JPH0639351Y2 - Self-powered neutron detector - Google Patents

Self-powered neutron detector

Info

Publication number
JPH0639351Y2
JPH0639351Y2 JP1992086317U JP8631792U JPH0639351Y2 JP H0639351 Y2 JPH0639351 Y2 JP H0639351Y2 JP 1992086317 U JP1992086317 U JP 1992086317U JP 8631792 U JP8631792 U JP 8631792U JP H0639351 Y2 JPH0639351 Y2 JP H0639351Y2
Authority
JP
Japan
Prior art keywords
emitter
self
neutron detector
cable
powered neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1992086317U
Other languages
Japanese (ja)
Other versions
JPH0646393U (en
Inventor
俊彦 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sukegawa Electric Co Ltd
Original Assignee
Sukegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sukegawa Electric Co Ltd filed Critical Sukegawa Electric Co Ltd
Priority to JP1992086317U priority Critical patent/JPH0639351Y2/en
Publication of JPH0646393U publication Critical patent/JPH0646393U/en
Application granted granted Critical
Publication of JPH0639351Y2 publication Critical patent/JPH0639351Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は中性子を検出するために
用いられる自己出力形中性子検出器に関し、特に、断線
を容易に確認できる検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-powered neutron detector used for detecting neutrons, and more particularly to a detector capable of easily confirming disconnection.

【0002】[0002]

【従来の技術】近年、大形発電用原子炉が数多く建設さ
れており、これに伴い、原子炉の安全でかつ経済的な運
転を行い、炉心内の局部的中性子束データを求め、ある
いは、燃料の燃焼を高めて経済効率の高い原子炉の運転
を行うため、炉外計測に代わって炉心内に検出器を配置
して正確な炉出力を求めることが行われてきている。
2. Description of the Related Art In recent years, a large number of large-scale power generation reactors have been constructed, and along with this, safe and economical operation of the reactors is carried out to obtain local neutron flux data in the core, or In order to enhance the fuel combustion and operate a nuclear reactor with high economic efficiency, a detector is placed inside the core instead of the out-of-core measurement to obtain an accurate reactor output.

【0003】かかる炉内計測用の検出器としては、従
来、例えば小形の核分裂電離箱、B電離箱、中性子熱電
対、あるいは、自己出力形中性子検出器等が挙げられ、
現在では、この目的のためには前記の核分裂電離箱が多
く用いられている。しかしながら、この核分裂電離箱に
代わり、小形、堅牢、簡単な構成からくる高信頼性及び
経済性等の面から、自己出力形中性子検出器が注目され
ている。
As such detectors for in-reactor measurement, conventionally, for example, a small fission ionization chamber, a B ionization chamber, a neutron thermocouple, a self-powered neutron detector, etc. can be mentioned.
At present, the fission ionization chamber is often used for this purpose. However, in place of this fission ionization chamber, self-powered neutron detectors are attracting attention because of their small size, robustness, high reliability and economic efficiency due to their simple structure.

【0004】従来の自己出力形中性子検出器の構成の一
例を、添付の図4に示す。この図において、中央の芯線
1の周囲にアルミナやマグネシア等の絶縁物2を充填
し、その外周をステンレス等の外皮3で覆った、いわゆ
るMIケーブル4の先端部に、自己出力形中性子検出器
5が取り付けられている。この検出器5は、ロジウム等
により形成したエミッタ6、その周囲に取り付けられた
セラミック絶縁材7、さらには、これらエミッタや絶縁
材を覆ったステンレス製等のコレクタ8から構成されて
いる。そして、センサー部となるエミッタ6は、前記M
Iケーブル4の芯線1との間は、一般に、溶接により異
材の接合となっていた。
An example of the structure of a conventional self-powered neutron detector is shown in the attached FIG. In this figure, a self-powered neutron detector is provided at the tip of a so-called MI cable 4 in which an insulator 2 such as alumina or magnesia is filled around a central core wire 1 and the outer periphery is covered with an outer cover 3 such as stainless steel. 5 is attached. The detector 5 is composed of an emitter 6 made of rhodium or the like, a ceramic insulating material 7 attached around the emitter 6, and a collector 8 made of stainless steel or the like covering the emitter and the insulating material. The emitter 6 serving as the sensor unit is the M
The I-cable 4 and the core wire 1 are generally joined to each other by welding.

【0005】[0005]

【考案が解決しようとする課題】しかしながら、前記の
従来技術の自己出力形中性子検出器においては、そのエ
ミッタとリード線となるケーブルの、例えばニッケル芯
線との間の接合が、ロジウム等とニッケルという異材の
接合であることから、熱歪等によりこの接合部位に亀裂
あるいは断線が生じてしまう可能性があり、この点で、
自己出力形中性子検出器の信頼性に問題があった。特
に、自己出力形中性子検出器は、その使用目的上、一度
炉内に装荷されると、簡単にはそのチェックが出来ず、
また、中性子が照射しても出力が表れず挙動がおかしい
ことで初めて不具合が判明するという弱点があった。
However, in the above-mentioned prior art self-powered neutron detector, the junction between the emitter and the cable serving as the lead wire, for example, the nickel core wire is called rhodium or nickel. Since it is a joining of dissimilar materials, there is a possibility that cracks or disconnections may occur at this joining site due to thermal strain etc.
There was a problem with the reliability of the self-powered neutron detector. Especially, the self-powered neutron detector cannot be easily checked once it is loaded into the reactor for the purpose of use.
In addition, there was a weak point that the defect was not found until the output did not appear even if irradiated with neutrons and the behavior was strange.

【0006】そこで、本考案は、前記従来技術の自己出
力形中性子検出器における問題点に鑑み、特に、そのエ
ミッタとリード線となるケーブルの芯線との間の接合の
不具合、断線状態をチェックすることが可能であり、か
つ、接合部が断線していても中性子の検出が可能な自己
出力形中性子検出器を提供することを目的とするもので
ある。
In view of the above-mentioned problems in the self-powered neutron detector of the prior art, the present invention particularly checks the connection between the emitter of the neutron detector and the core wire of the cable that serves as the lead wire, and checks the disconnection state. It is an object of the present invention to provide a self-powered neutron detector capable of detecting neutrons even if the junction is broken.

【0007】[0007]

【課題を解決するための手段】すなわち、前記の目的を
達成するため、本考案では、エミッタと、前記エミッタ
を取り囲むように配置された絶縁材と、前記エミッタ及
び絶縁材を覆うコレクタとからなり、前記エミッタをケ
ーブルの芯線に接合し、前記コレクタを前記ケーブルの
導電性の外皮に接合してなる自己出力形中性子検出器に
おいて、前記エミッタをU字状に折曲げて形成し、か
つ、前記ケーブルの内部に2本の芯線を配し、前記ケー
ブルの2本の芯線を前記U字状エミッタの2つの端部に
接合した自己出力形中性子検出器を提供する。
In order to achieve the above object, the present invention comprises an emitter, an insulating material arranged so as to surround the emitter, and a collector covering the emitter and the insulating material. A self-powered neutron detector in which the emitter is joined to a core of a cable and the collector is joined to a conductive outer skin of the cable, wherein the emitter is formed by bending it into a U shape, and Provided is a self-powered neutron detector in which two core wires are arranged inside a cable and the two core wires of the cable are joined to two ends of the U-shaped emitter.

【0008】[0008]

【作用】前記本考案の自己出力形中性子検出器によれ
ば、U字状に折曲げたエミッタを採用し、その2つの端
部にケーブルの2本の芯線をそれぞれ接合した構造とし
たことから、これら2本の芯線を介して前記エミッタと
芯線の断線状態を電気的に確認することが可能となる。
そして、その接合部の一方が断線していても他方の接合
を介して確実に出力を取り出すことが可能となる。
According to the self-powered neutron detector of the present invention, a U-shaped bent emitter is used, and two cores of the cable are respectively joined to the two ends of the emitter. It is possible to electrically confirm the disconnection state of the emitter and the core wire through these two core wires.
Even if one of the joints is broken, the output can be reliably taken out through the other joint.

【0009】[0009]

【実施例】以下、本考案の実施例について、添付の図面
を参照しながら詳細に説明する。まず、添付の図1に、
本考案の実施例による自己出力形中性子検出器の断面構
造が示されており、この図において、中性子のセンサー
部であるエミッタ10は、ロジウム(Rh)等の棒状あ
るいは平板状の金属をU字状に折曲げて形成されてい
る。このU字状のエミッタ10の周囲には、このエミッ
タの形状に合わせて取り囲むようにセラミックの絶縁材
20が配置されている。そして、これらエミッタ10及
びその周囲のセラミック絶縁材20を外側から取り囲む
ように、例えばステンレス材からなる円管状のコレクタ
30が設けられている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. First, in the attached Figure 1,
A cross-sectional structure of a self-powered neutron detector according to an embodiment of the present invention is shown. In this figure, the emitter 10 as a neutron sensor unit is made of a rod-shaped or flat-shaped metal such as rhodium (Rh) in a U-shape. It is formed by bending into a shape. A ceramic insulating material 20 is arranged around the U-shaped emitter 10 so as to surround the emitter in conformity with the shape of the emitter. A circular tubular collector 30 made of, for example, a stainless material is provided so as to surround the emitter 10 and the ceramic insulating material 20 around the emitter 10 from the outside.

【0010】一方、前記の検出部の一端(本実施例では
右側端)には、いわゆるMIケーブル40が取り付けら
れており、このMIケーブル40は、図からも明らかな
ように、ステンレス製の外皮41の内部には、アルミナ
やマグネシア等の絶縁物42を充填すると共に2本のニ
ッケルの芯線(リード線)43、44を相互に独立、絶
縁した状態で収納している。そして、MIケーブル40
の外皮41は前記検出部のコレクタ30の開放端部に溶
接されて固定されると共に、前記MIケーブル40内の
2本の芯線43、44は、それぞれ、前記U字状に折曲
げて形成されたエミッタ10の2つの端部に溶接により
接合されている。なお、これらの接合状態のうち、MI
ケーブル40の外皮41と検出部のコレクタ30は、共
にステンレス系により形成されていることから、溶接接
合されても同系材の接合であることから亀裂などは生じ
難く比較的安定である。他方、MIケーブル40内の2
本の芯線43、44とエミッタ10の2つの端部との間
の溶接部分は異材の接合であることから、これらの部位
には断線が生じる可能性がある。
On the other hand, a so-called MI cable 40 is attached to one end (the right end in this embodiment) of the above-mentioned detecting portion, and this MI cable 40 is made of stainless steel as shown in the drawing. An insulator 42 such as alumina or magnesia is filled in the interior of 41, and two nickel core wires (lead wires) 43 and 44 are housed in an independent and insulated state. And MI cable 40
The outer cover 41 is welded and fixed to the open end of the collector 30 of the detection unit, and the two core wires 43 and 44 in the MI cable 40 are formed by bending the U-shape. The two ends of the emitter 10 are joined by welding. Of these joining states, MI
Since the outer cover 41 of the cable 40 and the collector 30 of the detection unit are both formed of stainless steel, even if they are welded and joined, they are relatively stable because cracks are unlikely to occur because they are joined by similar materials. On the other hand, 2 in MI cable 40
Since the welded portions between the core wires 43 and 44 of the book and the two ends of the emitter 10 are joined by different materials, disconnection may occur at these portions.

【0011】ところで、本考案の自己出力形中性子検出
器により、例えば原子炉内の中性子を検出する場合に
は、添付の図2に示すように、MIケーブル40内から
取り出した2本の芯線43、44を並列に接続し(短絡
し)、これとMIケーブル40の外皮41との間に電流
計100を挿入する。この電流計100としては、例え
ば振動容量型電位計等が用いられる。
By the way, when detecting neutrons in a nuclear reactor by the self-powered neutron detector of the present invention, as shown in FIG. 2 attached, two core wires 43 taken out from the MI cable 40 are used. , 44 are connected in parallel (short-circuited), and the ammeter 100 is inserted between this and the outer cover 41 of the MI cable 40. As the ammeter 100, for example, a vibration capacitance type electrometer or the like is used.

【0012】すなわち、前記の自己出力形中性子検出器
を原子炉内に配置すると、この検出器に入射した中性子
はコレクタ30と絶縁材20を通過してエミッタ10に
吸収され、β線を放出する核種が生成される。一般に、
放出されるβ線のエネルギーは大きいので、β線はエミ
ッタ10から逃げ出して絶縁物20を通過して外周のコ
レクタ30内で停止する。そのため、エミッタ10内で
は電子が欠乏することとなり、MIケーブル40の芯線
43、44には正電荷が誘起され、すなわち、コレクタ
30とエミッタ10間には電流が流れる。そこで、この
電流を検出することにより中性子束を検出するものであ
る。
That is, when the self-powered neutron detector is placed in a nuclear reactor, the neutrons incident on the detector pass through the collector 30 and the insulating material 20 and are absorbed by the emitter 10 to emit β rays. A nuclide is generated. In general,
Since the emitted β-rays have large energy, the β-rays escape from the emitter 10, pass through the insulator 20, and stop in the collector 30 on the outer circumference. Therefore, electrons are deficient in the emitter 10, and positive charges are induced in the core wires 43 and 44 of the MI cable 40, that is, a current flows between the collector 30 and the emitter 10. Therefore, the neutron flux is detected by detecting this current.

【0013】ところで、前記のような本考案の実施例で
ある自己出力形中性子検出器のエミッタ10の構造によ
れば、そのU字状の2つの端部にリード線である芯線4
3、44が接合されていることから、添付の図3に示す
ように測定回路の配線を切り換えて、これら2本の芯線
43、44の間に電源60と電流計70を挿入し、流れ
る電流をチェックすることにより、エミッタ10のU字
状の2つの端部とリード線である芯線43、44との接
合状態を容易に確認することが、すなわち、機能チェッ
クが可能になる。すなわち、これらの接合部に亀裂が生
じて断線している場合には、電流は流れず、これら接合
部に不具合が生じたものと判断される。
By the way, according to the structure of the emitter 10 of the self-powered neutron detector which is the embodiment of the present invention as described above, the core wire 4 which is the lead wire is provided at the two ends of the U-shape.
Since 3 and 44 are joined, the wiring of the measurement circuit is switched as shown in the attached FIG. 3, and the power source 60 and the ammeter 70 are inserted between these two core wires 43 and 44, and the flowing current By checking (1), it is possible to easily confirm the joining state between the two U-shaped ends of the emitter 10 and the core wires 43 and 44 that are the lead wires, that is, the function check. That is, when a crack is generated in these joints and the wires are broken, it is determined that no current flows and a defect occurs in these joints.

【0014】また、炉心内で中性子の測定を行う場合に
は、前記図2に示すように、これら2本の芯線43、4
4は相互に繋ぎ合わされることから、前記U字状エミッ
タ10の2つの端部と芯線43、44との2つの接合部
の一方が断線したとしても、2本の芯線43、44のい
ずれかの芯線から検出電流を引き出すことが可能であ
り、これにより、自己出力形中性子検出器の信頼性をさ
らに向上させることが可能になる。
When neutrons are measured in the core, as shown in FIG. 2, these two core wires 43, 4 are used.
Since 4 is connected to each other, even if one of the two joints between the two ends of the U-shaped emitter 10 and the core wires 43, 44 is broken, either of the two core wires 43, 44 is broken. It is possible to extract the detection current from the core wire of the neutron detector, which makes it possible to further improve the reliability of the self-powered neutron detector.

【0015】さらに、前記の実施例では、β線に起因す
る電流を測定して中性子束を検出するものとして述べた
が、その応答速度は比較的遅く、そのため、例えば即応
答性のコバルト(Co)のエミッタを使用し、エミッタ
が中性子を吸収して放出する捕獲γ線がエミッタ内部で
光電効果やコンプトン効果をを引き起こす際に発生する
二次電子に起因する電流を測定する方式を採用すること
も可能である。
Further, in the above-mentioned embodiment, the current caused by β-rays is measured to detect the neutron flux, but the response speed is relatively slow, and therefore, for example, cobalt (Co ) Emitter, and adopt a method to measure the current caused by secondary electrons generated when the captured γ-rays emitted by absorbing and emitting neutrons cause photoelectric effect or Compton effect inside the emitter. Is also possible.

【0016】添付の図5に本考案の他の実施例を示す。
この実施例では、エミッタ10をパイプ状にし、その内
部により径の細いパイプ状の絶縁材20を挿入し、さら
に絶縁材20の中に一方の芯線43を貫通し、これをエ
ミッタ10の図5において左端に接続している。また、
他方の芯線44は、エミッタ10の図5において右端に
接続している。この実施例でも、前記の実施例と同様の
作用、効果が得られることは明かである。
FIG. 5 attached herewith shows another embodiment of the present invention.
In this embodiment, the emitter 10 is formed into a pipe shape, a pipe-shaped insulating material 20 having a smaller diameter is inserted into the inside of the emitter 10, and one core wire 43 is further penetrated into the insulating material 20. At the left end. Also,
The other core wire 44 is connected to the right end of the emitter 10 in FIG. It is clear that this embodiment can also obtain the same operation and effect as the above-mentioned embodiment.

【0017】[0017]

【考案の効果】前記の本考案の詳細な説明からも明かな
様に、本考案による自己出力形中性子検出器によれば、
その改良された構造から、測定回路を切り換えることに
よって定期的にその機能をチェックすることが可能で、
かつ、その一方が断線していても中性子を確実に検出す
ることが出来ることから、さらに信頼性の高い優れた自
己出力形中性子検出器を提供することが出来るという実
用的にも優れた効果を発揮する。
As is apparent from the above detailed description of the present invention, according to the self-powered neutron detector of the present invention,
From its improved structure, it is possible to check its function regularly by switching the measuring circuit,
And, since it is possible to reliably detect neutrons even if one of them is broken, it is possible to provide a highly reliable and excellent self-powered neutron detector with a practically excellent effect. Demonstrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例による自己出力形中性子検出
器の詳細内部構造を説明するための断面図である。
FIG. 1 is a sectional view illustrating a detailed internal structure of a self-powered neutron detector according to an embodiment of the present invention.

【図2】前記自己出力形中性子検出器の中性子検出動作
を説明するための動作説明図である。
FIG. 2 is an operation explanatory diagram for explaining a neutron detection operation of the self-powered neutron detector.

【図3】前記自己出力形中性子検出器の断線チェック動
作を説明するための動作説明図である。
FIG. 3 is an operation explanatory diagram for explaining a disconnection check operation of the self-powered neutron detector.

【図4】従来技術による自己出力形中性子検出器の一例
を示す断面図である。
FIG. 4 is a sectional view showing an example of a self-powered neutron detector according to the prior art.

【図5】本考案の他の実施例による自己出力形中性子検
出器の詳細内部構造を説明するための断面図である。
FIG. 5 is a sectional view illustrating a detailed internal structure of a self-powered neutron detector according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 エミッタ 20 絶縁材 30 コレクタ 40 MIケーブル 41 ケーブル外皮 42 絶縁物 43、44 芯線(リード線) 10 Emitter 20 Insulating Material 30 Collector 40 MI Cable 41 Cable Outer 42 Insulator 43, 44 Core Wire (Lead Wire)

【その他】 明細書の実体的内容については変更なし。[Others] There is no change in the substance of the description.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 エミッタと、前記エミッタを取り囲むよ
うに配置された絶縁材と、前記エミッタ及び絶縁材を覆
うコレクタとからなり、前記エミッタをケーブルの芯線
に接合し、前記コレクタを前記ケーブルの導電性の外皮
に接合してなる自己出力形中性子検出器において、前記
エミッタをU字状に折曲げて形成し、かつ、前記ケーブ
ルの内部に2本の芯線を配し、前記ケーブルの2本の芯
線を前記U字状エミッタの2つの端部に接合したことを
特徴とする自己出力形中性子検出器。
1. An emitter, an insulating material arranged so as to surround the emitter, and a collector covering the emitter and the insulating material, the emitter being joined to a core wire of a cable, and the collector being a conductive member of the cable. In a self-powered neutron detector joined to a flexible outer skin, the emitter is formed by bending it into a U shape, and two core wires are arranged inside the cable, A self-powered neutron detector, wherein a core wire is joined to two ends of the U-shaped emitter.
JP1992086317U 1992-11-21 1992-11-21 Self-powered neutron detector Expired - Lifetime JPH0639351Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992086317U JPH0639351Y2 (en) 1992-11-21 1992-11-21 Self-powered neutron detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992086317U JPH0639351Y2 (en) 1992-11-21 1992-11-21 Self-powered neutron detector

Publications (2)

Publication Number Publication Date
JPH0646393U JPH0646393U (en) 1994-06-24
JPH0639351Y2 true JPH0639351Y2 (en) 1994-10-12

Family

ID=13883463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992086317U Expired - Lifetime JPH0639351Y2 (en) 1992-11-21 1992-11-21 Self-powered neutron detector

Country Status (1)

Country Link
JP (1) JPH0639351Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160051987A (en) * 2014-10-30 2016-05-12 한국수력원자력 주식회사 In-Core Instrumentation Assembly with improved durability

Also Published As

Publication number Publication date
JPH0646393U (en) 1994-06-24

Similar Documents

Publication Publication Date Title
JP6012610B2 (en) High-precision, long-life rhodium-vanadium double-emitter in-reactor detector with self-calibration
US3879612A (en) Multi-sensor radiation detector system
US5256966A (en) Method for detecting flaws in a steam generator tube using a flexible eddy current probe having coil bank switching
CN106531245A (en) Thimble assembly of in-core instrument for nuclear power station
CN112698381A (en) Self-powered neutron detector
JPH0631791B2 (en) Fixed in-reactor calibrator for thermal neutron flux detectors in boiling water reactors.
US4614635A (en) Fission-couple neutron sensor
RU2178211C2 (en) Miniaturized low-inertia device with built-in energy source for tier-by-tier detection of neutron flux in nuclear reactor
JPH0639351Y2 (en) Self-powered neutron detector
CN112666596B (en) Laser fusion neutron irradiation effect testing device
Kawai et al. A new approach to cable fault location using fiber optic technology. I
US4200491A (en) Apparatus and method for detecting power distribution in a nuclear reactor fuel element
CN112599262A (en) Gamma strength detector for platinum self-powered reactor core
GB1567686A (en) Sensors for use nuclear reactor cores
US20220390630A1 (en) Self-powered excore detector arrangement for measuring flux of a nuclear reactor core
CA1171560A (en) In-core self-powered radiation detector for determining thermal and epithermal flux
JPH08222179A (en) Micro-fission chamber with airtight path
CN214099173U (en) Small single-core self-powered detector
JP2022518176A (en) Temperature measurement sensor using material with temperature-dependent neutron capture cross section
CN214541594U (en) Gamma strength detector for platinum self-powered reactor core
JPS6020173A (en) Radiation detector
Ker et al. Modeling the positive-feedback regenerative process of CMOS latchup by a positive transient pole method. II. Quantitative evaluation
CN220381154U (en) Strong-irradiation-resistant piezoelectric acceleration sensor
RU48078U1 (en) DIRECT CHARGE DETECTOR
JP4477515B2 (en) Self-powered neutron detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term