JPH0638073B2 - Soil moisture measuring device - Google Patents

Soil moisture measuring device

Info

Publication number
JPH0638073B2
JPH0638073B2 JP60073538A JP7353885A JPH0638073B2 JP H0638073 B2 JPH0638073 B2 JP H0638073B2 JP 60073538 A JP60073538 A JP 60073538A JP 7353885 A JP7353885 A JP 7353885A JP H0638073 B2 JPH0638073 B2 JP H0638073B2
Authority
JP
Japan
Prior art keywords
soil moisture
sensor
moisture measuring
temperature
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60073538A
Other languages
Japanese (ja)
Other versions
JPS61233350A (en
Inventor
辰昭 粕淵
Original Assignee
農林水産省農業環境技術研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 農林水産省農業環境技術研究所長 filed Critical 農林水産省農業環境技術研究所長
Priority to JP60073538A priority Critical patent/JPH0638073B2/en
Publication of JPS61233350A publication Critical patent/JPS61233350A/en
Publication of JPH0638073B2 publication Critical patent/JPH0638073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 本発明は土壌中の水分量の測定装置に関するものであ
り、より詳しくは双子型非定常加熱プローブ法により土
壌の熱伝導率を計測することにより該土壌の水分量を測
定するための新規な装置に関するものである。
The present invention relates to a device for measuring the amount of water in soil, and more specifically to measuring the amount of water in the soil by measuring the thermal conductivity of the soil by the twin unsteady heating probe method. It relates to a new device for measuring.

現在、土壌中の水分量に対する経時的測定装置は極めて
広範囲に要望されている。従来この目的のためには、テ
ンシオメーターによる土壌水ポテンシャル測定装置、電
気抵抗式測定装置、中性子水分計、ガンマー線水分計な
どが考案され試用されている。
Currently, there is an extremely widespread demand for a device for measuring the amount of water in soil over time. Conventionally, for this purpose, a soil water potential measuring device using a tensiometer, an electric resistance measuring device, a neutron moisture meter, a gamma ray moisture meter, etc. have been devised and tested.

しかしながら、これらのうち、テンシオメーターによる
方法は、安価ではあるが、水分測定範囲が狭く、かつ応
答が遅く、保守に時間を要し、精度は必ずしも高くな
い。電気抵抗による方法は、安価であり保守は容易であ
るが、精度は極めて低い。中性子水分計およびガンマー
線水分計は比較的精度は高いが高価であり、かつ放射線
を用いることによる取扱上の制限があるため、圃場等の
現場で容易にい用いることはできない。
However, among these methods, the tensiometer method is inexpensive, but has a narrow moisture measurement range, a slow response, requires time for maintenance, and is not necessarily high in accuracy. The electric resistance method is inexpensive and easy to maintain, but its accuracy is extremely low. A neutron moisture meter and a gamma ray moisture meter are relatively accurate but expensive, and cannot be easily used in a field such as a field because they are limited in handling due to the use of radiation.

このように、今日まで国内はもとより外国においても、
精度が高くかつ容易に利用できる水分計はなく、各方面
から、応答性迅速、保守容易で価格も余り高くないとい
う装置が久しく要望されていたものである。
In this way, not only in Japan but also in foreign countries,
There has been no moisture meter that is highly accurate and easy to use, and there has been a long-felt demand for a device that has quick response, is easy to maintain, and is not too expensive.

このような要望に応えるべく本発明者は研究を重ねた結
果、従来とは全く異なる原理を用いることにより、既存
の計測法の欠点を克服した高精度で実用に耐える新規な
土壌水分計を開発した。これにより、圃場における土壌
水分量の自動計測、かんがいの自動化、環境保全のため
の土壌水分のモニタリング、防災−例えば土砂崩壊の予
知−等に広く利用可能となった。
As a result of repeated research by the present inventors in order to meet such a demand, a novel soil moisture meter that overcomes the shortcomings of the existing measurement methods and is highly accurate and practical can be developed by using a completely different principle from the conventional one. did. As a result, it can be widely used for automatic measurement of soil moisture content in fields, automation of irrigation, monitoring soil moisture for environmental conservation, disaster prevention-for example, prediction of sediment collapse.

本発明の土壌水分計は、土壌の熱伝導率が土壌水分量と
高い相関関係をもつことに着目し、土壌中に埋設した土
壌熱伝導率測定用の双子型非定常プローブを用いて短時
間に熱伝導率を測定し、別途、予め測定した土壌水分−
熱伝導率の関係式または曲線から校正変換し、土壌水分
を求めうるようにしたことを特徴とする。
The soil moisture meter of the present invention focuses on the fact that the thermal conductivity of soil has a high correlation with the soil moisture content, and uses a twin-type unsteady probe for soil thermal conductivity measurement buried in the soil for a short time. The thermal conductivity was measured and the soil water content was
It is characterized in that it is possible to obtain soil moisture by performing calibration conversion from a relational expression or curve of thermal conductivity.

まず、本発明の測定装置の原理について概略述べると、
最初時間t=0の時に温度T0 の無限個体中における線
熱源から単位時間に一定発熱qがある場合の該線熱源の
t時間後における温度Tと先のT0 との温度差は次式の
如く対数を含んだ式で表されることが知られている。
First, when the principle of the measuring apparatus of the present invention is briefly described,
When a constant heat generation q is generated in a unit time from a linear heat source in an infinite individual having a temperature T 0 at the time t = 0, the temperature difference between the temperature T of the linear heat source after t hours and the previous T 0 is expressed by the following equation. It is known that it is expressed by an equation including a logarithm.

ただし、上式中λは個体の熱伝導率、d は定数、εは式
の簡略化のための補正項である。
However, in the above equation, λ is the thermal conductivity of the individual, d is a constant, and ε is a correction term for simplifying the equation.

この線熱源による発熱をtx 時間まで続け、その時間で
発熱を停止した後の該線熱源の温度TとT0 との温度差
はまた次式の如くに表されている。
The temperature difference between the temperature T and T 0 of the linear heat source after continuing the heat generation by the linear heat source until t x time and stopping the heat generation at that time is also expressed by the following equation.

次ぎに熱伝導率がそれぞれλa 、λb の如く異なる2種
類の無限個体AとBとがあり、これら各個体中において
全く相似な線熱源から同時に発熱が開始されたとする
と、両個体中において上記(1)式および(2)式がともに同
じように成立ち、しかも定数dよび補正項εは同じであ
ると見てよいから、AおよびB個体中の各線熱源の温度
をTa,Tbとすると、線熱源が発熱してからその発熱が停
止するまでの tx時間、およびそれに続く発熱停止後に
おいても、両個体中における温度変化 Ta−T0aと Tb
−T0bとの比をとると次式の如くλb/λaに等しくなる
ことが分かる。
Next, there are two types of infinite individuals A and B, which have different thermal conductivities such as λ a and λ b , respectively. In each of these individuals, if heat generation is started simultaneously from completely similar linear heat sources, then in both individuals, (1) and (2) is holds together the same, yet constant d preliminary correction term ε is because it sees the same, the temperature of each line heat source in the a and B individuals T a, T When b, t x time from the heat generation line heat source until the heat generation is stopped, and even heat generation stop after subsequent temperature change T a -T 0a and T b during both the individual
It can be seen that the ratio with −T 0b is equal to λ b / λ a as in the following equation.

(Ta-T0a)/(Tb-T0b)=λb/λa・・(3) ただし、温度差〔(Ta-T0a),(Tb-T0b)〕を大きくする
と土壌中の水分の対流などが起こり、前記(1),(2)およ
び(3)式は適用できなくなるので、温度差は1℃前後に
なるようqを設定する必要がある。また txも、温度変
化に合わせて短時間に設定される。
(T a -T 0a ) / (T b -T 0b ) = λ b / λ a · (3) However, if the temperature difference [(T a -T 0a ), (T b -T 0b )] is increased Since the convection of moisture in the soil occurs and the above equations (1), (2) and (3) cannot be applied, it is necessary to set q so that the temperature difference is around 1 ° C. Also, t x is set in a short time according to the temperature change.

(3)式から、A,B両個体の内何れか一方の熱伝導率が既知
ならば他方のものの熱伝導率は容易に測知しうることに
なる。たとえば、bが既知ならば未知量aは次式で与え
られる。
From the equation (3), if the thermal conductivity of either one of the A and B individuals is known, the thermal conductivity of the other one can be easily measured. For example, if b is known, the unknown quantity a is given by the following equation.

このような温度上昇または降下による温度差の比はX−
Y記録器により記録することができる。すなわち、(Ta-
T0a)と(Tb-T0b)が記録器のY軸およびX軸上にそれぞ
れ記録されるとこれらの軌跡が直線として表示され、そ
の傾斜により比が直ちに求まる。また、あるいはマイク
ロコンピュータを用いて、ヒータ電源の入切操作、温度
差の計測、熱伝導率の計算等を自動的に行わせることも
できる。
The ratio of the temperature difference due to such temperature rise or fall is X-
It can be recorded by a Y recorder. That is, (T a-
When T 0a ) and (T b -T 0b ) are recorded on the Y-axis and the X-axis of the recorder, respectively, these trajectories are displayed as straight lines, and the inclination gives the ratio immediately. Alternatively, a microcomputer may be used to automatically perform on / off operation of the heater power supply, measurement of temperature difference, calculation of thermal conductivity, and the like.

実際の測定にあたっては、式(1)と式(2)とによる測定値
が一致しない場合が生じる。これは、物質A,Bのいず
れか又は両者が測定中にヒータ以外の原因で微少な温度
変化するためである。この場合、(1),(2)の両者による
測定を行い、各々について(4)式で得た値を平均化する
ことにより正しい値を得ることができる。
In actual measurement, there are cases where the measured values obtained by the equations (1) and (2) do not match. This is because one or both of the substances A and B undergo a slight temperature change due to causes other than the heater during measurement. In this case, a correct value can be obtained by performing measurements by both (1) and (2) and averaging the values obtained by equation (4) for each.

双子型非定常プローブ法は単一の非定常プローブ法に比
較して、(1),(2)各式中の対数項を消去でき、原理も操
作も極めて簡単となるので、極めて短時間に迅速に施行
しうる上に、±1%の精度で熱伝導率を測定することが
でき、はるかに優れていることが明らかである。
Compared with the single non-stationary probe method, the twin type non-stationary probe method can eliminate the logarithmic term in each equation (1) and (2), and the principle and operation are extremely simple. In addition to being quick to perform, the thermal conductivity can be measured with an accuracy of ± 1%, which is clearly superior.

上記の如き原理に基づいて土壌中の水分を測定するため
に用いる本発明の土壌中の水分測定装置は、(i)細長
い金属パイプ内に、それぞれ絶縁被覆した加熱用電線お
よび測温用電気抵抗線を封入固定した加熱兼測温用プロ
ーブと、該プローブ上端に該プローブの加熱用電線およ
び測温用電気抵抗線を外部付設機器に接続するための結
線部を包囲する管状部材を装着し、該管状部材内の結線
部に該プローブの測温用電気抵抗線と同じ材質で同じ抵
抗値を有する電気抵抗線を熱伝導性良好な金属芯に巻き
つけた比較温度設定のための標準抵抗装置を設けた土壌
水分測定用センサーおよび(ii)該土壌水分測定用セン
サーと実質的に全く同じセンサーを円筒体中央部に収納
固定し、その円筒体内に基準物質を充填した基準センサ
ー、とより主としてなり、これら両センサーを同時に通
電発熱せしめるための直流可変安定化電源、該発熱の開
始および停止後におけるセンサーの温度変化を測定する
ための電気抵抗測定用機器、およびこれら両センサーの
温度変化を記録する機器を付設したことを特徴とする熱
伝導測定による土壌水分測定装置である。
The apparatus for measuring water content in soil according to the present invention, which is used to measure water content in soil based on the above-described principle, includes (i) a thin metal pipe, an electric wire for heating and an electric resistance for temperature measurement, each of which is insulated and coated. A heating and temperature measuring probe in which a wire is encapsulated and fixed, and a tubular member surrounding a wire connecting portion for connecting an electric wire for heating and an electric resistance wire for temperature measurement of the probe to the upper end of the probe is attached, A standard resistance device for setting a comparative temperature, in which an electric resistance wire made of the same material as the temperature measurement electric resistance wire of the probe and having the same resistance value is wound around a wire core in the tubular member around a metal core having good thermal conductivity. And (ii) a reference sensor in which a sensor substantially the same as the soil moisture measurement sensor is stored and fixed in the center of the cylinder, and the reference substance is filled in the cylinder. age The DC variable stabilized power supply for energizing and heating both of these sensors at the same time, the electrical resistance measuring device for measuring the temperature change of the sensor after the start and stop of the heat generation, and the temperature change of both sensors are recorded. An apparatus for measuring soil moisture by measuring heat conduction, characterized by being equipped with a device that

以下、図面を参照して本発明を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図および第2図はいずれも本発明の土壌中の水分測
定装置を図式的に示す説明図であり、土壌水分測定用セ
ンサーおよび基準センサーの温度変化を読み取り必要な
変換作業を行う装置として第1図に示す装置ではX−Y
記録器、第2図に示す装置では所定のプログラムを組み
込んだコンピュータを用いている。図において1は土壌
水分測定用センサー、2は基準センサー、3は直流可変
安定化電源、4は抵抗測定器、5はX−Y記録器、6は
A/D変換器、7はリレー切換器、8はマイクロコンピ
ュータ、である。これらの機器は1および2のそれぞれ
土壌水分測定用センサーおよび基準センサーを除いてい
ずれも適当な公知のものを用いることができる。
FIG. 1 and FIG. 2 are both explanatory views schematically showing the moisture measuring device in soil of the present invention, which is a device for reading the temperature change of the soil moisture measuring sensor and the reference sensor and performing the necessary conversion work. In the device shown in FIG. 1, X-Y
The recorder, the apparatus shown in FIG. 2, uses a computer incorporating a predetermined program. In the figure, 1 is a soil moisture measuring sensor, 2 is a reference sensor, 3 is a DC variable stabilizing power supply, 4 is a resistance measuring device, 5 is an XY recorder, 6 is an A / D converter, and 7 is a relay switch. , 8 is a microcomputer. Appropriate known devices can be used for these devices except for the sensors for soil moisture measurement and the reference sensor 1 and 2, respectively.

第3図は従来の土壌水分測定用センサーの中央縦断面図
である。このセンサーでは一端を閉じた内径 0.5mm、肉
圧0.25mm、長さ20cmのステンレス製の管状パイプ9の中
に、それぞれ温度測定用抵抗線および加熱用電線として
抵抗値40Ωの絶縁被覆した白金線10と同じく絶縁被覆し
たマンガニン抵抗線11を、パラフィン12を充填すること
によって固定してある。これらの線の両端は金属パイプ
の開放端より外部に取り出して他の機器との接続のため
の電線に結線してある。温度測定用抵抗線の抵抗値は必
ずしも40Ωでなくともよい。またその材質は白金線の他
例えばニッケル線を用いることも出来る。加熱用電線と
してはマンガニン抵抗線のほかに例えばコンスタンタン
線を用いてもよい。
FIG. 3 is a central longitudinal sectional view of a conventional soil moisture measuring sensor. In this sensor, a stainless steel tubular pipe 9 with an inner diameter of 0.5 mm, a wall pressure of 0.25 mm, and a length of 20 cm is closed, and a platinum wire with insulation resistance of 40 Ω is used as a resistance wire for temperature measurement and a heating wire, respectively. A manganin resistance wire 11 that is insulation-coated as in 10 is fixed by filling it with paraffin 12. Both ends of these wires are taken out from the open ends of the metal pipes and connected to electric wires for connection with other devices. The resistance value of the resistance wire for temperature measurement does not necessarily have to be 40Ω. Further, the material thereof may be platinum wire, for example, nickel wire. As the heating wire, for example, a constantan wire may be used in addition to the manganin resistance wire.

土壌水分測定用センサーに用いる金属製パイプは機能上
熱伝導率の大きいものが好ましく、また土壌中に埋設し
て使用する関係上耐蝕性に優れたものが好ましい。例え
ばその代表的なものはステンレスステイールである。
It is preferable that the metal pipe used for the sensor for measuring soil moisture has a large thermal conductivity in view of function and a pipe excellent in corrosion resistance because it is embedded in soil and used. A typical example is stainless steel.

温度測定用抵抗線および加熱用電線を固定するための充
填剤としては例えばパラフィンのように電気絶縁性のも
のであれば特に制限はない。
The filler for fixing the resistance wire for temperature measurement and the electric wire for heating is not particularly limited as long as it is an electrically insulating material such as paraffin.

温度測定用抵抗線および加熱用電線はシールド付6芯ケ
ーブル13と結線されて外部付設機器へ接続されており、
その結線部は金属製パイプ9の開放端に取りつけた合成
樹脂製の管状部材14内に収納し、該管状部材14は外部に
対して充填接着剤15等により密閉してある。
The resistance wire for temperature measurement and the electric wire for heating are connected to the shielded 6-core cable 13 and connected to external equipment.
The wire connection portion is housed in a synthetic resin tubular member 14 attached to the open end of the metal pipe 9, and the tubular member 14 is sealed to the outside with a filling adhesive 15 or the like.

土壌水分測定用センサーは線熱源に代わるものであるか
ら出来るだけ細く、外径が1mm程度が好ましいが、強度
との関連もありそれよりも幾分太くすることもある。し
かしあまり太いと測定精度が低くなるので太くても外径
2mm程度以下にすべきである。
The sensor for soil moisture measurement is as thin as possible because it replaces the linear heat source, and preferably has an outer diameter of about 1 mm, but it may be somewhat thicker than that due to its strength. However, if it is too thick, the measurement accuracy will be low, so even if it is thick, the outer diameter should be about 2 mm or less.

第4図は、本発明に係わる土壌水分測定装置に用いられ
る土壌水分測定用センサーを示し、第3図に示した土壌
水分測定用センサーの結線部に、測温用電気抵抗線と同
じ材質で同じ抵抗値を有する電気抵抗線を熱伝導性良好
な金属芯に巻きつけた比較温度設定のための標準抵抗装
置16を設けたものである。土壌中の水分測定のためには
機能的には第3図に示す土壌水分測定用センサーで十分
であるが、さらに第4図の如き比較温度設定のための標
準抵抗装置を用いることによってセンサーの温度変化の
読み取りが容易になり、第3図に示す土壌水分測定用セ
ンサーを用いる場合に比べて他の付設機器に廉価な従っ
て程度の低い機器を用いても同程度の精度で測定値を得
ることが出来る。
FIG. 4 shows a soil moisture measuring sensor used in the soil moisture measuring device according to the present invention, and the same material as the temperature measuring electric resistance wire is used in the connection portion of the soil moisture measuring sensor shown in FIG. A standard resistance device (16) for setting a comparative temperature in which an electric resistance wire having the same resistance value is wound around a metal core having good thermal conductivity is provided. Although the sensor for soil moisture measurement shown in FIG. 3 is functionally sufficient for measuring moisture in soil, the sensor can be used by using a standard resistance device for setting a comparative temperature as shown in FIG. The temperature change is easy to read, and compared with the case of using the soil moisture measurement sensor shown in Fig. 3, other attached equipment is cheaper and therefore measurement values can be obtained with the same accuracy even if a low-grade equipment is used. You can

第5図には基準センサー17を示す。このセンサーは内径
5cm、肉厚5mm、長さ25cmのアクリル樹脂製の円筒体18
の中央部に第4図の土壌水分測定用センサーと全く同
じ構造のプローブ2の結線部を収納した合成樹脂製の管
状部材14をゴム栓20の一方に固定することにより固着し
てある。円筒体には基準物質として1%寒天ゲルを封入
してある。
The reference sensor 17 is shown in FIG. This sensor is an acrylic resin cylinder with an inner diameter of 5 cm, a wall thickness of 5 mm, and a length of 25 cm.
A tubular member 14 made of synthetic resin having a wire connection portion of the probe 2 having the same structure as the soil moisture measuring sensor shown in FIG. A 1% agar gel is enclosed as a reference substance in the cylindrical body.

基準用センサーの円筒体は基準物質を出来るだけ多く容
れることが出来るのが好ましく、その意味では円筒体は
大きいほうがよいことになるが、必要以上に大きいと土
壌中に埋設する装置としての機動性を制約することにな
る。従って、本発明の水分測定装置が必要とする精度の
測定値を得るためには外径1mm程度の土壌水分測定用セ
ンサーを収容する場合、内径が5cm程度あれば必要かつ
十分である。
It is preferable that the cylindrical body of the reference sensor can contain as much of the reference material as possible, and in that sense it is better that the cylindrical body is larger, but if it is larger than necessary, mobility as a device to be buried in soil Will be constrained. Therefore, in order to obtain a measurement value of accuracy required by the moisture measuring apparatus of the present invention, when accommodating a soil moisture measuring sensor having an outer diameter of about 1 mm, an inner diameter of about 5 cm is necessary and sufficient.

また、この円筒体の材質は熱伝導率が小さくある程度の
強度を有するものが好ましい。合成樹脂であればアクリ
ル樹脂に限らず他のどのような合成樹脂でも用いること
が出来、強度的な条件を充足できるものであれば合成樹
脂発泡体は最も好ましいものである。また合成樹脂以外
のものを用いてもよいことは勿論である。
Further, the material of the cylindrical body is preferably one having a small thermal conductivity and a certain strength. As long as it is a synthetic resin, not only acrylic resin but also any other synthetic resin can be used, and synthetic resin foam is the most preferable as long as it can satisfy the strength condition. Needless to say, materials other than synthetic resins may be used.

この基準センサーに用いる基準物質としては測定精度を
高めるために、熱伝導率の値が既に正確に求められてお
りかつ土壌の熱伝導率にできる限り近い熱伝導率を有
し、温度差が生じたときに対流が生じない物質が好まし
い。例えば、水は精度の高い熱伝導率の値が知られてお
り、かつ、入手が容易で土壌の熱伝導率に近い値である
ことなどから、基準物質としての利用が期待される。し
かし、常温で液体であり、温度差があると対流を生じ、
この点で基準物質として不適である。この欠点を取り除
くため、水の熱伝導率が変わらない程度の少量の物質を
溶解させ水の対流を妨げることができれば、基準物質と
して用いることができる。濃度1%程度の寒天ゲルは、
最も好ましいものの一つである。
As a reference substance used for this reference sensor, in order to improve the measurement accuracy, the value of thermal conductivity has already been calculated accurately and has a thermal conductivity as close as possible to the thermal conductivity of soil, causing a temperature difference. A substance that does not generate convection when exposed to light is preferable. For example, water is known to have a highly accurate thermal conductivity value, is easily available, and has a value close to that of soil. Therefore, it is expected to be used as a reference substance. However, it is a liquid at room temperature, and if there is a temperature difference, convection will occur,
In this respect, it is unsuitable as a reference substance. In order to eliminate this drawback, if a small amount of substance that does not change the thermal conductivity of water can be dissolved to prevent convection of water, it can be used as a reference substance. Agar gel with a concentration of about 1%
It is one of the most preferable.

土壌水分測定用センサーと基準センサーとは必ずしも長
さを同じにする必要はなく、長さの異なる場合にはどち
らが長くてもよい。
The soil moisture measuring sensor and the reference sensor do not necessarily have to have the same length, and when the lengths are different, either one may be longer.

次ぎに本発明の土壌中の水分測定装置の作動について説
明する。
Next, the operation of the apparatus for measuring moisture in soil according to the present invention will be described.

まず現地の圃場において水分を測定しようとする土壌中
所望の深度において土壌水分測定用センサーを水平(も
しくは特別な場合は垂直)にして埋設し、一方基準セン
サーは土壌水分測定用センサーと同一深度でかつそれよ
り30cm以上間隔をおいて埋設する。ただしコンピュータ
制御により一度に数点を同時に計測する場合は、最も深
部に設置した基準センサー一点のみを共通に用いること
もできる。次ぎに、基準物質およ被検土壌用の各センサ
ーに同時に直流可変安定化電源から通電する。この時の
供給電圧は通電開始後約3分でプローブの温度上昇が1
℃内外になるよう前もって調整しておく。通電と同時に
両センサーの測温用電気抵抗線の抵抗値の測定を開始
し、通電停止後もこれを継続する。通電時間は通常約3
分であり、抵抗測定時間はこの通電時間の約2倍であ
る。X−Y記録器を用いた場合にX−Y記録器の描く線
状の形状は第6図のような一般的特色を示す。すなわ
ち、発熱開始ならびに停止の初期を除き直線となる。こ
の2直線の傾斜の算術平均から両センサーの温度変化の
比を求めることができる。
First, the soil moisture sensor is embedded horizontally (or vertically in special cases) at the desired depth in the soil where the moisture is to be measured in the field, while the reference sensor is at the same depth as the soil moisture sensor. And it will be buried at a distance of 30 cm or more. However, when several points are simultaneously measured by computer control, only one reference sensor installed at the deepest position can be used in common. Next, the reference material and each sensor for the soil to be tested are simultaneously energized from the DC variable stabilizing power supply. The supply voltage at this time is about 3 minutes after the start of energization and the temperature rise of the probe is 1
Adjust in advance to keep the temperature inside or outside. Simultaneously with the energization, measurement of the resistance value of the temperature measurement electric resistance wire of both sensors is started, and this continues even after the energization is stopped. Energization time is usually about 3
The resistance measurement time is about twice this energization time. When the XY recorder is used, the linear shape drawn by the XY recorder has a general feature as shown in FIG. That is, it becomes a straight line except at the beginning of heat generation and the initial stage of stop. From the arithmetic mean of the slopes of these two straight lines, the ratio of temperature change of both sensors can be obtained.

この比の値を(4)式中のbに前記水の熱伝導率を代入す
れば、土壌の熱伝導率はaとしてただちに算出できる。
別に第7図のごとく土壌の熱伝導率と水分との関係を予
め調べておけば以後随時該土壌中の水分の経時的測定が
可能となる。
By substituting the thermal conductivity of water for b in the equation (4), the thermal conductivity of soil can be immediately calculated as a by using the value of this ratio.
Separately, as shown in FIG. 7, if the relationship between the thermal conductivity of the soil and the water content is previously investigated, the water content in the soil can be measured with time.

実験例 外径1mm、内径0.5mm、長さ20cmのステンレスステイー
ルチューブに加熱用電線として絶縁被覆した0.1mm中の
コンスタンタン線40cm(電気抵抗値約40Ω)及び測温用
電気抵抗線として絶縁被覆した0.03mmφのニッケル線4
0cm(電気抵抗値約40Ω)とを封入し、パラフィンを充
填して該電線を固定したプローブを第3図のように6芯
シールド線と結線し、結線部分を保護するためにプロー
ブ上端に外径10mmのアクリル製管状部材を装着し、更
に、結線部の管状部材内に外径3mm長さ25mmの黄銅に、
プローブに封入したものと同じニッケル線を同じ長さ
(40cm)まきつけ比較温度設定用の標準抵抗装置とした
ものを付属させた土壌水分測定用センサーを7本作成し
た。このうちの1本を用いて基準センサーを作成した。
即ち、外径60mm、内径50mm、長さ25mmの透明アク
リルパイプの一端をゴム栓で封じ、この中に1%寒天水
溶液を流し込み、さらに残る一端も中央部に10mmの穴を
あけたゴム栓でアクリルパイプ中に空気が入らないよう
に封じ、このゴム栓の穴の中に上記土壌水分測定用セン
サーを挿入固定して基準センサーを作成した。これらの
センサーを第1図のごとく他の機器と接続した。
Experimental example Stainless steel tube with outer diameter of 1 mm, inner diameter of 0.5 mm, and length of 20 cm is insulation-coated as a heating wire with a constantan wire of 40 cm (electrical resistance value of about 40 Ω) in 0.1 mm and with an insulation coating as an electric resistance wire for temperature measurement. 0.03mmφ nickel wire 4
Seal the probe with 0 cm (electrical resistance of about 40 Ω), fill it with paraffin and fix the wire, and connect it to the 6-core shield wire as shown in Fig. 3, and attach it to the upper end of the probe to protect the connection part. Acrylic tubular member with a diameter of 10 mm is attached, and further, in the tubular member of the connection part, brass with an outer diameter of 3 mm and a length of 25 mm,
Seven sensors for soil moisture measurement were prepared by attaching the same nickel wire as the one enclosed in the probe and wrapping it with the same length (40 cm) as a standard resistance device for setting the comparative temperature. A reference sensor was created using one of these.
That is, one end of a transparent acrylic pipe having an outer diameter of 60 mm, an inner diameter of 50 mm, and a length of 25 mm is sealed with a rubber stopper, 1% agar solution is poured into the transparent acrylic pipe, and the remaining end is also a rubber stopper having a 10 mm hole in the center. The acrylic pipe was sealed so that air could not enter, and the above-mentioned soil moisture measuring sensor was inserted and fixed in the hole of this rubber stopper to prepare a reference sensor. These sensors were connected to other devices as shown in FIG.

土壌水分測定用センサーを基準センサーに用いたと同じ
1%寒天ゲル中に入れたのち、直流可変安定化電源の電
圧を5.0Vに設定し、3分間通電し、通電中および通
電停止後の両プローブの温度変化をX−Y記録器により
記録した。それを第6図に示す。通電初期および通電停
止直後以外は直線的な変化が明確であり、通電中および
通電停止後の直線の勾配は各々0.995,0.980であり、平
均 0.99であった。勾配は、理論的には同一物質を測定
しているため1.0 でなければならないが、実際には1〜
2%程度の範囲内でセンサー間に出力の相違がみられ
る。これは、センサーを作成するときに生じる不可避的
な相違を反映している。実際の熱伝導率の計算において
は、この値の逆数を各センサーごとに決定し、これを計
器係数として実測した勾配に乗ずることにより補正す
る。これらセンサーを用いて圃場の水分変化をみるため
に、実際の圃場に埋設し測定した。圃場は茨城県筑波郡
谷田部町の農林水産省農業環境技術研究所D圃場であ
る。土壌水分測定用センサーは表面より5,10,20,3
0,40,50cmの深さに水平に埋設し、基準センサーは 50
cmの深さに被検土壌用センサーより約50cm離れた位置
に埋設した。これらのセンサーを用い、30分ごとに第2
図に示したマイクロコンピュータを用いて自動計測を行
った。得られた結果の一部を第8図に示す。第8図中の
番号は、センサーの番号であり、番号1は深さ 50 cmの
センサーを示し順次浅い位置のセンサーを示す。測定初
日から次ぎの日にかけて約 30 mmの降雨があったが、浅
い層から徐々に水分が増加する様子が明らかに観察され
る。これから明らかなように、土壌の水分測定用センサ
ーとして十分な精度を有していることがわかる。
After putting the sensor for soil moisture measurement in the same 1% agar gel used as the reference sensor, set the voltage of the DC variable stabilizing power supply to 5.0 V, energize for 3 minutes, and both during energization and after de-energization. The temperature change of the probe was recorded by an XY recorder. It is shown in FIG. The linear changes were clear except at the beginning of energization and immediately after the de-energization, and the slopes of the straight lines during energization and after de-energization were 0.995 and 0.980, respectively, with an average of 0.99. The slope should theoretically be 1.0 because the same substance is measured, but in practice
There is a difference in output between the sensors within the range of about 2%. This reflects the inevitable differences that occur when making the sensor. In the actual calculation of the thermal conductivity, the reciprocal of this value is determined for each sensor, and this is corrected by multiplying the measured gradient as the instrument coefficient. In order to check the water content change in the field using these sensors, it was buried in the actual field and measured. The field is Field D, Ministry of Agriculture, Forestry and Fisheries National Institute for Agro-Environmental Sciences, Yatabe-cho, Tsukuba-gun, Ibaraki Prefecture. Sensors for soil moisture measurement are 5, 10, 20, 3 from the surface
It is buried horizontally at a depth of 0, 40, 50 cm and the reference sensor is 50
It was embedded at a depth of about 50 cm away from the soil sensor to be tested. With these sensors, the second every 30 minutes
Automatic measurement was performed using the microcomputer shown in the figure. Part of the obtained results is shown in FIG. The numbers in FIG. 8 are the numbers of the sensors, and the number 1 indicates the sensor with a depth of 50 cm, which indicates the sensors at shallower positions. Although there was about 30 mm of rainfall from the first day of measurement to the next day, it is clearly observed that water gradually increases from the shallow layer. As is clear from this, it can be seen that the sensor has sufficient accuracy as a soil moisture measurement sensor.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本発明の土壌の水分測定装置を図
式的に示す説明図、第3図は、従来の土壌水分測定用セ
ンサーの中央縦断図、第4図は本発明の土壌の水分測定
装置に用いる土壌水分測定用センサーの中央縦断面図、
第5図は本発明の土壌の水分測定装置に用いる基準セン
サーの中央縦断面図、第6図は本発明の装置の土壌水分
測定用センサーおよび基準センサーに通電した時の通電
前後にわたっての両センサーの温度変化の比をX−Y記
録器により読み取った記録の模式図、第7図は土壌の熱
伝導率と水分率の関係を示すグラフ、第8図は圃場の水
分量の経時的測定結果を示すグラフである。
1 and 2 are explanatory views schematically showing a soil moisture measuring device of the present invention, FIG. 3 is a central longitudinal section of a conventional soil moisture measuring sensor, and FIG. 4 is a diagram showing the soil of the present invention. A central longitudinal cross-sectional view of a soil moisture measuring sensor used in a moisture measuring device,
FIG. 5 is a central longitudinal sectional view of a reference sensor used in the soil moisture measuring apparatus of the present invention, and FIG. 6 is both sensors before and after energization when the soil moisture measuring sensor and the reference sensor of the apparatus of the present invention are energized. Fig. 7 is a schematic diagram of the record obtained by reading the ratio of the temperature change of the soil with an XY recorder, Fig. 7 is a graph showing the relationship between the thermal conductivity of soil and the moisture content, and Fig. 8 is the measurement result of the moisture content in the field over time. It is a graph which shows.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】(i)細長い金属パイプ内に、それぞれ絶
縁被覆した加熱用電線および測温用電気抵抗線を封入固
定した加熱兼測温用プローブと、該プローブの上端に該
プローブの加熱用電線および測温用電気抵抗線を外部付
設機器に接続するための結線部を包囲する管状部材を装
着し、該管状部材内の結線部に該プローブの測温用電気
抵抗線と同じ材質で同じ抵抗値を有する電気抵抗線を熱
伝導性良好な金属芯に巻きつけた比較温度設定のための
標準抵抗装置を設けた土壌水分測定用センサー、および
(ii)該土壌水分測定用センサーと実質的に全く同じ
センサーを円筒体中央部に収納固定し、その円筒体内に
基準物質を充填した基準センサー、 とより主としてなり、これら両センサーを同時に通電発
熱せしめるための直流可変安定化電源、該発熱の開始お
よび停止後におけるセンサーの温度変化を測定するため
の電気抵抗測定用機器、およびこれら両センサーの温度
変化を記録する機器を付設したことを特徴とする熱伝導
測定による土壌水分測定装置。
(I) A heating and temperature-measuring probe in which a heating electric wire and an electric resistance wire for temperature measurement, which are respectively insulated and coated, are enclosed and fixed in an elongated metal pipe, and for heating the probe at the upper end of the probe. A tubular member surrounding a connecting portion for connecting the electric wire and the electric resistance wire for temperature measurement to an externally attached device is mounted, and the connecting material in the tubular member is made of the same material as that of the electric resistance wire for temperature measurement of the probe. A soil moisture measuring sensor provided with a standard resistance device for setting a comparative temperature, in which an electric resistance wire having a resistance value is wound around a metal core having good thermal conductivity, and (ii) the soil moisture measuring sensor and It is mainly composed of a reference sensor in which the same sensor is housed and fixed in the center of the cylinder, and the reference material is filled in the cylinder, and a DC variable stabilized power supply for energizing and heating both of these sensors at the same time. A device for measuring electrical resistance for measuring temperature changes of the sensor after starting and stopping the heat generation, and a device for recording temperature changes of both sensors, the soil moisture measuring device by thermal conductivity measurement. .
【請求項2】該土壌水分測定用センサーの金属パイプが
ステンレスステイール製である特許請求の範囲第1項の
土壌水分測定装置。
2. The soil moisture measuring device according to claim 1, wherein the metal pipe of the soil moisture measuring sensor is made of stainless steel.
【請求項3】該土壌水分測定用センサーの金属パイプの
内径が約 0.5mm以上、外径が約1mm以上、および長さが
約5cm以上である特許請求の範囲第1項の土壌水分測定
装置。
3. The soil moisture measuring device according to claim 1, wherein the metal pipe of the soil moisture measuring sensor has an inner diameter of about 0.5 mm or more, an outer diameter of about 1 mm or more, and a length of about 5 cm or more. .
【請求項4】該基準センサーの円筒体の内径が5cm以上
である特許請求の範囲第1項の土壌水分測定装置。
4. The soil moisture measuring device according to claim 1, wherein the cylindrical body of the reference sensor has an inner diameter of 5 cm or more.
【請求項5】該基準物質が1%寒天ゲルである特許請求
の範囲第1項の土壌水分測定装置。
5. The soil moisture measuring device according to claim 1, wherein the reference substance is 1% agar gel.
【請求項6】該基準センサーの円筒体がアクリル樹脂製
である特許請求の範囲第1項の土壌水分測定装置。
6. The soil moisture measuring device according to claim 1, wherein the cylindrical body of the reference sensor is made of acrylic resin.
【請求項7】両センサーの温度変化を記録する機器がX
−Y記録器である特許請求の範囲第1項の土壌水分測定
装置。
7. A device for recording the temperature change of both sensors is X.
A soil moisture measuring device according to claim 1, which is a Y recorder.
【請求項8】両センサーの温度変化を記録する機器がマ
イクロコンピューターを付属したデーターロガーである
特許請求の範囲第1項の土壌水分測定装置。
8. The soil moisture measuring device according to claim 1, wherein the device for recording the temperature change of both sensors is a data logger equipped with a microcomputer.
JP60073538A 1985-04-09 1985-04-09 Soil moisture measuring device Expired - Lifetime JPH0638073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60073538A JPH0638073B2 (en) 1985-04-09 1985-04-09 Soil moisture measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60073538A JPH0638073B2 (en) 1985-04-09 1985-04-09 Soil moisture measuring device

Publications (2)

Publication Number Publication Date
JPS61233350A JPS61233350A (en) 1986-10-17
JPH0638073B2 true JPH0638073B2 (en) 1994-05-18

Family

ID=13521107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60073538A Expired - Lifetime JPH0638073B2 (en) 1985-04-09 1985-04-09 Soil moisture measuring device

Country Status (1)

Country Link
JP (1) JPH0638073B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193050A (en) * 1987-02-06 1988-08-10 Shimizu Constr Co Ltd Apparatus for measuring heat conductivity and temperature conductivity
JPS63193051A (en) * 1987-02-06 1988-08-10 Shimizu Constr Co Ltd Method for measuring moisture of soil based on heat conductivity
JPS63193049A (en) * 1987-02-06 1988-08-10 Shimizu Constr Co Ltd Moisture control system using heat conductivity meter
JPS63128459U (en) * 1987-02-17 1988-08-23
CN106645314B (en) * 2016-12-29 2023-10-03 中环天仪(天津)气象仪器有限公司 Fault diagnosis device and detection method for FDR tubular soil moisture sensor
CN106644816B (en) * 2017-01-19 2023-04-14 南京林业大学 Instrument and method for measuring saturated water content of soil
CN113049641A (en) * 2021-03-12 2021-06-29 华东交通大学 Method for measuring water content of soil body
CN118112068A (en) * 2024-04-26 2024-05-31 清华大学 Soil moisture detection method and sensor based on heat conduction characteristics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185797A (en) * 1975-01-27 1976-07-27 Takashi Take RENZOKUSUI BUNKEI

Also Published As

Publication number Publication date
JPS61233350A (en) 1986-10-17

Similar Documents

Publication Publication Date Title
Fujii et al. Simultaneous measurements of thermal conductivity and thermal diffusivity of liquids under microgravity conditions
US5233868A (en) Non-intrusive mass flow measuring apparatus and method
JPS5822973B2 (en) Red bean sprouts
US4718774A (en) Scale monitoring means and method
JPH0638073B2 (en) Soil moisture measuring device
US4618268A (en) Method and apparatus for sensing average temperature
US4532799A (en) Liquid level sensor
Lister Geothermal gradient measurement using a deep sea corer
CN109682853B (en) FBG-based frozen soil ice content distributed in-situ measurement method and device
US5142901A (en) Specific heat based moisture sensor
Cetas A magnetic temperature scale from 1 to 83 K
Jury et al. A background temperature correction for thermal conductivity probes
Lachenbruch A probe for measurement of thermal conductivity of frozen soils in place
EP0062936A1 (en) Temperature sensor
US3508148A (en) In-place soil water conductivity tester
US3765240A (en) Method and apparatus for detecting oil leaks in cables
CN211178802U (en) Calibration device applied to distributed optical fiber temperature measurement system
JPH11281601A (en) Moisture sensor, moisture measuring device, and watersupply method utilizing it
JPS62215194A (en) Heat-insulating plate and inspection method thereof
JP3063793B2 (en) Liquid level measurement method
MacFadyen The use of a temperature integrator in the study of soil temperature
JP2539466B2 (en) Cable moisture permeability tester
Christoffel et al. A geothermal heat flow probe for in situ measurement of both temperature gradient and thermal conductivity
Anderson et al. High precision, semimicro, hydrostatic calorimeter for heats of mixing of liquids
RU2633405C1 (en) Device for measuring thermal conductivity

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term