JPH0637579B2 - Anti-vibration rubber manufacturing method - Google Patents

Anti-vibration rubber manufacturing method

Info

Publication number
JPH0637579B2
JPH0637579B2 JP62179417A JP17941787A JPH0637579B2 JP H0637579 B2 JPH0637579 B2 JP H0637579B2 JP 62179417 A JP62179417 A JP 62179417A JP 17941787 A JP17941787 A JP 17941787A JP H0637579 B2 JPH0637579 B2 JP H0637579B2
Authority
JP
Japan
Prior art keywords
rubber
vibration
short fibers
mixture
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62179417A
Other languages
Japanese (ja)
Other versions
JPS6422941A (en
Inventor
凱生 尾野
吉弥 谷野
輝之 谷垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Hyogo Prefectural Government
Original Assignee
Nippon Pillar Packing Co Ltd
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd, Hyogo Prefectural Government filed Critical Nippon Pillar Packing Co Ltd
Priority to JP62179417A priority Critical patent/JPH0637579B2/en
Publication of JPS6422941A publication Critical patent/JPS6422941A/en
Publication of JPH0637579B2 publication Critical patent/JPH0637579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車のエンジンマウント部に装備される防
振弾性支持具やコンプレッサーの振動を防止するために
敷設される防振シートに使用される防振ゴムの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is used for a vibration-proof elastic support provided in an engine mount portion of an automobile and a vibration-proof sheet laid to prevent vibration of a compressor. The present invention relates to a method for producing a vibration-proof rubber.

〔従来の技術〕[Conventional technology]

この種の防振ゴムにおいては、ゴム中に補強用の繊維を
配合することは既に公知の技術であり、特公昭47−7
137号公報及び特開昭59−4636号公報等には、
前記補強用の繊維を高強度を有する短繊維とし、この短
繊維をゴム中に練り込むことが開示されている。
In this type of anti-vibration rubber, compounding reinforcing fibers into the rubber is a known technique, and is disclosed in JP-B-47-7.
137 and Japanese Patent Laid-Open No. 59-4636,
It is disclosed that the reinforcing fibers are short fibers having high strength, and the short fibers are kneaded into rubber.

また、近時上記の如くゴム中に練り込む短繊維として、
高強度,高弾性率を有ししかも低密度であるアラミド
(芳香族ポリアミド)繊維がしばしば用いられるように
なっている。
In addition, as a short fiber which is recently kneaded into rubber as described above,
Aramid (aromatic polyamide) fibers, which have high strength, high elastic modulus and low density, are often used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記特公昭47−7137号公報等にお
いて開示される従来の防振ゴムは、太さが2〜50μ
m、一般的には10〜20μmの短繊維をそのままゴム
中に分散させただけのものであり、この短繊維は単に補
強材としての役目を果すにすぎなかった。
However, the conventional anti-vibration rubber disclosed in Japanese Patent Publication No. 47-7137 has a thickness of 2 to 50 μm.
m, generally 10 to 20 μm, was simply dispersed in the rubber as it was, and the short fibers merely served as a reinforcing material.

また、前述したアラミド繊維はその表面が化学的に不活
性であるため、ゴム中に配合した際にこのゴムとの結合
性を高めるために、ゴム中への配合前に予め低温プラズ
マやレゾルシン・ホルマリン・ラテックス(RFL)に
よる表面処理を必要とするとされており、したがって、
短繊維として上記の如きアラミド繊維を用いた場合には
きわめて高価な設備を必要として設備費用は高くなる
上、処理費用も嵩むという問題および工程数の増加によ
り製造効率が低くなるという問題があった。また、ゴム
母材中に配合する短繊維を事前に表面処理するので、ゴ
ム母材と短繊維との濡れ性が悪く、ゴム母材中に短繊維
が均一に分散されず、繊維の多くからまった部分と繊維
の分散割合の低い部分とが混在するために、ゴムの加硫
むらが生じることになる。したがって、防振ゴムの組成
が不均質となり、一定した防振作用が得られなくなると
いう防振ゴムにとっては致命的な欠点を露呈する。
Further, since the surface of the above-mentioned aramid fiber is chemically inactive, in order to enhance the bondability with the rubber when compounded in rubber, low temperature plasma or resorcin It is said to require surface treatment with formalin latex (RFL), and therefore
When the above-mentioned aramid fiber is used as the short fiber, there is a problem that an extremely expensive facility is required, the facility cost is high, the treatment cost is high, and the production efficiency is low due to the increase in the number of steps. . In addition, since the short fibers to be blended in the rubber base material are surface-treated in advance, the wettability between the rubber base material and the short fibers is poor, and the short fibers are not uniformly dispersed in the rubber base material. The vulcanization unevenness of the rubber occurs due to the mixture of the narrowed portion and the portion having a low fiber dispersion ratio. Therefore, the composition of the anti-vibration rubber becomes inhomogeneous, and a fatal drawback is exposed for the anti-vibration rubber that a constant anti-vibration effect cannot be obtained.

本発明は上記実情に鑑みてなされたものであって、設備
費や処理費等の製造費用の低減および製造効率の向上を
図りつつ、短繊維をゴム母材中に均一に分散させて繊維
のフィブリル化を促進でき、機械的のみならず物理的性
質にも優れた防振ゴムを得ることができる防振ゴムの製
造方法を提供することを目的としている。
The present invention has been made in view of the above circumstances, while aiming to reduce manufacturing costs such as equipment costs and processing costs and improve manufacturing efficiency, short fibers are uniformly dispersed in a rubber base material to form fibers. It is an object of the present invention to provide a method for producing a vibration-proof rubber that can promote fibrillation and obtain a vibration-proof rubber excellent not only in mechanical properties but also in physical properties.

[問題点を解決するための手段] 上記目的を達成するために、本発明による防振ゴムの製
造方法は、極性基を有するゴムを母材とする混合物に、
アミド結合を有する短繊維をその表面未処理のままで1
〜20重量%加えて1次混練することにより、前記短繊
維を切断し開繊させて前記混合物中に分散させ、次に、
このような分散状態で短繊維を含有する混合物に加硫剤
を加えて2次混練することにより、加硫剤の分散及び短
繊維の配向を行なうことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the method for producing a vibration-proof rubber according to the present invention includes a mixture containing a polar group-containing rubber as a base material,
A short fiber having an amide bond is left untreated on its surface 1
˜20% by weight and primary kneading to cut and open the short fibers and disperse in the mixture, and then:
It is characterized in that the vulcanizing agent is dispersed and the short fibers are oriented by secondarily kneading the mixture containing the short fibers in such a dispersed state with the vulcanizing agent.

[作用] 本発明によれば、ゴムを母材とする混合物に、表面未処
理のままの短繊維を加えて混練するので、短繊維の表面
処理に要する設備費や処理費等の製造費用の著しい低減
が図れるとともに、表面処理工程の省略によって製造効
率の向上も図れる。その上、表面処理されていない短繊
維であるから、これを前記混合物に加えたときの両者の
濡れ性が良く、混合物中に短繊維が均一に分散されて加
硫むらの発生がなく、均質な組成の防振ゴムが得られ
る。しかも、短繊維とゴムを母材とする混合物との混練
中に両者の摩擦によって、短繊維が切断され開繊されて
フィブリル化を促進し、このようなフィブリル化によっ
て短繊維の表面を活性化し、その活性化した表面にゴム
の極性基が相互作用するので、短繊維とゴムを母材とす
る混合物との結合力を高めて、負荷荷重が大きくなると
ともに、耐疲労性も向上する。さらに、フィブリル化し
た短繊維間の摩擦により、振動エネルギーが消費される
ので、防音、防振効果にも優れている。
[Operation] According to the present invention, short fibers whose surface has not been treated are added to a mixture containing rubber as a base material and kneaded. Therefore, manufacturing costs such as equipment costs and processing costs required for surface treatment of short fibers are reduced. Not only can it be significantly reduced, but the production efficiency can be improved by omitting the surface treatment step. In addition, since it is a short fiber that has not been surface-treated, it has good wettability with both when it is added to the mixture, and the short fibers are uniformly dispersed in the mixture and there is no uneven vulcanization. An anti-vibration rubber having various compositions can be obtained. Moreover, during the kneading of the mixture of the short fiber and the rubber as the base material, the friction between the two causes the short fiber to be cut and opened to promote fibrillation, and the surface of the short fiber is activated by such fibrillation. Since the polar group of the rubber interacts with the activated surface, the binding force between the short fiber and the mixture containing the rubber as the base material is increased, the load is increased, and the fatigue resistance is also improved. Further, since the vibration energy is consumed by the friction between the fibrillated short fibers, it is also excellent in soundproofing and vibrationproofing.

[実施例] 以下、本発明による防振ゴムの製造方法の実施例を説明
する。第1図は下述する実施例1及び実施例2の防振ゴ
ムの製造過程,及びフィブリル化した短繊維の抽出と各
種物性試験の手順を示すフローチャート図である。
[Example] Hereinafter, an example of a method for producing a vibration-proof rubber according to the present invention will be described. FIG. 1 is a flow chart showing the manufacturing process of the vibration-proof rubber of Examples 1 and 2 described below, and the procedure of extracting fibrillated short fibers and various physical property tests.

(実施例1) ここに挙げる実施例1は、下記の表1に示すように、母
材となる極性基を有するゴムとして日本ゼオン社製カル
ボキシル化ニトリルゴムNipol 1072(以下、c−NBR
という)を用い、このc−NBRにカーボン等の配合物
を加えて得た混合物Aに、デュポン社のアラミド繊維で
ある第2図に電子顕微鏡写真で示すようなケブラー#2
9の短繊維Cを表面未処理のままで15重量%含有せし
めた組成物である。
Example 1 As shown in Table 1 below, Example 1 is a carboxylated nitrile rubber Nipol 1072 manufactured by Nippon Zeon Co., Ltd. (hereinafter, c-NBR) as a rubber having a polar group as a base material.
Is added to a mixture A obtained by adding a compound such as carbon to this c-NBR, and is Kevlar # 2 as shown in an electron micrograph in FIG. 2 which is an aramid fiber of DuPont.
This is a composition in which 15% by weight of the short fibers C of 9 was left untreated on the surface.

尚、前記ケブラー#29の短繊維Cは、繊維長5mm、繊
維径12μmとしている。このケブラー#29の短繊維
Cは、柱状ミクロフィブリル構造を有しており、バンバ
リーミキサーにより前記c−NBRを母材とする混合物
Aと1次混練することにより、容易にフィブリル化して
混合物A中に分散する。したがって、短繊維Cはこの分
散した状態で混合物Aに含有せしめられており、また表
面に亀裂が生じてささくれだった状態となっている。そ
して、次にこのようにして短繊維Cを含有せしめた混合
物Aに加硫剤Bを加えて、オープンロールによるロール
出しに伴う2次混練により、加硫剤Bの分散及び短繊維
Cの配向を行う。そして、このようにしてロール出しし
た後、温度160℃、圧力40kg/cm2,時間55分の条
件で金型プレス加硫成形することにより、実施例1の防
振ゴムが得られるのである。
The short fiber C of Kevlar # 29 has a fiber length of 5 mm and a fiber diameter of 12 μm. The Kevlar # 29 short fibers C have a columnar microfibril structure, and are easily fibrillated by being primarily kneaded with the mixture A containing the c-NBR as a base material by a Banbury mixer, so that the mixture A contains Disperse into. Therefore, the short fibers C are contained in the mixture A in this dispersed state, and the surface is cracked due to cracks. Then, the vulcanizing agent B is added to the mixture A containing the short fibers C in this way, and the secondary kneading is performed along with the roll-out by the open roll to disperse the vulcanizing agent B and orient the short fibers C. I do. Then, after rolling out in this manner, the vibration-proof rubber of Example 1 can be obtained by die press vulcanization molding under the conditions of a temperature of 160 ° C., a pressure of 40 kg / cm 2 , and a time of 55 minutes.

第3図は、上述したところのc−NBRを母剤とする混
合物Aと担持繊維Cのバンバリーミキサーによる混練時
間を、1サイクルを2.5分間とし、それぞれこのサイ
クルを2回,10回,20回繰り返して得た合計時間、
すなわち5分,25分,50分として得られた実施例1
に対応する3種類の防振ゴムに関し、それぞれ列理方向
に対する引張角度を、0°,45°,90°として得た
場合の応力−ひずみ曲線と、短繊維を含有しない表1に
示す比較例1の防振ゴムの応力−ひずみ曲線を示してい
る。この第3図からも明らかなように、短繊維を含有し
た本発明の防振ゴムは、混練時間をいずれにした場合で
も短繊維を含有しないものに比べて高い応力を示してお
り、負荷荷重の大きいことが解る。
FIG. 3 shows that the kneading time of the mixture A containing c-NBR as a base material and the supporting fiber C as described above by the Banbury mixer was 2.5 minutes for one cycle, and this cycle was repeated twice, ten times, respectively. Total time obtained by repeating 20 times,
That is, Example 1 obtained as 5 minutes, 25 minutes, and 50 minutes
For the three types of anti-vibration rubbers corresponding to, the stress-strain curves obtained when the tensile angles with respect to the grain direction were 0 °, 45 ° and 90 °, respectively, and the comparative examples shown in Table 1 containing no short fibers The stress-strain curve of the anti-vibration rubber of 1 is shown. As is clear from FIG. 3, the anti-vibration rubber of the present invention containing short fibers shows a higher stress than that containing no short fibers at any kneading time, and the load load You can see that

第4図(a),(b),(c)は前記実施例1に対応する3種類の
防振ゴムにおいて、バンバリーミキサーによる混練を終
えた後、この混練によってフィブリルを生じた短繊維を
抽出して観た電子顕微鏡写真である。これら第4図(a),
(b),(c)からも明らかなように、短繊維は混練時間を長
くする程切断され開繊してサブミクロンオーダのフィブ
リル化が進行しており、前記第3図に示した応力−ひず
み曲線からも概ねフィブリル化が進行する程、負荷荷重
も大きくなっていることが解る。
4 (a), (b), and (c) show three types of anti-vibration rubbers corresponding to Example 1, and after the kneading with the Banbury mixer was completed, the short fibers in which fibrils were generated by this kneading were extracted. It is an electron micrograph that I saw. These Figure 4 (a),
As is clear from (b) and (c), the short fibers are cut and opened as the kneading time is lengthened, and the fibrillation of the submicron order is progressing, and the stress shown in FIG. From the strain curve, it can be seen that the more the fibrillation progresses, the larger the applied load becomes.

第5図(a),(b),(c)は、同じく前記実施例1に対応する
3種類の防振ゴムに対して行なった列理方向へ引張試験
において、それぞれの引張破面を写した電子顕微鏡写真
である。これら第5図(a),(b),(c)に示されるように、
混練時間を長くして短繊維のフィブリル化を進め、c−
NBRを母材とする混合物中に亀裂を生じた細かい短繊
維を分散させる程、破面は滑らかになり耐疲労性が高い
ことが観察される。
FIGS. 5 (a), (b), and (c) show the tensile fracture surfaces of each of the three types of anti-vibration rubbers corresponding to the first embodiment in the tensile test in the grain direction. It is the taken electron micrograph. As shown in FIGS. 5 (a), (b) and (c),
Extend the kneading time to promote fibrillation of short fibers, and
It is observed that the more the cracked fine short fibers are dispersed in the mixture containing NBR as the base material, the smoother the fracture surface becomes and the higher the fatigue resistance is.

次に、第6図示は上記実施例1の防振ゴムと、表1に示
した短繊維を含まない比較例1の防振ゴムをそれぞれ4
8時間トルエン中に浸し、その後、幅方向,奥行方向,
高さ方向、及び体積を測定して初期値に対する増加率を
示した膨潤試験の比較表である。この第6図かた明らか
なように、いずれの値を比較しても実施例1の増加率は
比較例1のそれと較べて小さく、実施例1の防振ゴムが
結合力が高く耐候性に優れたものであることが解る。
Next, as shown in FIG. 6, the vibration-proof rubber of Example 1 and the vibration-proof rubber of Comparative Example 1 containing no short fibers shown in Table 1 were respectively used.
Immerse it in toluene for 8 hours, then width, depth,
It is a comparative table of the swelling test which measured the height direction and the volume and showed the increase rate with respect to the initial value. As is clear from FIG. 6, the increase rate of Example 1 is smaller than that of Comparative Example 1 regardless of which values are compared, and the vibration-proof rubber of Example 1 has a high bonding strength and weather resistance. It turns out to be excellent.

(実施例2) 次に、母材として上述した実施例1におけるc−NBR
に代えて日本ゼオン社製ニトリルゴムNipol 1032(以
下、NBRという)を用いた場合の実施例を示す。ま
ず、実施例1においてc−NBRを母材とした場合と同
一配合物を加えて前述した表1においてc−NBRをN
BRに置き換えただけの混合物A′を得る。そして、こ
の混合物A′に、同じく実施例1の場合と同条件でケブ
ラー#29の短繊維Cをその表面未処理のままで含有さ
せて1次混練し、さらに加硫剤Bを加えて2次混練する
ことにより、混練時間が異なる3種類の防振ゴムを得
る。
(Example 2) Next, c-NBR in Example 1 described above as a base material.
An example of using Nipol 1032 (hereinafter referred to as NBR), a nitrile rubber manufactured by Nippon Zeon Co., in place of First, the same compound as in the case of using c-NBR as the base material in Example 1 was added, and c-NBR was changed to N in Table 1 described above.
A mixture A ′ is obtained which has just been replaced by BR. Then, the short fibers C of Kevlar # 29 were added to this mixture A ′ under the same conditions as in Example 1 and the surface thereof was left untreated, and the mixture was subjected to primary kneading. Subsequent kneading yields three types of anti-vibration rubber with different kneading times.

第7図はこれら3種類の防振ゴムに対して、それぞれ列
理方向に対する引張角度を0°,45°,90°として
得た、前記第3図に示したc−NBRを母材とする防振
ゴムの場合と対応する応力−ひずみ曲線と、短繊維を含
有しないNBRを母材とする防振ゴムの応力−ひずみ曲
線を示している。
FIG. 7 is based on the c-NBR shown in FIG. 3, which is obtained by setting the pulling angles for the grain direction to 0 °, 45 ° and 90 ° for these three types of anti-vibration rubber. The stress-strain curve corresponding to the case of the anti-vibration rubber and the stress-strain curve of the anti-vibration rubber which uses NBR which does not contain a short fiber as a base material are shown.

この第7図もまた、本発明による短繊維を含有した防振
ゴムが、短繊維を含有しない場合に比べ高い応力を有す
ることを示している。ただし、第3図と第7図を比較し
た場合、第3図に示すc−NBRを母材とした防振ゴム
の方が、第7図に示すNBRを母材とした防振ゴムに比
べ、より高い応力を示し且つ引張角度による応力の低下
も緩やかであることが分る。これはフィブリル化によっ
て活性化した短繊維の表面に対し、NBRを母材とした
実施例2の防振ゴムではNBR中のCN基のみが極性基
として相互作用するのに対し、c−NBRを母材として
実施例1の防振ゴムでは、c−NBRのゴム分子鎖中の
カルボキシル基もまた前記短繊維の表面に対し相互作用
して、ゴムと短繊維の結合力をより高めるためと推察さ
れる。
This FIG. 7 also shows that the anti-vibration rubber containing the short fibers according to the present invention has a higher stress than in the case where the short fibers are not contained. However, when comparing FIG. 3 and FIG. 7, the anti-vibration rubber having the c-NBR as the base material shown in FIG. 3 is better than the anti-vibration rubber having the NBR as the base material shown in FIG. It can be seen that higher stress is shown and the decrease in stress due to the tension angle is gentle. This is because the surface of the short fibers activated by the fibrillation is c-NBR, whereas only the CN group in NBR interacts as a polar group in the anti-vibration rubber of Example 2 using NBR as a base material. In the antivibration rubber of Example 1 as the base material, it is presumed that the carboxyl group in the rubber molecular chain of c-NBR also interacts with the surface of the short fibers to further increase the binding force between the rubber and the short fibers. To be done.

第8図(a),(b),(c)は混合物A′中でフィブリルを生じ
た短繊維を抽出して観た電子顕微鏡写真で、c−NBR
を母材とする場合の前記第4図(a),(b),(c)に対応す
る。また、第9図(a),(b),(c)は混合物A′と短繊維の
混練時間を変えて得た3種類の防振ゴムに対して列理方
向への引張試験を行ない、その引張破面を観た電子顕微
鏡写真で、c−NBRを母材とする場合の前記第5図
(a),(b),(c)に対応している。さらに、第10図は実施
例2の防振ゴムと、この実施例2の防振ゴムと同一の混
合物A′及び加硫剤Bを用い、短繊維を含まない比較例
2の防振ゴムとを、それぞれ48時間トルエン中に浸
し、その後、幅方向,奥行方向,高さ方向,及び体積を
測定して、各防振ゴムの初期値に対する増加率を示した
膨潤試験の比較表で、前記実施例1における第6図に対
応している。
8 (a), (b), and (c) are electron micrographs of the fibril-formed short fibers extracted in the mixture A ', which are c-NBR.
This corresponds to FIGS. 4 (a), (b), and (c) when using as a base material. In addition, FIGS. 9 (a), (b) and (c) show tensile tests in the grain direction on three types of vibration-proof rubbers obtained by changing the kneading time of the mixture A'and short fibers. FIG. 5 is an electron micrograph of the tensile fracture surface, showing the case of using c-NBR as a base material.
It corresponds to (a), (b), and (c). Further, FIG. 10 shows a vibration-proof rubber of Example 2 and a vibration-proof rubber of Comparative Example 2 containing the same mixture A ′ and vulcanizing agent B as those of the vibration-proof rubber of Example 2 but containing no short fiber. Were soaked in toluene for 48 hours respectively, and then the width direction, the depth direction, the height direction, and the volume were measured, and in the comparison table of the swelling test showing the rate of increase with respect to the initial value of each vibration-proof rubber, This corresponds to FIG. 6 in the first embodiment.

これら第8図(a),(b),(c)〜第10図に示されるよう
に、NBRを母材とした混合物A′を使用した場合にお
いても、混練時間の経過とともに短繊維フィブリル化が
進み(第8図(a),(b),(c)参照)、これに伴い耐疲労性
の向上が認められる(第9図(a),(b),(c)参照)。ま
た、実施例2の防振ゴムは比較例2のそれと比べて結合
力が高く、同一の混合物A′を用いた場合、フィブリル
を生じた短繊維を含むものが遥かに耐候性に優れている
ことが分る。
As shown in FIGS. 8 (a), (b) and (c) to FIG. 10, even when the mixture A ′ containing NBR as the base material was used, the short fiber fibril formation was caused with the lapse of kneading time. Progresses (see FIGS. 8 (a), (b), and (c)), and along with this, improvement in fatigue resistance is recognized (see FIGS. 9 (a), (b), and (c)). Further, the anti-vibration rubber of Example 2 has a higher binding force than that of Comparative Example 2, and when the same mixture A ′ is used, the one containing fibril-formed short fibers is far superior in weather resistance. I understand.

以上のように、本発明による防振ゴムは母材としてNB
Rを用いた場合にも物性上極めて顕著な効果を奏し得る
ものである。
As described above, the anti-vibration rubber according to the present invention uses NB as the base material.
Even when R is used, a very remarkable effect on the physical properties can be obtained.

次に、本発明による防振ゴムの製造方法において、ゴム
を母材とする混合物中に配合されるアミド結合を有する
短繊維の含有量について説明する。第11図は上記実施
例1において用いたc−NBRを母材とする混合物A中
に、ケブラー#29の短繊維をそれぞれ20重量%、1
5重量%,10重量%,5重量%混練した本発明による
防振ゴムに対し、列理方向に対する引張角度を0℃及び
90℃として応力−ひずみ曲線を得たものである。この
第11図に示されるように、引張強度は短繊維の含有量
を多くする程増加することが観察される。しかしなが
ら、本発明による防振ゴムの製造方法にあいては、短繊
維の含有量を20重量%よりも多くすると、伸びが極端
に小さくなって硬直し、防振機能が低下するという傾向
があり、且つ短繊維の均一分散も困難になる現象が見ら
れる。一方、短繊維の含有量を1重量%未満にしてしま
うと短繊維を含有することによる効果が生じない。した
がって、短繊維の含有量は1〜20重量%とすることに
よって本願発明による防振ゴムとしての効果を奏しう
る。
Next, in the method for producing a vibration-proof rubber according to the present invention, the content of the short fiber having an amide bond, which is mixed in the mixture containing the rubber as a base material, will be described. FIG. 11 shows that 20% by weight of short fibers of Kevlar # 29 were added to the mixture A containing the c-NBR as a base material and used in Example 1, respectively.
The stress-strain curve was obtained for the vibration-proof rubber according to the present invention that was kneaded at 5% by weight, 10% by weight and 5% by weight, with the tensile angles to the grain direction being 0 ° C and 90 ° C. As shown in FIG. 11, it is observed that the tensile strength increases as the content of short fibers increases. However, in the method for producing the vibration-insulating rubber according to the present invention, when the content of the short fibers is more than 20% by weight, the elongation tends to be extremely small, and the vibration-proofing function tends to deteriorate. In addition, there is a phenomenon that it becomes difficult to uniformly disperse the short fibers. On the other hand, if the content of the short fibers is less than 1% by weight, the effect of containing the short fibers does not occur. Therefore, by setting the content of the short fibers to be 1 to 20% by weight, the effect as the anti-vibration rubber according to the present invention can be obtained.

尚、本発明が上記実施例に限定されないのはもちろんで
あって、母材となるゴムにはクロロプレンゴム,エピク
ロルセドリンゴム,クロロスルホン化ポリエチレンゴ
ム,ポリウレタンゴム等の他の極性基を有するゴムを用
いることもできる。また、短繊維もフィブリル構造をも
ったアミド結合を有する繊維であれば、絹を始めとする
他の繊維を用いてもよい。
It should be noted that the present invention is not limited to the above examples, and the base rubber has other polar groups such as chloroprene rubber, epichlorosedrin rubber, chlorosulfonated polyethylene rubber and polyurethane rubber. Rubber can also be used. Further, as long as the short fibers are fibers having an amide bond having a fibril structure, other fibers such as silk may be used.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明による防振ゴムの製造方法は、ゴ
ムを母材とする混合物に、表面未処理のままの短繊維を
加えて混練するので、短繊維の表面処理に要する設備費
や処理費等の製造費用の著しい低減を図ることができる
とともに、表面処理工程の省略によって製造効率の向上
も図れる。その上、表面処理されていない短繊維である
から、これを前記混合物に加えたときの両者の濡れ性が
良く、混合物中に短繊維を均一に分散させて加硫むらの
発生をなくし、均質な組成の防振ゴムを得ることができ
る。しかも、短繊維とゴムを母材とする混合物との混練
中に両者の摩擦によって、短繊維が切断され開繊されて
フィブリル化を促進し、このようなフィブリル化によっ
て短繊維の表面を活性化し、その活性化した表面にゴム
の極性基が相互作用するので、短繊維とゴムを母材とす
る混合物との結合力を高めて、負荷荷重を増大すること
かできるとともに、耐疲労性も向上することができ、か
つ、高強度で耐候性にも優れていることから、エンジン
マウント部等に装備される防振弾性支持具など広い範囲
の防振ゴムとして有効に使用することができる。さら
に、フィブリル化した短繊維間の摩擦により、振動エネ
ルギーが消費されるので、防音、防振効果にも優れた効
果を有する。
As described above, in the method for producing the vibration-proof rubber according to the present invention, the mixture of the rubber as the base material is kneaded by adding the short fibers which have not been subjected to the surface treatment. The manufacturing cost such as the processing cost can be remarkably reduced, and the manufacturing efficiency can be improved by omitting the surface treatment step. In addition, since it is a short fiber that has not been surface-treated, it has good wettability with both when it is added to the mixture, and evenly disperses the short fibers in the mixture to eliminate the occurrence of uneven vulcanization and to achieve a uniform An anti-vibration rubber having various compositions can be obtained. Moreover, during the kneading of the mixture of the short fibers and the rubber as the base material, the friction between the two causes the short fibers to be cut and opened to promote fibrillation, and the surface of the short fibers is activated by such fibrillation. , The polar group of rubber interacts with the activated surface, so that the binding force between the mixture of short fiber and rubber as the base material can be increased, the load load can be increased, and the fatigue resistance can be improved. Since it can be manufactured, and has high strength and excellent weather resistance, it can be effectively used as a wide range of anti-vibration rubber such as anti-vibration elastic support equipment mounted on an engine mount part or the like. Further, since the vibration energy is consumed by the friction between the fibrillated short fibers, it also has an excellent soundproofing and vibrationproofing effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1及び2の防振ゴムの製造過程を示すフ
ローチャート図、第2図はケブラー#29の短繊維の電
子顕微鏡写真、第3図は実施例1の防振ゴムの応力−ひ
ずみ曲線、第4図(a),(b),(c)は、フィブリルを生じた
短繊維の電子顕微鏡写真、第5図(a),(b),(c)は実施例
1の防振ゴムの引張破面における短繊維の形状を示す電
子顕微鏡写真、第6図は実施例1の防振ゴムの膨潤試験
の結果を示す表、第7図は実施例2の防振ゴムの応力−
ひずみ曲線、第8図(a),(b),(c)はフィブリルを生じた
短繊維の電子顕微鏡写真、第9図(a),(b),(c)は実施例
2の防振ゴムの引張破面における短繊維の形状を示す電
子顕微鏡写真、第10図は実施例2の防振ゴムの膨潤試
験の結果を示す表、第11図は本発明による防振ゴムの
製造方法において、短繊維の含有量を変えて製造された
防振ゴムの応力−ひずみ曲線である。
FIG. 1 is a flow chart showing the manufacturing process of the vibration-proof rubber of Examples 1 and 2, FIG. 2 is an electron micrograph of short fibers of Kevlar # 29, and FIG. 3 is the stress of the vibration-proof rubber of Example 1. Strain curves, FIGS. 4 (a), (b), and (c) are electron micrographs of fibril-formed short fibers, and FIGS. 5 (a), (b), and (c) are the results of Example 1. An electron micrograph showing the shape of short fibers on the tensile fracture surface of the vibration proof rubber, FIG. 6 is a table showing the results of the swelling test of the vibration proof rubber of Example 1, and FIG. 7 is the stress of the vibration proof rubber of Example 2. −
Strain curves, FIGS. 8 (a), (b), and (c) are electron micrographs of fibril-formed short fibers, and FIGS. 9 (a), (b), and (c) are vibration isolation of Example 2. An electron micrograph showing the shape of the short fibers on the tensile fracture surface of the rubber, FIG. 10 is a table showing the results of the swelling test of the vibration isolating rubber of Example 2, and FIG. 11 is a diagram showing the method for producing the vibration isolating rubber according to the present invention. FIG. 3 is a stress-strain curve of a vibration-proof rubber produced by changing the content of short fibers.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】極性基を有するゴムを母材とする混合物
に、アミド結合を有する短繊維をその表面未処理のまま
で1〜20重量%加えて1次混練することにより、前記
短繊維を切断し開繊させて前記混合物中に分散させ、次
に、このような分散状態で短繊維を含有する混合物に加
硫剤を加えて2次混練することにより、加硫剤の分散及
び短繊維の配向を行なうことを特徴とする防振ゴムの製
造方法。
A short fiber having an amide bond is added to a mixture containing a rubber having a polar group as a base material in an amount of 1 to 20% by weight without surface treatment, and the mixture is primarily kneaded to obtain the short fiber. Dispersing the vulcanizing agent and short fibers by cutting and opening the fibers to disperse them in the mixture, and then adding a vulcanizing agent to the mixture containing the short fibers in such a dispersed state and secondarily kneading the mixture. A method for producing a vibration-proof rubber, which comprises performing the orientation of
【請求項2】前記短繊維として、柱状ミクロファブリル
構造を有するアラミド繊維を使用することを特徴とする
特許請求の範囲第1項記載の防振ゴムの製造方法。
2. The method for producing an antivibration rubber according to claim 1, wherein aramid fibers having a columnar microfabric structure are used as the short fibers.
JP62179417A 1987-07-17 1987-07-17 Anti-vibration rubber manufacturing method Expired - Fee Related JPH0637579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62179417A JPH0637579B2 (en) 1987-07-17 1987-07-17 Anti-vibration rubber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62179417A JPH0637579B2 (en) 1987-07-17 1987-07-17 Anti-vibration rubber manufacturing method

Publications (2)

Publication Number Publication Date
JPS6422941A JPS6422941A (en) 1989-01-25
JPH0637579B2 true JPH0637579B2 (en) 1994-05-18

Family

ID=16065502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62179417A Expired - Fee Related JPH0637579B2 (en) 1987-07-17 1987-07-17 Anti-vibration rubber manufacturing method

Country Status (1)

Country Link
JP (1) JPH0637579B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539806U (en) * 1991-11-05 1993-05-28 ヤマザキマザツク株式会社 Bowling bar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829872A (en) * 1981-08-17 1983-02-22 Nichias Corp Joint sheet
JPS62129353A (en) * 1985-11-18 1987-06-11 ポリサ− リミテツド Plastic fiber composition and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829872A (en) * 1981-08-17 1983-02-22 Nichias Corp Joint sheet
JPS62129353A (en) * 1985-11-18 1987-06-11 ポリサ− リミテツド Plastic fiber composition and its production

Also Published As

Publication number Publication date
JPS6422941A (en) 1989-01-25

Similar Documents

Publication Publication Date Title
CA2349707C (en) Power transmission belt
US20030027920A1 (en) Rubber composition, a method of making the rubber composition, a power transmission belt made from rubber composition and a method of making the power transmission belt
US7598308B2 (en) Metal—elastomer compound
US4643938A (en) Belt comprising rubber and fibers
KR100668406B1 (en) Power transmission belt and method
EP2711587B1 (en) Power transmission belt
CN101555335B (en) Micron-nano short-fiber rubber composite material for automobile driving belt and method for preparing same
EP2980445A1 (en) Transmission belt
WO2012169207A1 (en) Reinforcement cord for reinforcing rubber product, and rubber product using same
US6858675B1 (en) Vibration damping rubber member and process of producing the same
JPH04249556A (en) Polymer composition, its preparation, and pneumatic tire made by using it
Boustany et al. Short fibers rubber composites: the comparative properties of treated and discontinuous cellulose fibers
EP0776938A2 (en) Power transmission belt
EP0451983B1 (en) Power transmission belt
JPH0637579B2 (en) Anti-vibration rubber manufacturing method
JP5730645B2 (en) Aramid core wire and power transmission belt
Agarwal et al. Short fibre and particulate-reinforced rubber composites
CN115368654B (en) Chloroprene rubber material with low compression set and preparation method and application thereof
Gopi Sathi et al. Enhancing the dispersion and adhesion of short aramid fibers in bromo‐isobutylene‐isoprene rubber using maleated polybutadiene resin via co‐vulcanization with 4, 4’bis (maleimido) diphenylmethane
JPH0563656B2 (en)
JP2003268678A (en) Glass fiber treating agent for rubber reinforcement, rubber reinforcing cord using the same and rubber product
WO2008041574A1 (en) Aramid fiber cord for rubber belt reinforcement, process for producing the same, and rubber belt utilizing the cord
JP3734872B2 (en) Transmission belt
JP2003240055A (en) Power transmission belt
JPH0625977A (en) Method for treating aromatic polyamide fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees