JPH0638297A - Manufacture of ultrasonic wave probe - Google Patents

Manufacture of ultrasonic wave probe

Info

Publication number
JPH0638297A
JPH0638297A JP18658392A JP18658392A JPH0638297A JP H0638297 A JPH0638297 A JP H0638297A JP 18658392 A JP18658392 A JP 18658392A JP 18658392 A JP18658392 A JP 18658392A JP H0638297 A JPH0638297 A JP H0638297A
Authority
JP
Japan
Prior art keywords
piezoelectric body
shaped
vibrator
comb
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18658392A
Other languages
Japanese (ja)
Inventor
Ryuichi Shinomura
隆一 篠村
Chitose Nakatani
千歳 中谷
Kageyoshi Katakura
景義 片倉
Sangubi Narendora
ナレンドラ・サングビ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18658392A priority Critical patent/JPH0638297A/en
Publication of JPH0638297A publication Critical patent/JPH0638297A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize an inverted polarization ultrasonic wave prove and a high density paper-tablet vibrator. CONSTITUTION:A comb-line vibrator 2 is obtained by applying groove-cutting to one side of a piezoelectric body polarized uniformly at an arrangement pitch 2P being twice an arrangement pitch P with a blade whose width is nearly equal to the arrangement pitch P. Other comb-line vibrator 2 obtained by the similar procedure is fitted to the vibrator 2 above with each other, and in order to obtain the part having the arrangement pitch P, the piezoelectric body 1 is cut till the arrangement part having the arrangement pitch P from the upper and the lower part. Electrodes are provided to both sides obtained to form an arrangement vibrator 5. As a result, the arrangement pitch of the vibrator is doubled, a conventional probe, a high density composite piezoelectric body and an inverted polarization arrangement vibrator are easily obtained and a high performance probe is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波により対象物を
測定及び観察する超音波装置の探触子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe of an ultrasonic device for measuring and observing an object with ultrasonic waves.

【0002】[0002]

【従来の技術】従来の超音波振動子は、図6に示すよう
に圧電体1を一様分極し、切断することにより配列振動
子とし、片面を共通電極でア−ス9とし、他面を配列振
動子一つずつに電極10を形成し、それぞれより信号線
11を引き出し、位相を与えて駆動し、受信信号にたい
して位相を与えて加算することにより超音波を走査して
いた。また、配列振動子の作成には、ダイシングソーな
どで平板状振動子を切断していた。さらに、多数の柱状
振動子が有機物中に埋め込まれた構造の複合圧電体とし
て、ピエゾエレクトリック コンポジット マテリアル
ズ フォー ウルトラソニック トランスデューサ ア
プリケーションズ ( piezoelectric composite materi
als for ultrasonic transducer applications )と題し
て、アイイー イー イー ソニックス アンド ウル
トラソニックス 32巻( IEEEsonics and ultrasonic
s vol.su-32,no.4,July,1985 )に、プロパティーズ オ
ブ コンポジット ピエゾエレクトリック マテリアル
ズ フォー ウルトラソニック トランスデューサズ(
properties of composite piezoelectric materials fo
r ultrasonic transducers )と題して、ウルトラソニッ
クス シンポジウム(1984)( Ultrasonics sympo
sium 1984 )発表されており、この構造の圧電体の製造
方法は特開昭60−85699号公報に記載されてい
る。
2. Description of the Related Art In a conventional ultrasonic transducer, as shown in FIG. 6, a piezoelectric body 1 is uniformly polarized and cut to form an array transducer. The electrodes 10 are formed on each of the array transducers, the signal line 11 is drawn out from each array transducer, the phase is given and driven, and the phase is added to the received signal and added to scan the ultrasonic wave. Further, in order to create the array vibrator, the flat vibrator was cut with a dicing saw or the like. Furthermore, as a composite piezoelectric body in which a large number of columnar vibrators are embedded in an organic material, piezoelectric composite materials for ultrasonic transducer applications (piezo composite materi
als for ultrasonic transducer applications), IEEE sonics and ultrasonic 32 volumes (IEEEsonics and ultrasonic
s vol.su-32, no.4, July, 1985), Properties of Composite Piezoelectric Materials for Ultrasonic Transducers (
properties of composite piezoelectric materials fo
Ultrasonics Symposium (1984) (Ultrasonics sympo)
1984), and a method for producing a piezoelectric body having this structure is described in JP-A-60-85699.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、信
号線が、配列した振動子の数だけ必要である。また、送
受信回路も多数必要となり、微細化探触子の形成及び探
触子装置の小型化に問題があった。また、高周波化にと
もない配列振動子の配列ピッチPが小さくなり、非常に
薄い切断用のブレードと非常に高度な切断技術が要求さ
れ、従来では、ピッチPを90μm以下にすることは非
常に難しく、10MHz以上の電子セクタ探触子などの
高周波探触子を実現することはほとんど不可能であっ
た。さらに、複合圧電体においても柱状振動子を細かい
ピッチで配列するのは難しく、その配列ピッチはやはり
90μm程度が限界であった。本発明の目的は、このよ
うな従来技術の問題を解決する、反転分極超音波探触子
及び高密度短冊状振動子の製造方法を提供することにあ
る。
In the above-mentioned prior art, the signal lines are required in the same number as the arrayed vibrators. Further, a large number of transmission / reception circuits are required, and there is a problem in forming a miniaturized probe and miniaturizing the probe device. In addition, the array pitch P of array transducers becomes smaller as the frequency becomes higher, and a very thin cutting blade and a very advanced cutting technique are required. Conventionally, it is very difficult to set the pitch P to 90 μm or less. It has been almost impossible to realize a high frequency probe such as an electronic sector probe of 10 MHz or more. Furthermore, it is difficult to arrange the columnar vibrators at a fine pitch even in the composite piezoelectric body, and the arrangement pitch is still limited to about 90 μm. An object of the present invention is to provide a method for manufacturing an inverted polarization ultrasonic probe and a high-density strip-shaped oscillator, which solves the problems of the conventional techniques.

【0004】[0004]

【課題を解決するための手段】反転分極配列振動子を用
い共通電極として電極間に、バースト波を印加し、この
バースト波の周波数を掃引することにより超音波ビーム
を走査する。反転分極配列振動子を実現するには、一様
に分極された圧電体の片面に溝を形成して多数の短冊状
振動子が片面において連結された構造の櫛状圧電体を形
成し、別途用意した一様に分極された圧電体の片面に同
様に溝を形成して櫛状圧電体を形成し、両者の櫛状圧電
体の凹部と凸部をはめ合わせ接着して一体構造の圧電体
とする。この一体構造の圧電体の両面を研削して短冊状
振動子を形成する。このとき、溝を形成する面は、2つ
の圧電体とも同じ分極方向の面とし、配列された圧電体
の両面それぞれに一様電極を設け、バッキング材とよば
れる音響支持体上へ接着など行うことによって達成され
る。
A burst wave is applied between electrodes as a common electrode using an inverted polarization array oscillator, and an ultrasonic beam is scanned by sweeping the frequency of the burst wave. In order to realize an inverted polarization array oscillator, a groove is formed on one side of a uniformly polarized piezoelectric body to form a comb-shaped piezoelectric body having a structure in which a large number of strip-shaped oscillators are connected on one side. A comb-shaped piezoelectric body is formed by similarly forming a groove on one surface of the prepared uniformly polarized piezoelectric body, and the concave and convex portions of both comb-shaped piezoelectric bodies are fitted and adhered to each other to form a monolithic piezoelectric body. And Both sides of this one-piece piezoelectric body are ground to form strip-shaped vibrators. At this time, the surfaces on which the grooves are formed have the same polarization direction as that of the two piezoelectric bodies, uniform electrodes are provided on both surfaces of the arrayed piezoelectric bodies, and they are bonded onto an acoustic support called a backing material. To be achieved.

【0005】すなわち、圧電体の片面に溝を形成し多数
の短冊状振動子が片面において連結された構造を有する
櫛状圧電体を形成する工程と、この工程により形成され
た2個の櫛状圧電体の凹部と凸部をはめ合わせて接着し
一体構造の圧電体とする工程と、この一体構造の圧電体
の両面を研削し短冊状振動子を形成する工程からなるこ
とを特徴とする超音波探触子の製造方法である。溝を形
成する面は、2つの圧電体の同じ分極方向の面とする。
短冊状振動子両面それぞれに一様電極を設け一様電極間
に、バ−スト波を印加し、このバ−スト波の周波数を掃
引することにより超音波ビ−ムを走査する超音波探触子
を得る。また、溝を形成する面は、2つの圧電体におい
て異なる分極方向の面であってもよい。
That is, a step of forming a comb-shaped piezoelectric body having a structure in which a groove is formed on one surface of a piezoelectric body and a large number of strip-shaped vibrators are connected on one side, and two comb-shaped bodies formed by this step are formed. It is characterized by comprising the steps of fitting the concave and convex portions of the piezoelectric body together and adhering them to form an integral structure piezoelectric body, and grinding both sides of this integral structure piezoelectric body to form a strip-shaped vibrator. This is a method for manufacturing a sound wave probe. The surface on which the groove is formed is the surface of the two piezoelectric bodies in the same polarization direction.
An ultrasonic probe that scans an ultrasonic beam by applying a burst wave between the uniform electrodes and sweeping the frequency of the burst wave Get a child Further, the surfaces forming the grooves may be surfaces having different polarization directions in the two piezoelectric bodies.

【0006】さらに、圧電体の片面に溝を形成し多数の
短冊状振動子が片面において連結された構造を有する櫛
状圧電体を形成する工程と、この櫛状圧電体の溝に有機
物を充填する工程と、有機物が充填された櫛状圧電体に
上記溝とは異なる方向に溝を形成する工程と、この異な
る方向に溝の形成された櫛状圧電体の凹部と凸部をはめ
合わせて接着し一体構造とする工程と、一体構造とされ
た圧電体の両面を研削し多数の柱状振動子が有機物中に
埋め込まれた構造の複合圧電体を形成する工程からなる
ことを特徴とする複合圧電体からなる超音波探触子の製
造方法である。
Further, a step of forming a comb-shaped piezoelectric body having a structure in which a groove is formed on one side of the piezoelectric body and a large number of strip-shaped vibrators are connected on one side, and the groove of the comb-shaped piezoelectric body is filled with an organic substance. And a step of forming a groove in a comb-shaped piezoelectric body filled with an organic material in a direction different from the groove, and by fitting the concave portion and the convex portion of the comb-shaped piezoelectric body having a groove formed in the different direction. A composite comprising a step of adhering to form an integrated structure and a step of grinding both surfaces of the integrated structure piezoelectric body to form a composite piezoelectric body having a structure in which a large number of columnar vibrators are embedded in an organic substance. A method for manufacturing an ultrasonic probe made of a piezoelectric material.

【0007】[0007]

【作用】一様に分極された圧電体の片面に溝を形成して
櫛状圧電体を形成し、別途用意した一様に分極された圧
電体の片面にも同様に溝を形成して櫛状圧電体を形成
し、これら両者の凹部と凸部をはめ合わせ接着し、両面
より研削して配列構成とするので、溝を形成する面は、
2つの圧電体とも同じ分極方向の面とすることができ、
分極方向を交互にすることができる。この製造方法を応
用するにより、振動子の配列ピッチを倍に微細化でき、
従来型の探触子、複合圧電体よりもさらに高密度化が実
現できる。このような反転分極配列振動子による超音波
探触子では、少ない信号線で超音波ビームを走査できる
のでより微細な超音波探触子を実現できる。さらに、こ
の反転分極配列振動子の作成方法を応用すれば、従来の
電子走査型探触子の配列ピッチと複合圧電体の配列ピッ
チの限界を超えることができる。
Function: A comb-shaped piezoelectric body is formed by forming a groove on one side of a uniformly polarized piezoelectric body, and a groove is similarly formed on one side of a uniformly polarized piezoelectric body prepared separately. A piezoelectric body is formed, and the concave and convex portions of both of these are fitted and bonded together, and the both sides are ground to form an array configuration.
Both piezoelectric bodies can have the same polarization plane,
The polarization directions can be alternated. By applying this manufacturing method, it is possible to double the array pitch of the oscillators,
Higher densities can be achieved than with conventional probes and composite piezoelectric bodies. In the ultrasonic probe using such an inverted polarization array transducer, the ultrasonic beam can be scanned with a small number of signal lines, so that a finer ultrasonic probe can be realized. Further, by applying this method of forming the inverted polarization array oscillator, the limits of the array pitch of the conventional electronic scanning probe and the array pitch of the composite piezoelectric body can be exceeded.

【0008】[0008]

【実施例】以下、本発明の実施例を図を用いて説明す
る。図1に本発明の第1の実施例である超音波探触子の
製造方法を示す。矢印は、分極方向を示す。分極された
圧電体1の片面より配列ピッチPとすると2倍の配列ピ
ッチで、およそPの幅のブレードで溝切りを行ない、櫛
状振動子を形成する。この溝の深さは、最終的に必要と
する振動子の厚みより深くし、溝幅Gは振動子の凸部の
幅Wより大きくする。まったく同様にして得た櫛状振動
子2を図1(b)の様に凹部と凸部をはめ合わせ接着す
る。この時、溝幅は、はめ合いのすきま、接着の余裕等
を考慮する。その後、図1(c)に示すように、図1
(b)に示す上下の部分を配列部分まで切除する。さら
に、両面に電極9、10を設け、バッキング材とよばれ
る音響支持体8上に接着することによって図2に示す反
転分極配列探触子を形成する。なお、探触子の前面(音
響支持体8と対向面)は、音響整合層と保護膜で通常は
おおわれているが、この図2では省略した。図3に示す
ように電極9、10間にバースト波を印加すると、その
放射角度(θ)は、振動子ピッチPと駆動周波数fによ
り走査できる。このように周波数( Frequency )に依
存して放射角度(θ)が変わるため、超音波ビームを走査
できる。また、図1(b)に示す状態より上部より切除
し、櫛状振動子の一方の凸部を露出させてから、櫛刃の
方向とほぼ直交する方向に、所定のピッチ、幅で複数本
の溝を入れて、この溝にポリウレタン等の有機物を充填
して、この後下部側より切除することにより、一方向に
柔軟性をもつ複合物からなる分極反転配列振動子を製作
することができる以上の実施例では、圧電体を機械的に
加工する例について述べたが、電極パターンにより分極
を交互にすることも可能である。また、圧電体は、PZ
Tなどのセラミックあるいは、有機圧電体でも良い。ま
た分極は交互とした例を述べたが、不規則配列への展開
も同様である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a method of manufacturing an ultrasonic probe which is a first embodiment of the present invention. The arrow indicates the polarization direction. Assuming that the array pitch is P from one surface of the polarized piezoelectric body 1, a comb-shaped vibrator is formed by grooving with a blade having a width of approximately P at an array pitch that is double. The depth of the groove is made deeper than the thickness of the vibrator finally required, and the groove width G is made larger than the width W of the convex portion of the vibrator. As shown in FIG. 1B, the comb-shaped vibrator 2 obtained in exactly the same manner is fitted with the concave portion and the convex portion and bonded. At this time, regarding the groove width, a clearance for fitting, a margin for adhesion, and the like are taken into consideration. Then, as shown in FIG.
The upper and lower parts shown in (b) are cut to the array part. Further, electrodes 9 and 10 are provided on both surfaces, and the electrodes 9 and 10 are bonded to an acoustic support 8 called a backing material to form the inverted polarization array probe shown in FIG. The front surface of the probe (the surface facing the acoustic support 8) is usually covered with the acoustic matching layer and the protective film, but it is omitted in FIG. When a burst wave is applied between the electrodes 9 and 10 as shown in FIG. 3, the emission angle (θ) can be scanned by the transducer pitch P and the driving frequency f. In this way, since the radiation angle (θ) changes depending on the frequency, the ultrasonic beam can be scanned. In addition, after cutting from the upper portion of the state shown in FIG. 1 (b) to expose one convex portion of the comb-shaped vibrator, a plurality of pieces are formed at a predetermined pitch and width in a direction substantially orthogonal to the direction of the comb blade. It is possible to manufacture a domain-inverted array oscillator composed of a composite having flexibility in one direction by inserting the groove of the above, filling the groove with an organic substance such as polyurethane, and then cutting off from the lower side. In the above embodiments, an example in which the piezoelectric body is mechanically processed has been described, but it is also possible to alternate the polarization by the electrode pattern. The piezoelectric body is PZ
A ceramic such as T or an organic piezoelectric material may be used. Further, although the example in which the polarization is alternated has been described, the same applies to the expansion to the irregular array.

【0009】図4に本発明の第2の実施例である高密度
短冊状振動子の製造方法を示す。従来の電子走査型探触
子の配列ピッチは90μm程度が限界であった。しかし
ながら、図1の作成方法を応用することで、短冊状振動
子の配列ピッチを半分にすることができ、より高密度の
探触子を実現できる。例えば、10MHz以上の電子セ
クタ探触子も実現可能となってくる。図1(a)の場合
と同様に、図4(a)では、分極された圧電体1の片面
より形成しようとする短冊状振動子の配列ピッチPの2
倍のピッチで、およそPの幅のブレードで溝を形成し、
櫛状振動子を形成する。この時の深さは最終的に必要と
する振動子の厚みより深くし、溝幅Gは振動子の凸部の
幅Wより大きくする。つぎに櫛状振動子1とは分極方向
が逆と成るように溝入れして櫛状振動子2を形成する。
これを図4(b)のように凹部と凸部をはめ合わせ、す
きま3、4などを接着する。この時図1(b)とは異な
り、分極方向は同一と成る。その後、図4(c)に示す
ように、図4(b)に示す上下の部分を切除し、短冊状
振動子5を得る。つぎに上下面に電極を形成し、信号電
極側の電極をアレー状に形成しバッキング材に接着し、
音響整合層、保護膜などを音響放射面側に形成し、さら
に音響レンズなどを装着することで探触子が実現でき
る。従来技術では、バッキング材に振動子を接着し、振
動子全体に溝が入るようにして短冊状振動子を形成して
いるが、このような方法では、例えば20μm程度のブ
レードを用い、90μm程度まで溝入れするのが限界で
あった。この原因は、圧電体とバッキング材という2種
類の材料に溝を入れるため、切断条件が悪くまた、ブレ
ードが薄いため切断時のブレードの振動により精密な切
断ができないためと考えられる。また、ブレード幅を厚
くすれば、短冊状振動子の幅も小さくなり、これにとも
ない切断時に振動子が欠けたりするなどの問題が生じ
る。ブレード幅は10μm程度が限界といわれている。
このように従来法では、種々の制約や問題があり、短冊
状振動子を90μm以下の高密度に配列することは不可
能であった。図4の方法であれば、圧電体のみの溝入れ
となり、また、切断時のピッチとブレード幅も大きくで
きるため、短冊状振動子の高密度化が可能である。例え
ば、図4の方法で、50μm幅のブレードを用い、10
0μmピッチで溝入れをすれば、ブレードの振動でGは
少し広がり60μm程度となり、Wは40μm程度とな
り、最終的に形成される短冊状振動子は50μmピッチ
で各短冊状振動子間のギャップは10μm程度となる。
このように図4に示す方法により、従来技術では実現で
きなかった細かいピッチの短冊状振動子を容易に作るこ
とが可能である。
FIG. 4 shows a method of manufacturing a high-density strip-shaped vibrator according to a second embodiment of the present invention. The array pitch of the conventional electronic scanning probe is limited to about 90 μm. However, by applying the manufacturing method of FIG. 1, the array pitch of the strip-shaped vibrators can be halved, and a probe with higher density can be realized. For example, an electronic sector probe having a frequency of 10 MHz or more can be realized. Similar to the case of FIG. 1A, in FIG. 4A, the arrangement pitch P of the strip-shaped vibrators to be formed from one surface of the polarized piezoelectric body 1 is 2
Form a groove with a blade of about P width at double pitch,
Form a comb-shaped oscillator. The depth at this time is made deeper than the thickness of the vibrator finally required, and the groove width G is made larger than the width W of the convex portion of the vibrator. Next, the comb-shaped vibrator 2 is formed by grooving so that the polarization direction is opposite to that of the comb-shaped vibrator 1.
As shown in FIG. 4B, the concave and convex portions are fitted to each other, and the clearances 3 and 4 are bonded. At this time, unlike FIG. 1B, the polarization directions are the same. Thereafter, as shown in FIG. 4C, the upper and lower portions shown in FIG. 4B are cut off to obtain the strip-shaped vibrator 5. Next, the electrodes are formed on the upper and lower surfaces, the electrodes on the signal electrode side are formed in an array and adhered to the backing material,
A probe can be realized by forming an acoustic matching layer, a protective film, etc. on the acoustic radiation surface side and further mounting an acoustic lens or the like. In the prior art, a vibrator is bonded to a backing material and a strip-shaped vibrator is formed so that a groove is formed in the whole vibrator. In such a method, for example, a blade of about 20 μm is used and about 90 μm is used. It was the limit to make a groove. It is considered that this is because the groove is formed in two kinds of materials, that is, the piezoelectric material and the backing material, the cutting conditions are bad, and the blade is thin so that the blade cannot be precisely cut due to the vibration of the blade. Further, if the blade width is made thicker, the width of the strip-shaped vibrator also becomes smaller, which causes a problem that the vibrator is chipped at the time of cutting. It is said that the blade width is limited to about 10 μm.
As described above, the conventional method has various restrictions and problems, and it has been impossible to arrange the strip-shaped vibrators at a high density of 90 μm or less. According to the method shown in FIG. 4, the piezoelectric body alone can be grooved, and the pitch and blade width at the time of cutting can be increased, so that the density of the strip-shaped vibrator can be increased. For example, using the method shown in FIG.
When grooving is performed at a pitch of 0 μm, G slightly expands to about 60 μm and W becomes about 40 μm due to the vibration of the blade, and the strip vibrator finally formed has a pitch of 50 μm and the gap between the strip vibrators is about 50 μm. It becomes about 10 μm.
As described above, by the method shown in FIG. 4, it is possible to easily manufacture a strip-shaped vibrator having a fine pitch, which cannot be realized by the conventional technique.

【0010】図5に本発明の第3の実施例である高密度
複合圧電体の製造方法を示す。図5(a)は、図1
(a)または図4(a)と同じように櫛状圧電体を作
り、さらに有機物6を充填して切断溝を埋めた状態を示
している。図5(b)では最初に形成した溝と直交する
方向に溝3を形成している。図5(b)の状態の13を
複合櫛状圧電体と呼ぶことにする。図5(c)は図5
(b)のAの方向から見た図で、13と同様な複合櫛状
圧電体14と13が張り合わせて接着された状態を示し
ている。図5(d)は図5(c)の上下面の不要な部分
を削りとり、多数の柱状振動子12が有機物6で連結さ
れた複合圧電体7が形成された状態を示す。図5の複合
圧電体は、図4の場合と同様に従来より細かなピッチと
することができる。有機物で連結するためフレキシブル
となる。実施例では、分極された圧電体を用いている
が、最後に分極することも可能であり、図5の複合圧電
体では分極方向をいろいろ変えて作ることが可能であ
る。
FIG. 5 shows a method of manufacturing a high density composite piezoelectric material according to a third embodiment of the present invention. FIG. 5 (a) is shown in FIG.
4A shows a state in which a comb-shaped piezoelectric body is formed in the same manner as in FIG. 4A and is further filled with the organic substance 6 to fill the cutting groove. In FIG. 5B, the groove 3 is formed in the direction orthogonal to the groove formed first. The state 13 of FIG. 5B will be referred to as a composite comb piezoelectric body. FIG. 5C shows FIG.
FIG. 7B is a view seen from the direction A, showing a state in which the composite comb-shaped piezoelectric bodies 14 and 13 similar to 13 are stuck and adhered. FIG. 5D shows a state in which unnecessary piezoelectric elements on the upper and lower surfaces of FIG. 5C are shaved to form a composite piezoelectric body 7 in which a large number of columnar vibrators 12 are connected by an organic substance 6. As in the case of FIG. 4, the composite piezoelectric body of FIG. 5 can have a finer pitch than conventional. It is flexible because it is connected by organic substances. In the embodiment, a polarized piezoelectric material is used, but it is also possible to finally polarize, and the composite piezoelectric material of FIG. 5 can be manufactured by changing the polarization direction in various ways.

【0011】[0011]

【発明の効果】本発明により、従来困難であった反転分
極配列振動子が容易に実現できる。さらに、この振動子
により形成される超音波探触子を用いることにより少な
い信号線で超音波ビームを走査できるので、より微細な
超音波探触子を実現できる。さらに、この反転分極配列
振動子の作成方法を発展させ、振動子の配列ピッチを倍
にでき、容易に従来型の探触子、複合圧電体の高密度化
が実現され、高性能探触子が実現できる。
According to the present invention, an inverted polarization array oscillator, which has been difficult to achieve in the past, can be easily realized. Further, since the ultrasonic beam can be scanned with a small number of signal lines by using the ultrasonic probe formed by this vibrator, a finer ultrasonic probe can be realized. Furthermore, by developing this method of creating an inverted polarization array transducer, the array pitch of the transducers can be doubled, and it is possible to easily realize the high density of the conventional probe and the composite piezoelectric body. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である超音波探触子の製
造方法を示す斜視図。
FIG. 1 is a perspective view showing a method of manufacturing an ultrasonic probe according to a first embodiment of the present invention.

【図2】本発明の第1の実施例による超音波探触子を示
す斜視図
FIG. 2 is a perspective view showing an ultrasonic probe according to a first embodiment of the present invention.

【図3】反転分極配列振動子における駆動周波数と掃引
角の関係を示す図。
FIG. 3 is a diagram showing a relationship between a drive frequency and a sweep angle in an inverted polarization array oscillator.

【図4】本発明の第2の実施例である高密度短冊状振動
子の製造方法を示す斜視図。
FIG. 4 is a perspective view showing a method of manufacturing a high-density strip-shaped vibrator according to a second embodiment of the present invention.

【図5】本発明の第3の実施例である高密度複合圧電体
の製造方法を示す斜視図。
FIG. 5 is a perspective view showing a method of manufacturing a high-density composite piezoelectric body according to a third embodiment of the present invention.

【図6】従来例の超音波探触子を示す断面図。FIG. 6 is a cross-sectional view showing a conventional ultrasonic probe.

【符号の説明】[Explanation of symbols]

1…圧電体、2…櫛状振動子、3…すきま、4…すき
ま、5…短冊状振動子、6…有機物、7…複合圧電体、
8…音響支持体(バッキング)、9…電極、10…電
極、11…信号線、12…柱状振動子、13…複合櫛状
圧電体、14…複合櫛状圧電体。
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric body, 2 ... Comb-like vibrator, 3 ... Gap, 4 ... Gap, 5 ... Strip-shaped vibrator, 6 ... Organic substance, 7 ... Composite piezoelectric body,
8 ... Acoustic support (backing), 9 ... Electrode, 10 ... Electrode, 11 ... Signal line, 12 ... Columnar vibrator, 13 ... Composite comb-shaped piezoelectric body, 14 ... Composite comb-shaped piezoelectric body.

フロントページの続き (72)発明者 ナレンドラ・サングビ 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front Page Continuation (72) Inventor Narendra Sangbi 1-280, Higashi Koikekubo, Kokubunji City, Tokyo Inside Hitachi Central Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】圧電体の片面に溝を形成し多数の短冊状振
動子が片面において連結された構造を有する櫛状圧電体
を形成する工程と、この工程により形成された2個の櫛
状圧電体の凹部と凸部をはめ合わせて接着し一体構造の
圧電体とする工程と、この一体構造の圧電体の両面を研
削し短冊状振動子を形成する工程からなることを特徴と
する超音波探触子の製造方法。
1. A step of forming a comb-shaped piezoelectric body having a structure in which a groove is formed on one surface of a piezoelectric body and a large number of strip-shaped vibrators are connected on one side, and two comb-shaped bodies formed by this step. It is characterized by comprising the steps of fitting the concave and convex portions of the piezoelectric body together and adhering them to form an integral structure piezoelectric body, and grinding both sides of this integral structure piezoelectric body to form a strip-shaped vibrator. Method for manufacturing acoustic wave probe.
【請求項2】前記の溝を形成する面は、2つの前記圧電
体の同じ分極方向の面であることを特徴とする請求項1
に記載の超音波探触子の製造方法。
2. The surface forming the groove is a surface of the two piezoelectric bodies in the same polarization direction.
A method for manufacturing the ultrasonic probe described in.
【請求項3】前記短冊状振動子両面それぞれに一様電極
を設けたことを特徴とする請求項1あるいは請求項2に
記載の超音波探触子の製造方法。
3. The method of manufacturing an ultrasonic probe according to claim 1, wherein uniform electrodes are provided on both surfaces of the strip-shaped vibrator.
【請求項4】請求項3に記載の超音波探触子の製造方法
により製造された超音波探触子であって、前記一様電極
間に、バ−スト波を印加し、このバ−スト波の周波数を
掃引することにより超音波ビ−ムを走査することを特徴
とする請求項3に記載の超音波探触子。
4. An ultrasonic probe manufactured by the method for manufacturing an ultrasonic probe according to claim 3, wherein a burst wave is applied between the uniform electrodes. The ultrasonic probe according to claim 3, wherein the ultrasonic beam is scanned by sweeping the frequency of the strike wave.
【請求項5】前記溝を形成する面は、2つの前記圧電体
において異なる分極方向の面であることを特徴とする請
求項1に記載の超音波探触子の製造方法。
5. The method of manufacturing an ultrasonic probe according to claim 1, wherein the surface forming the groove is a surface having different polarization directions in the two piezoelectric bodies.
【請求項6】圧電体の片面に溝を形成し多数の短冊状振
動子が片面において連結された構造を有する櫛状圧電体
を形成する工程と、この櫛状圧電体の溝に有機物を充填
する工程と、有機物が充填された櫛状圧電体に前記溝と
は異なる方向に溝を形成する工程と、この異なる方向に
溝の形成された櫛状圧電体の凹部と凸部をはめ合わせて
接着し一体構造とする工程と、前記一体構造とされた圧
電体の両面を研削し多数の柱状振動子が有機物中に埋め
込まれた構造の複合圧電体を形成する工程からなること
を特徴とする複合圧電体からなる超音波探触子の製造方
法。
6. A step of forming a comb-shaped piezoelectric body having a structure in which a groove is formed on one side of a piezoelectric body and a large number of strip-shaped vibrators are connected on one side, and the groove of the comb-shaped piezoelectric body is filled with an organic substance. And a step of forming a groove in a comb-shaped piezoelectric body filled with an organic material in a direction different from the groove, and by fitting the concave portion and the convex portion of the comb-shaped piezoelectric body having a groove formed in the different direction. It is characterized by comprising a step of adhering to form an integrated structure and a step of grinding both surfaces of the integrated piezoelectric body to form a composite piezoelectric body having a structure in which a large number of columnar vibrators are embedded in an organic substance. A method for manufacturing an ultrasonic probe made of a composite piezoelectric material.
JP18658392A 1992-07-14 1992-07-14 Manufacture of ultrasonic wave probe Pending JPH0638297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18658392A JPH0638297A (en) 1992-07-14 1992-07-14 Manufacture of ultrasonic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18658392A JPH0638297A (en) 1992-07-14 1992-07-14 Manufacture of ultrasonic wave probe

Publications (1)

Publication Number Publication Date
JPH0638297A true JPH0638297A (en) 1994-02-10

Family

ID=16191087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18658392A Pending JPH0638297A (en) 1992-07-14 1992-07-14 Manufacture of ultrasonic wave probe

Country Status (1)

Country Link
JP (1) JPH0638297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102795A2 (en) * 2003-05-14 2004-11-25 Visualsonics, Inc. Piezoelectric composites and methods for manufacturing same
WO2014025076A1 (en) * 2012-08-08 2014-02-13 알피니언메디칼시스템 주식회사 Method for aligning composite and apparatus therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102795A2 (en) * 2003-05-14 2004-11-25 Visualsonics, Inc. Piezoelectric composites and methods for manufacturing same
WO2004102795A3 (en) * 2003-05-14 2005-01-13 Visualsonics Inc Piezoelectric composites and methods for manufacturing same
US6984284B2 (en) 2003-05-14 2006-01-10 Sunnybrook And Women's College Health Sciences Centre Piezoelectric composites and methods for manufacturing same
JP2007501529A (en) * 2003-05-14 2007-01-25 ビジュアルソニックス インコーポレイテッド Piezoelectric composite and manufacturing method thereof
JP4869932B2 (en) * 2003-05-14 2012-02-08 ビジュアルソニックス インコーポレイテッド Piezoelectric composite and manufacturing method thereof
WO2014025076A1 (en) * 2012-08-08 2014-02-13 알피니언메디칼시스템 주식회사 Method for aligning composite and apparatus therefor
KR20150037809A (en) * 2012-08-08 2015-04-08 알피니언메디칼시스템 주식회사 Method for aligning composite and apparatus therefor
JP2015530741A (en) * 2012-08-08 2015-10-15 アルピニオン メディカル システムズ カンパニー リミテッドAlpinion Medical Systems Co.,Ltd. Composite material alignment method and apparatus

Similar Documents

Publication Publication Date Title
US4671293A (en) Biplane phased array for ultrasonic medical imaging
US5164920A (en) Composite ultrasound transducer and method for manufacturing a structured component therefor of piezoelectric ceramic
US4658176A (en) Ultrasonic transducer using piezoelectric composite
US5553035A (en) Method of forming integral transducer and impedance matching layers
US5511296A (en) Method for making integrated matching layer for ultrasonic transducers
US4939826A (en) Ultrasonic transducer arrays and methods for the fabrication thereof
AU655091B2 (en) Method for making piezoelectric composites
EP0629994A2 (en) Micro-grooves for the design of wideband clinical ultrasonic transducers
JP7376008B2 (en) high frequency ultrasonic transducer
EP1384525A2 (en) Composite piezoelectric transducer and method of fabricating the same
US6489706B2 (en) Medical diagnostic ultrasound transducer and method of manufacture
JP2009082612A (en) Ultrasonic probe and piezoelectric transducer
JPS5920240B2 (en) Ultrasonic probe and method for manufacturing the ultrasonic probe
US20230415197A1 (en) Planar Phased Ultrasound Transducer Array
JPH0638297A (en) Manufacture of ultrasonic wave probe
JP2000253496A (en) Array type ultrasonic transducer and its manufacture
JPH03270282A (en) Composite piezo-electric body
JP2003333694A (en) Ultrasonic probe
JP3816596B2 (en) Ultrasonic transducer and method for manufacturing the same
Yamada et al. Broadband transducers using effectively graded piezoelectric plates for generation of short-pulse ultrasound
Shaulov et al. Biplane phased array for ultrasonic medical imaging
JP2633549B2 (en) Ultrasonic probe
JPH11146492A (en) Ultrasonic probe
Olbrish et al. Physical apodization of ultrasonic arrays
JPH0576527A (en) Production of ultrasonic probe and composite piezoelectric oscillator used for the probe