ金属の分散状態が不均一になり易く、また
粒径の大きい粒子を含む粉体部分については前記したと
同様に粒子の外表面が小さくなるためアリカリ金属の担
持状態が悪く不均一となり易いため、結局、全体として
もこのような粉体を用いて得られる触媒では活性が低い
ので好ましくない。
In the potassium carbonate powder used in the present invention, the weight of the powder having a particle size distribution in the range of 100 to 800μ is usually 60% by weight or more, preferably 80% by weight of the total powder weight.
It is necessary to be above. When the weight of the powder in the particle size range is small, usually less than 60% of the total powder weight, and the ratio of the fine powder having a small particle size and / or the powder having a large particle size is large, As for the powder portion containing small particles, the dispersion state of the alkali metal is likely to be non-uniform because of poor affinity with the alkali metal as described above. Similarly, since the outer surface of the particles becomes small, the state of carrying alkaline metal is poor and the particles tend to become non-uniform, and as a result, the catalyst obtained by using such powder is low in activity as a whole, which is not preferable.

本発明で用いられる炭酸カリウム粉体は前記粉体特性を
全て満足する限りにおいて、通常知られている種々の製
法、例えば水酸化カリウム溶液に加圧下でCO2 を通ずる
方法あるいは塩化カリウムを原料としたルブランソーダ
法など様々の方法によつて製造される炭酸カリウム粉体
を使用することができる。周知の様に、粉体特性は同一
製造方法であつても製造の際の条件、例えば温度、濃
度、pH、熟成時間等の各種の因子の条件をどのように設
定するかによつても種々異なつた粉体特性を有する炭酸
カリウム粉体が得られるが、本発明の方法では、該粉体
が前記した本発明の粉体特性の条件を全て満足する場合
には、これを単独でそのまま本発明の触媒の担体として
用いることができることは勿論のことであるが、本発明
の方法ではこれ以外にも前記した本発明の粉体特性の一
部の条件を満足しない炭酸カリウム粉体であつても、例
えば前記製造方法によつて得られた炭酸カリウム粉体が
その粒度分布においてそのままでは本発明の粒度分布の
条件を満足しないものであつても、ふるい分け法によつ
て粒径範囲の異なる各区間(各級)にふるい分けられた
粉体において、各区間に属する粉体を削除したり、ある
いは適宜にその量の比を調整することによつて本発明の
粒度分布の条件を満足する粉体が得られ、かつこのよう
にして得らえた粉体が本発明の粉体特性に他の条件であ
る嵩密度に関する前記条件を満足するものであるなら
ば、該方法によつて得られる炭酸カリウム粉体も本発明
の触媒の担体として使用することができる。
As long as the potassium carbonate powder used in the present invention satisfies all of the above powder characteristics, various conventionally known production methods, for example, a method of passing CO 2 under pressure to a potassium hydroxide solution or potassium chloride as a raw material. It is possible to use the potassium carbonate powder produced by various methods such as the above-mentioned Leblanc soda method. As is well known, even if the powder characteristics are the same in the manufacturing method, it depends on how the manufacturing conditions are set, for example, the conditions of various factors such as temperature, concentration, pH and aging time. Although a potassium carbonate powder having different powder characteristics can be obtained, in the method of the present invention, when the powder satisfies all the conditions of the powder characteristics of the present invention described above, it is used as it is as it is. Needless to say, it can be used as a carrier for the catalyst of the present invention, but in the method of the present invention, other than this, a potassium carbonate powder that does not satisfy some of the conditions of the powder characteristics of the present invention described above can be used. Also, for example, even if the potassium carbonate powder obtained by the above-mentioned production method does not satisfy the conditions of the particle size distribution of the present invention in its particle size distribution as it is, each of the different particle size ranges by the sieving method. Sieve for section (each grade) By removing the powders belonging to each section or adjusting the ratio of the amounts appropriately, the powders satisfying the condition of the particle size distribution of the present invention can be obtained. If the powder obtained as described above satisfies the above-mentioned condition regarding the bulk density which is another condition for the powder characteristics of the present invention, the potassium carbonate powder obtained by this method is also the catalyst of the present invention. Can be used as a carrier.

本発明の方法では、前記した粉体特性の条件を全て満足
する炭酸カリウム粉体を用いてこれにアルカリ金属を担
持して触媒がえられる。この場合のアリカリ金属の担持
量としては担体基準で通常は 0.3ないし10重量%、好ま
しくは1ないし7重量%である。アルカリ金属の担持量
が通常 0.3%未満の場合には、得らえる触媒の活性が低
いので好ましくない、またアルカリ金属の担持量が通常
10%を越えた場合には、得られる触媒の活性が低いのみ
ならず発火し易く危険である。本発明で使用されるアリ
カリ金属として具体的にはリチウム、ナトリウム、カリ
ウム、ルビジウム、セシウムであるが、この中ではナト
リウムを用いることが好ましい。アリカリ金属の担持方
法として例えば蒸着担持法、溶融担持法などの通常知ら
れている方法を採用することができる。また、これとは
別に本発明者等が新たに開発した方法、すなわちベンゼ
ン、トルエン、キシレン、n−ヘキサン、イソヘキサ
ン、n−オクタン、イソオクタン、n−デカンなどのア
ルカリ金属に対して不活性な液状の炭化水素からなる分
散媒中で、アルカリ金属と炭酸カリウム粉体をアリカリ
金属の融点以上で混合することによつて担持する方法を
用いることができる。
In the method of the present invention, a catalyst is obtained by using potassium carbonate powder satisfying all the above-mentioned conditions of powder characteristics and carrying an alkali metal on it. The amount of alkaline metal supported in this case is usually 0.3 to 10% by weight, preferably 1 to 7% by weight, based on the carrier. If the supported amount of alkali metal is usually less than 0.3%, the activity of the obtained catalyst is low, which is not preferable.
If it exceeds 10%, not only the activity of the obtained catalyst is low, but also it is easy to ignite, which is dangerous. Specific examples of the alkali metal used in the present invention include lithium, sodium, potassium, rubidium and cesium, of which sodium is preferably used. As a method of supporting alkaline metal, a generally known method such as a vapor deposition supporting method and a melt supporting method can be adopted. Separately from this, a method newly developed by the present inventors, that is, a liquid inert to alkali metals such as benzene, toluene, xylene, n-hexane, isohexane, n-octane, isooctane, and n-decane. It is possible to use a method of supporting by mixing an alkali metal and potassium carbonate powder at a temperature equal to or higher than the melting point of alkaline metal in a dispersion medium composed of the above hydrocarbon.

前記方法によつてアルカリ金属を担持して調製された触
媒は、蒸着担持法、溶融担持法を採用した場合にはアル
カリ金属担持後例えば乾燥窒素等の水分を含まない不活
性ガス雰囲気あるいは脱水した不活性な炭化水素溶媒中
にて反応に供するまで保存される。また前記したところ
の不活性な分散媒中でアルカリ金属を担持する方法を採
用した場合には、担持後分散媒を除去して不活性ガス雰
囲気中にて保存しても良いし、あるいはそのまま該分散
媒中にて保存しても良い。この場合、先の不活性な炭化
水素溶媒あるいは分散媒として、後述する本発明の側鎖
アルキル化反応の原料として用いるアルキル置換芳香族
炭化水素(a)を使用した場合には、調製した触媒をその
まま次の反応に供することができるので好ましい。従つ
てアルカリ金属の担持法としては前記したところの不活
性な分散媒中で溶融担持する方法が好ましく、又この場
合にはアルカリ金属が担体の炭酸カリウム粉体により一
層均一に分散して担持されるため後述する本発明の反応
に対する触媒の活性も高いので好ましい。
The catalyst prepared by carrying the alkali metal by the above method, when the vapor deposition carrying method or the melt carrying method is adopted, is followed by carrying the alkali metal and then dehydrating it with an inert gas atmosphere containing no moisture such as dry nitrogen. It is stored until reaction in an inert hydrocarbon solvent. When the method of supporting an alkali metal in an inert dispersion medium as described above is adopted, the dispersion medium may be removed after loading and stored in an inert gas atmosphere, or as it is. It may be stored in a dispersion medium. In this case, when the alkyl-substituted aromatic hydrocarbon (a) used as a raw material for the side chain alkylation reaction of the present invention described below is used as the above-mentioned inert hydrocarbon solvent or dispersion medium, the prepared catalyst is It is preferable because it can be directly used in the next reaction. Therefore, as the method of supporting the alkali metal, the method of melting and supporting in the above-mentioned inert dispersion medium is preferable, and in this case, the alkali metal is more uniformly dispersed and supported by the potassium carbonate powder of the carrier. Therefore, the activity of the catalyst for the reaction of the present invention described later is also high, which is preferable.

本発明の触媒の構造について言及すると、炭酸カリウム
に担持されたアルカリ金属として例えばナトリウムを用
いた場合には、ナトリウムが一部炭酸カリウムのカリウ
ムと交換して反応を起こして金属カリウムと炭酸ナトリ
ウムになり、例えばKCO3 /Na2CO3 /(K)(Na)C
O3 のような混合物を形成して、これに金属ナトリウム
と金属カリウムが担持された状態になつているものと考
えられる。本発明の方法によつて得られる触媒において
は、この中でもアルカリ金属がグラスターを形成するこ
とも無く担体に極めて均一に分散された触媒を使用する
と後述する反応の活性が高いので好ましい。
Referring to the structure of the catalyst of the present invention, when, for example, sodium is used as the alkali metal supported on potassium carbonate, sodium partially exchanges with potassium of potassium carbonate to cause a reaction to form metal potassium and sodium carbonate. For example, K 2 CO 3 / Na 2 CO 3 / (K) (Na) C
It is considered that a mixture such as O 3 is formed and metal sodium and metal potassium are supported on the mixture. Among the catalysts obtained by the method of the present invention, it is preferable to use a catalyst in which an alkali metal is extremely uniformly dispersed in a carrier without forming a glaster because the activity of the reaction described later is high.

本発明で使用される炭酸カリウム粉体は嵩密度が前記し
たように小さく、従つて細孔構造が三次元的に発達した
多孔性の粒子であるが、本発明ではこの中でもアルカリ
金属を均一分散して担持するのに極めて都合の良いいわ
ば“海綿状”の構造を有する細孔構造が特に発達した粒
子群から構成される炭酸カリウム粉体を用いてこれにア
ルカリ金属を担持した触媒を用いると活性が高いので特
に好ましい。
The potassium carbonate powder used in the present invention is a porous particle in which the bulk density is small as described above, and accordingly the pore structure is three-dimensionally developed. In the present invention, among them, the alkali metal is uniformly dispersed. It is very convenient to support the catalyst by using a potassium carbonate powder composed of a group of particles with a specially developed pore structure having a so-called "sponge-like" structure. It is particularly preferable because it has high activity.

反 応 本発明では前記方法によつて得られた触媒の存在下に、
アルキル置換芳香族炭化水素(a)と脂肪族モノオレフイ
ンを反応させて側鎖アルキル化反応によつて炭素数の増
したアルキル置換芳香族炭化水素(b)が製造される。
In the present invention, in the presence of the catalyst obtained by the above method,
The alkyl-substituted aromatic hydrocarbon (a) is reacted with an aliphatic monoolefin to produce a side-chain alkylation reaction to produce an alkyl-substituted aromatic hydrocarbon (b) having an increased number of carbon atoms.

本発明で使用されるアルキル置換芳香族炭化水素(a)と
して具体的にはトルエン、エチルベンゼン、n−プロピ
ルベンゼン、イソプロピルベンゼン、n−ブチルベンゼ
ン、sec-ブチルベンゼン、イソブチルベンゼン、n−デ
シルベンゼン、キシレン、メシチレン、テトラメチルベ
ンゼン、メチルナフタレン、エチルナフタレン等の、側
鎖アルキル基においてα位の炭素に水素原子が結合した
アルキル基を少なくとも1つ以上有するアルキル置換ベ
ンゼンとアルキル置換ナフタレンなどを例示できる。本
発明ではこれらの中ではアルキル置換ベンゼンが好まし
く、特にトルエン、エチルベンゼン、キシレンを使用す
ることが好ましい。
Specific examples of the alkyl-substituted aromatic hydrocarbon (a) used in the present invention include toluene, ethylbenzene, n-propylbenzene, isopropylbenzene, n-butylbenzene, sec-butylbenzene, isobutylbenzene, n-decylbenzene, Examples include xylene, mesitylene, tetramethylbenzene, methylnaphthalene, ethylnaphthalene, and the like, and alkyl-substituted benzene and alkyl-substituted naphthalene having at least one alkyl group having a hydrogen atom bonded to the α-position carbon in the side chain alkyl group. . Of these, alkyl-substituted benzene is preferable in the present invention, and toluene, ethylbenzene, and xylene are particularly preferable.

本発明で使用される脂肪族モノオレフインとして具体的
にはエチレン、プロピレン、1−ブテン、2−ブテン、
イソブチレン、1−ペンテン、2−ペンテン、1−ヘキ
セン、2−ヘキセン、3−ヘキセン、1−ヘプテン、2
−ヘプテン、2−オクテン、2−デセン、3−メチル−
1−ブテン、2−メチル−2−ブテン、4−メチル−1
−ペンテン等を例示できるが、この中ではエチレン、プ
ロピレン、1−ブテン、2−ブテン、イソブテン、1−
ペンテン、2−メチル−1−ブテン3−メチル−1−ブ
テンの使用が好ましい。
Specific examples of the aliphatic monoolefin used in the present invention include ethylene, propylene, 1-butene, 2-butene,
Isobutylene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 3-hexene, 1-heptene, 2
-Heptene, 2-octene, 2-decene, 3-methyl-
1-butene, 2-methyl-2-butene, 4-methyl-1
Examples thereof include pentene, and among them, ethylene, propylene, 1-butene, 2-butene, isobutene, 1-
The use of pentene, 2-methyl-1-butene 3-methyl-1-butene is preferred.

本発明の方法において、前記したアルキル置換芳香族炭
化水素(a)と脂肪族モノオレフインを反応させる場合の
条件として、これら原料の仕込み割合については、アル
キル置換芳香族炭化水素(a)の100 モル部に対して脂肪
族モノオレフインは通常0.2 ないし20モル部、好ましく
は 0.5ないし10モル部である。触媒の使用量について
は、前記した触媒はアルキル置換芳香族炭化水素(a)の
100重量部当たり通常 0.1ないし20重量部、好ましくは
1ないし15重量部使用される。
In the method of the present invention, as a condition for reacting the above-mentioned alkyl-substituted aromatic hydrocarbon (a) with an aliphatic monoolefin, the charging ratio of these raw materials is 100 mol of the alkyl-substituted aromatic hydrocarbon (a). The amount of the aliphatic monoolefin is usually 0.2 to 20 parts by mol, preferably 0.5 to 10 parts by mol based on parts. Regarding the amount of the catalyst used, the above-mentioned catalyst is of the alkyl-substituted aromatic hydrocarbon (a).
It is usually used in an amount of 0.1 to 20 parts by weight, preferably 1 to 15 parts by weight, per 100 parts by weight.

本発明では反応を行うに当たつて必要に応じて、例えば
n−ヘキサン、n−オクタン、n−デカン等の飽和脂肪
族炭化水素、ベンゼン等の芳香族炭化水素、トリエチル
アミン、シクロヘキシルアミン、アニリン、トルイジン
等の脂肪族アミン、脂環族アミンおよび芳香族アミン等
を反応の溶媒として適宜の量使用しても差し支えない。
In the present invention, if necessary, a saturated aliphatic hydrocarbon such as n-hexane, n-octane, and n-decane, an aromatic hydrocarbon such as benzene, triethylamine, cyclohexylamine, aniline, etc. Aliphatic amines such as toluidine, alicyclic amines and aromatic amines may be used in appropriate amounts as reaction solvents.

本発明の方法において製造される目的物である炭素数を
増したアルキル置換芳香族炭化水素(b)として具体的に
は、n−プロピルベンゼン、n−プロピルトルエン、n
−プロピルキシレン、sec-ブチルベンゼン、sec-ブチル
トルエン、tert−アミルベンゼン、イソブチルベンゼ
ン、イソブチルトルエン、2−メチルブチルベンゼン、
2−メチルブチルトルエン、n−プロピルナフタレン、
イソブチルナフタレン等を例示できるが、この中ではn
−プロピルベンゼン、イソブチルベンゼン、sec-ブチル
ベンゼン、n−プロピルナフタレン等が良好に製造され
る。
Specific examples of the alkyl-substituted aromatic hydrocarbon (b) having an increased number of carbons, which is the target product produced by the method of the present invention, include n-propylbenzene, n-propyltoluene, and n-propyltoluene.
-Propylxylene, sec-butylbenzene, sec-butyltoluene, tert-amylbenzene, isobutylbenzene, isobutyltoluene, 2-methylbutylbenzene,
2-methylbutyltoluene, n-propylnaphthalene,
Isobutylnaphthalene and the like can be exemplified, among which n
-Propylbenzene, isobutylbenzene, sec-butylbenzene, n-propylnaphthalene, etc. are produced well.

本発明の方法では、反応を例えば以下の方法によつて実
施することができる。オートクレーブ等の反応器にアル
キル置換芳香族炭化水素(a)、触媒および必要に応じて
前記溶媒を所定量仕込み、所定の温度に昇温してから脂
肪族モノオレフインを所定量注入する方法を示すことが
できるが、本発明では必ずしもこの方法に限定されるも
のではない。反応は撹拌下に実施され、反応温度として
は通常 130ないし 220℃、好ましくは 140ないし 180℃
であり、反応圧力は通常5ないし50気圧の範囲にある。
反応時間は通常1ないし10時間である。
In the method of the present invention, the reaction can be carried out, for example, by the following method. A method is shown in which a reactor such as an autoclave is charged with an alkyl-substituted aromatic hydrocarbon (a), a catalyst and a predetermined amount of the above solvent as required, and the temperature is raised to a predetermined temperature, and then a predetermined amount of aliphatic monoolefin is injected. However, the present invention is not necessarily limited to this method. The reaction is carried out with stirring, and the reaction temperature is usually 130 to 220 ° C, preferably 140 to 180 ° C.
And the reaction pressure is usually in the range of 5 to 50 atm.
The reaction time is usually 1 to 10 hours.

反応収量後、反応混合物を濾過して触媒を除き、蒸留、
晶析等の通常の分離手段によつて本発明の目的とす側る
鎖アルキル化反応によつて炭素数を増したアルキル置換
芳香族炭化水素(b)を分離することができる。
After the reaction yield, the reaction mixture was filtered to remove the catalyst, distilled,
The alkyl-substituted aromatic hydrocarbon (b) having an increased number of carbon atoms can be separated by a side chain alkylation reaction, which is an object of the present invention, by an ordinary separation means such as crystallization.

〔発明の効果〕〔The invention's effect〕

本発明の方法を採用すれば、側鎖アルキル化反応によっ
て炭素数を増したアルキル置換芳香族炭化水素(b)を従
来法に比べて高い収量で得ることができる。
When the method of the present invention is adopted, the alkyl-substituted aromatic hydrocarbon (b) having an increased number of carbon atoms can be obtained by a side chain alkylation reaction in a higher yield than in the conventional method.

〔実施例〕〔Example〕

次に、本発明の方法を実施例によつて具体的に説明する
が、本発明はこれによりなんら限定されるものではな
い。
Next, the method of the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

なお、実施例の中で示した担体の粒度分布、平均粒径、
および嵩密度は以下のようにして測定した。
Incidentally, the particle size distribution of the carrier shown in the examples, the average particle size,
And the bulk density was measured as follows.

(1) 炭酸カリウム粉体の粒度分布の測定 16メツシユから 200メツシユまでのJIS規格標準ふる
いを組合わせ、その上部に約 150gの無水の炭酸カリム
ウ粉体の試料を入れ、全体をポリエチレン製の袋に入れ
て密封する。このふるいをローダツプ型振動ふるい振と
う器(栗原製作所製 19-45)にセツトし、振とう数 290
回/分、ハンマー数 156回/分で10分間ふるい分けし
た。ふるい分けした後の各ふるい上の無水カリウム化合
物の重量を測定し、その重量百分率を計算してRRS線
図から平均粒径(メジアン径Dmed)を測定した。
(1) Measurement of particle size distribution of potassium carbonate powder A combination of JIS standard sieves from 16 mesh to 200 mesh is combined, and about 150 g of anhydrous Karimu powder powder sample is put on top of it, and the whole is made of polyethylene bag. Put it in and seal it. This sieve was set on a loader type vibrating sieve shaker (Kurihara Seisakusho 19-45), and the shaking number 290
Sieving was carried out for 10 minutes with a hammer speed of 156 times / minute. The weight of the anhydrous potassium compound on each sieve after sieving was measured, the weight percentage was calculated, and the average particle diameter (median diameter Dmed) was measured from the RRS diagram.

(2) 炭酸カリウム粉体の嵩密度の測定 下端に試料の落し口を有し且つその内径が26.5mm、上端
の内径が94mm、高さが 100mmであり、しかも内容物が 1
50mlである濡斗を、この濡斗の下端の試料落し口までの
高さが 100mmになるように垂直に固定した。この濡斗の
試料落し口の真下に、内径39mm、高さ81mm及び内容積9
8.0mlの円筒型の受器を置いた。前記濡斗に無水カリウ
ム化合物試料の粉末を入れ、下端の試料落し口を開け
て、試料の粉体を受器に落下させた。受器上部の盛り上
つた試料を水平にすり切つた。受器中の試料の重量を測
定し、嵩密度を求めた。
(2) Measurement of bulk density of potassium carbonate powder A sample outlet is provided at the lower end, and the inner diameter is 26.5 mm, the inner diameter at the upper end is 94 mm, and the height is 100 mm.
A 50 ml wet funnel was fixed vertically so that the height from the lower end of the wet funnel to the sample drop opening was 100 mm. Immediately below the sample dropping port of this wet funnel, the inner diameter is 39 mm, the height is 81 mm, and the inner volume is 9 mm.
An 8.0 ml cylindrical receiver was placed. Powder of the anhydrous potassium compound sample was put in the wet funnel, the sample drop opening at the lower end was opened, and the powder of the sample was dropped into the receiver. The raised sample on top of the receiver was horizontally scraped. The weight of the sample in the receiver was measured to determine the bulk density.

実施例 1 炭酸カリウム 1.5水和塩のスラリーを 150℃で粉霧乾燥
して得られた顆粒状粉末を 400℃で2時間焼成した後、
乾燥窒素雰囲気下に嵩密度および粒度分布を測定した。
この炭酸カリウムの嵩密度は0.67g/mlであり、平均粒
子径(Dmed)は420 μで、粒度分布は 350〜 590μにそ
の最大値を持ち、100 〜 800μの粒子が全体の92%を占
めた。
Example 1 A slurry of potassium carbonate 1.5 hydrate was atomized and dried at 150 ° C. to obtain a granular powder, which was calcined at 400 ° C. for 2 hours, and then,
The bulk density and particle size distribution were measured under a dry nitrogen atmosphere.
The bulk density of this potassium carbonate is 0.67 g / ml, the average particle diameter (Dmed) is 420 μ, and the particle size distribution has its maximum value at 350 to 590 μ, and particles of 100 to 800 μ account for 92% of the whole. It was

この炭酸カリウム粉末57gおよび金属ナトリウム3gを
トルエン 200mlとともにオートクレーブ(1)に入
れ、 190℃で2時間、600rpmで撹拌することによつて触
媒を調製した。温度を 160℃に低下した後、トルエンを
さらに 400ml加え、これにプロピレンを圧入し、初期反
応圧力を60kg/cm2に設定した。プロピレン導入と同時
に反応が始まり、圧力が低下した。容器内の圧力が30kg
/cm2になつた時点で、再びプロピレンを圧入して50kg
/cm2に戻し、反応を継続した。この操作を3回繰返し
た後反応を終了し、内容物をガスクロマトグラフイー
(カラムPEG 6000,4m)で、分析した。結果を表1に
示す。
A catalyst was prepared by placing 57 g of this potassium carbonate powder and 3 g of sodium metal together with 200 ml of toluene in an autoclave (1) and stirring at 190 ° C. for 2 hours at 600 rpm. After the temperature was lowered to 160 ° C., 400 ml of toluene was further added, propylene was injected under pressure, and the initial reaction pressure was set to 60 kg / cm 2 . At the same time as the introduction of propylene, the reaction started and the pressure dropped. The pressure in the container is 30 kg
When the pressure reaches / cm 2 , propylene is pressed in again and 50 kg
The pressure was returned to / cm 2 and the reaction was continued. After repeating this operation three times, the reaction was terminated, and the contents were analyzed by gas chromatography (column PEG 6000, 4 m). The results are shown in Table 1.

実施例 2 炭酸カリウム水溶液をエバポレーターを用いて濃縮し、
得られた結晶を遠心分離器で脱水した後、 400℃で2時
間焼成することによつて炭酸カリウム粉末を得た。実施
例1に準じて嵩密度ならびに粒度分布を測定したとこ
ろ、嵩密度は0.78g/mlであり、平均粒径(Dmed)は 3
20μで、粒度分布は 250〜 350μに最大値を持ち、 100
〜800 μの粒径の粒子が全体の85%を占めた。
Example 2 An aqueous potassium carbonate solution was concentrated using an evaporator,
The obtained crystals were dehydrated with a centrifuge and then calcined at 400 ° C. for 2 hours to obtain potassium carbonate powder. When the bulk density and the particle size distribution were measured according to Example 1, the bulk density was 0.78 g / ml, and the average particle size (Dmed) was 3
At 20μ, the particle size distribution has a maximum value between 250 and 350μ, 100
Particles with a particle size of ˜800 μ accounted for 85% of the total.

この炭酸カリウム70gを 500mlのセパラブルフラスコに
入れ、乾燥窒素を流通しながら 300℃に昇温し、さらに
よく撹拌しながら金属ナトリウム4gを少量ずつ加えた
後、2時間の間撹拌を継続することによつて、アルカリ
金属を炭酸カリに担持した。
Put 70 g of this potassium carbonate in a 500 ml separable flask, raise the temperature to 300 ° C. with flowing dry nitrogen, and add 4 g of metallic sodium little by little with good stirring, and then continue stirring for 2 hours. Then, the alkali metal was supported on potassium carbonate.

こうして得られた触媒50gを用い、トルエンと1−ブテ
ンの反応を行つた。反応温度 160℃、初期圧力60kg、7
時間後の反応結果は表2の通りであつた。
Using 50 g of the catalyst thus obtained, toluene was reacted with 1-butene. Reaction temperature 160 ℃, initial pressure 60kg, 7
The reaction results after the lapse of time are shown in Table 2.

比較例 1 炭酸カリウム 1.5水和塩の水溶液をスチーム・チユーブ
乾燥器で脱水した日本曹達社製炭酸カリウムSTDグレ
ードの嵩密度は1.05g/mlであり、平均粒径(Dmed)は
270μで、粒度分布は 350〜590 μにその最大値をも
ち、 100〜 800μの粒子が占める割合は全体の97%であ
つた。
Comparative Example 1 Potassium carbonate STD grade manufactured by Nippon Soda Co., Ltd. obtained by dehydrating an aqueous solution of potassium carbonate 1.5 hydrate with a steam / tube dryer has a bulk density of 1.05 g / ml and an average particle diameter (Dmed) of
At 270μ, the particle size distribution had a maximum value in the range of 350-590μ, and the proportion of particles of 100-800μ was 97% of the whole.

こうして得た炭酸カリウム57gと金属ナトリウム3gを
用い、実施例1の方法に準じて触媒調製を行つた後、ト
ルエンとプロピレンの反応を行つた。
Using 57 g of potassium carbonate thus obtained and 3 g of metallic sodium, a catalyst was prepared according to the method of Example 1, and then a reaction between toluene and propylene was carried out.

比較例 2 米国フツカー社製炭酸カリウムパウダーグレードを 400
℃で焼成した後、嵩密度と粒度分布を実施例1に準じて
測定したところ、嵩密度0.54であり、平均粒径(Dmed)
は65μで、その粒度分布は63〜74μにその最大値を有
し、 100μ以下の粒子が全体の87%を占め 100〜 800μ
の粒子は13%にすぎなかつた。この炭酸カリウム粉体を
用い、実施例1の方法に準じて触媒の調製ならびにトル
エンとプロピレンの反応を行つた。
Comparative Example 2 Potassium Carbonate Powder Grade manufactured by Futsuka USA Inc.
After firing at ℃, the bulk density and particle size distribution were measured according to Example 1 to find that the bulk density was 0.54 and the average particle size (Dmed)
Is 65μ, and its particle size distribution has its maximum value at 63-74μ, and particles of 100μ or less account for 87% of the total 100-800μ
The particles were only 13%. Using this potassium carbonate powder, the catalyst was prepared and the reaction of toluene and propylene was carried out according to the method of Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルキル置換芳香族炭化水素を脂肪族モノ
オレフインにより側鎖アルキル化するに際し、嵩密度が
0.85g/cm3以下、平均粒径 100ないし 800μでかつ粒
径 100ないし 800μの範囲にある粉体重量が全粉体重量
の60重量%以上を占める炭酸カリウム粉体担体にアルカ
リ金属を担持せしめた触媒を用いることを特徴とするア
ルキル置換芳香族炭化水素の側鎖アルキル化方法。
1. When alkylating an alkyl-substituted aromatic hydrocarbon by side chain alkylation with an aliphatic monoolefin, the bulk density is
Alkali metal is supported on a potassium carbonate powder carrier which has a powder weight of 0.85 g / cm 3 or less, an average particle size of 100 to 800μ and a particle size of 100 to 800μ, which accounts for 60% by weight or more of the total powder weight. A method for side-chain alkylation of an alkyl-substituted aromatic hydrocarbon, characterized by using the above catalyst.
JP60066559A 1985-04-01 1985-04-01 Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons Expired - Fee Related JPH0639396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066559A JPH0639396B2 (en) 1985-04-01 1985-04-01 Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066559A JPH0639396B2 (en) 1985-04-01 1985-04-01 Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons

Publications (2)

Publication Number Publication Date
JPS61227536A JPS61227536A (en) 1986-10-09
JPH0639396B2 true JPH0639396B2 (en) 1994-05-25

Family

ID=13319405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066559A Expired - Fee Related JPH0639396B2 (en) 1985-04-01 1985-04-01 Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons

Country Status (1)

Country Link
JP (1) JPH0639396B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI77386C (en) * 1986-12-31 1989-03-10 Neste Oy Catalyst system and process for selective alkylation of toluene.
FI77387C (en) * 1986-12-31 1989-03-10 Neste Oy KATALYSATORSYSTEM OCH FOERFARANDE FOER SELEKTIV ALKYLERING AV TOLUEN MED PROPEN.
US4914251A (en) * 1989-02-10 1990-04-03 Neste Oy Catalyst system for alkylating alkyl aromatics with olefins, procedure for preparing the catalyst, and procedure for carrying out the alkylating
US5157186A (en) * 1990-11-13 1992-10-20 Ethyl Corporation Process for catalytic coupling of an alkene with an aromatic hydrocarbon

Also Published As

Publication number Publication date
JPS61227536A (en) 1986-10-09

Similar Documents

Publication Publication Date Title
CA1259298A (en) Dimerization process and catalysts therefor
EP0057971B1 (en) Process for preparing 4-methyl-1-pentene
EP0083083B1 (en) Catalyst composition suitable for the dimerization or codimerization of alpha-olefins
JPS59222427A (en) Alkylation of side chain of aromatic hydrocarbon
US4609637A (en) Catalysts for dimerization and process for preparing the catalysts
JPH01207137A (en) Carrier for catalyst and manufacture of catalyst and dimerization method of olefin
JPH0639396B2 (en) Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons
EP0185548A2 (en) Methods of fluidizing and fluidizable mixtures
EP0351748B1 (en) Potassium carbonate supports, catalysts, and olefin dimerization processes therewith
JPH0699329B2 (en) Method for side-chain alkylation of alkyl-substituted aromatic hydrocarbons
JP2899635B2 (en) α-Olefin dimerization catalyst
US5081094A (en) Alkali metal bicarbonate/alkali metal carbonate support, catalyst system, and olefin dimerization processes therewith
US5112791A (en) Dimerization process and catalysts therefor
JPS63264608A (en) Preparation of carrier for catalyst for polymerization of olefin
US2995610A (en) Isobutylbenzene preparation
EP0357031B1 (en) Process for preparing alkyl-substituted aromatic hydrocarbons
US5118902A (en) Dimerization process and catalysts therefor
SU465819A1 (en) Method of obtaining catalyst for stereospecific polymerization of propylene
KR0143551B1 (en) Process for preparing carbonate supports and catalysts
US2429855A (en) Cobalt amination catalyst
EP0406867A1 (en) Catalysts and catalyst supports, with inorganic nitrates, for olefin dimerization
JPS61263643A (en) Preparation of catalyst deposited with alkali metal
JPS5940506B2 (en) Catalyst for dimerization of α-olefin
JP2756493B2 (en) Method for producing 1-pentene by co-dimerization of ethylene and propylene
JPH0333138B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees