JPH0637395A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0637395A
JPH0637395A JP4230548A JP23054892A JPH0637395A JP H0637395 A JPH0637395 A JP H0637395A JP 4230548 A JP4230548 A JP 4230548A JP 23054892 A JP23054892 A JP 23054892A JP H0637395 A JPH0637395 A JP H0637395A
Authority
JP
Japan
Prior art keywords
crystal
laser device
semiconductor laser
reflecting mirror
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4230548A
Other languages
Japanese (ja)
Other versions
JP3208860B2 (en
Inventor
Toyoji Ohata
豊治 大畑
Masamichi Ogawa
正道 小川
Kazuhiko Nemoto
和彦 根本
Yoshifumi Mori
芳文 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP23054892A priority Critical patent/JP3208860B2/en
Priority to US08/062,209 priority patent/US5373173A/en
Publication of JPH0637395A publication Critical patent/JPH0637395A/en
Application granted granted Critical
Publication of JP3208860B2 publication Critical patent/JP3208860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0203Etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a surface emission type semiconductor laser device which has approximately the same light output-current characteristics as a semiconductor laser device formed by cleaving, can take out a light free from aberration and shading along a direction accurately perpendicular to the surface of a semiconductor substrate and facilitates two-dimensional integration. CONSTITUTION:At least a first conductivity type cladding layer 2, an active layer 3 and a second conductivity type cladding layer 4 are provided on a semiconductor substrate 1. Crystal growth surfaces which have 45 deg. angles from the main surface 1S of the semiconductor substrate 1 are provided as reflective mirror surfaces 12A and 12B against the end surfaces 11A and 11B of a resonator formed by vertical etching.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザ装置、特
に例えば半導体基体の表面に対し垂直な方向にレーザ光
を取り出すいわゆる面発光型半導体レーザ装置に係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a so-called surface emitting semiconductor laser device for extracting laser light in a direction perpendicular to the surface of a semiconductor substrate.

【0002】[0002]

【従来の技術】半導体レーザは、光ディスク、光ファイ
バー通信用光源等として広く実用化されており、更に高
コヒーレンス化や高出力化等の特性の向上と共に、光変
調器などの機能デバイスとのモノリシック集積化が進め
られている。特に近年、光コンピュータ等における並列
光情報処理、或いは大容量並列光伝送などへの応用を考
えて、大規模な2次元集積化の実現が望まれている。し
かしながら、従来構成の半導体レーザは素子分離をしな
いと性能試験ができないなどの理由からモノリシックな
集積が極めて難しい。
2. Description of the Related Art Semiconductor lasers have been widely put to practical use as light sources for optical disks, optical fiber communications, etc., and further improved in characteristics such as higher coherence and higher output, and monolithically integrated with functional devices such as optical modulators. Is being promoted. In recent years, in particular, in consideration of application to parallel optical information processing in optical computers or the like, or large-capacity parallel optical transmission, realization of large-scale two-dimensional integration is desired. However, it is extremely difficult to monolithically integrate a semiconductor laser having a conventional configuration because a performance test cannot be performed without element isolation.

【0003】例えば発光端面を垂直エッチング等により
形成する場合、レーザ光は基板の表面と平行に出射する
ため、そのままでは2次元集積化を行えず、また基板の
表面で出射光が遮光されたり、基板表面で反射されて干
渉したりする等のいわゆるケラレが生ずるという問題が
ある。
For example, when the light emitting end face is formed by vertical etching or the like, the laser light is emitted in parallel with the surface of the substrate, so that two-dimensional integration cannot be performed as it is, and the emitted light is shielded by the surface of the substrate. There is a problem that so-called vignetting occurs such as reflection on the surface of the substrate and interference.

【0004】これに対して2次元集積化が可能な半導体
レーザとして基板面に垂直な方向にレーザ光を出射する
面発光レーザが注目されている。このような面発光レー
ザとしては、例えば通常の半導体レーザの発光端面に対
向して、基板に対し45°の角度をなす反射鏡面を設
け、この反射鏡面で反射させてレーザ光を基板面に対し
垂直な方向に取り出す構成が採られる。そしてこのよう
な面発光レーザをモノリシック構成として形成するため
には、一般に異方性のドライエッチングを利用すること
により、例えば基板上に形成した半導体層に対して基板
に垂直な方向からと、45°程度の斜め方向からとの2
回の異方性エッチングを行うことによってレーザ光出射
端面と反射鏡面とを形成して面発光レーザを得ることが
できる。
On the other hand, as a semiconductor laser which can be two-dimensionally integrated, a surface emitting laser which emits laser light in a direction perpendicular to the substrate surface has been receiving attention. As such a surface-emitting laser, for example, a reflecting mirror surface that makes an angle of 45 ° with the substrate is provided facing the light emitting end surface of a normal semiconductor laser, and the laser light is reflected by the reflecting mirror surface with respect to the substrate surface. The structure is taken out in the vertical direction. In order to form such a surface emitting laser as a monolithic structure, anisotropic dry etching is generally used, for example, in a direction perpendicular to the substrate with respect to a semiconductor layer formed on the substrate. 2 from an angle of about 2 °
By carrying out anisotropic etching once, the surface emitting laser and the reflecting mirror surface can be formed to obtain a surface emitting laser.

【0005】例えばInP系の半導体レーザを形成する
場合は、マストランスポート法(Z.Liau et.al Appl.Ph
ys.Lett.46(1985)p.115 )、GaAs系ではイオンビー
ムアシステッドエッチング(IBAE)法(T.H.Windho
rn et.al Appl.Phys.Lett.48(1986)p.1675)、化学エッ
チング法(A.J.SpringThorpe Appl.Phys.Lett.31(1977)
p.524 )、又は反応性イオンビームエッチング(RIB
E)法(T.Yuasa et.al CLEO '88wo6 4/27)等を用いて
形成された報告がある。これらのレーザでは、例えば上
述のIBAE法を用いる報告において述べられているよ
うに、通常の劈開面を用いるレーザに比し閾値が高く、
出力も劣るという問題がある。
For example, when an InP-based semiconductor laser is formed, the mass transport method (Z. Liau et.al Appl.Ph
ys.Lett.46 (1985) p.115), ion beam assisted etching (IBAE) method for GaAs (THWindho
rn et.al Appl.Phys.Lett.48 (1986) p.1675), chemical etching method (AJSpringThorpe Appl.Phys.Lett.31 (1977)
p.524) or reactive ion beam etching (RIB
E) There is a report formed using the method (T. Yuasa et.al CLEO '88wo6 4/27) and the like. In these lasers, for example, as described in the report using the above-mentioned IBAE method, the threshold value is higher than that in a laser using a normal cleavage plane,
There is a problem that the output is inferior.

【0006】即ちこれらの方法による場合、特に斜め方
向からの異方性エッチングによる反射鏡面を原子層オー
ダー程度の平坦性をもって形成することが難しく、また
傾斜角度を精度良く形成することが難しく、光の出射角
の垂直方向からのずれ、または収差が生じるという不都
合がある。
That is, in the case of these methods, it is difficult to form a reflecting mirror surface by anisotropic etching from an oblique direction with flatness on the order of an atomic layer, and it is difficult to form an inclination angle with high precision. There is an inconvenience that deviation of the emission angle of V from the vertical direction or aberration occurs.

【0007】一方、基板上に例えば反射面、クラッド
層、活性層、クラッド層及び反射面とを順次積層して、
基板面に垂直な方向に共振器を形成し、垂直方向にレー
ザ光を出射させる垂直共振器型構成の面発光レーザが提
案されている。このような積層構成の半導体レーザで
は、共振器が垂直方向に構成されるため、キャビティ
(利得領域長)を大として充分な利得を得ることができ
ず、現状では充分高い光出力が得られず、実用化には至
っていない。
On the other hand, for example, a reflective surface, a clad layer, an active layer, a clad layer and a reflective surface are sequentially laminated on the substrate,
There has been proposed a vertical cavity surface emitting laser in which a resonator is formed in a direction perpendicular to a substrate surface and laser light is emitted in a vertical direction. In the semiconductor laser having such a laminated structure, since the resonator is formed in the vertical direction, it is not possible to obtain a sufficient gain with a large cavity (gain region length), and at present, a sufficiently high optical output cannot be obtained. , Has not been put to practical use.

【0008】一方低しきい値電流を有する半導体レーザ
として、1回のエピタキシャル成長作業によって形成し
得るようにしたSDH(Separated Double Hetero junc
tion) 半導体レーザが、本出願人による例えば特開昭6
1−183987号特許出願、特開平2−174287
号特許出願等において提案されている。
On the other hand, as a semiconductor laser having a low threshold current, an SDH (Separated Double Hetero junction) which can be formed by a single epitaxial growth operation.
tion) A semiconductor laser is disclosed in Japanese Patent Application Laid-Open No.
Japanese Patent Application No. 1-183987, JP-A-2-174287
No. Patent application etc.

【0009】このSDH型半導体レーザは、図12にそ
の一例の略線的拡大断面図を示すように、先ず第1伝導
型例えばn型で一主面1Sが{100}結晶面とされた
GaAs等より成る半導体基板21のその主面1Sに、
図12の紙面と直交する〈011〉結晶軸方向に延びる
例えばストライプ状のメサ突起即ちリッジ22がその両
側を溝22Aに挟まれて形成され、このリッジ22上を
含んだn型基板21の主面21S上に、順次通常のメチ
ル系MOCVD(有機金属による化学的気相成長)法に
よって、連続的に第1伝導型の例えばn型AlGaAs
等より成るクラッド層23と、低不純物濃度ないしはア
ンドープのGaAs又はAlGaAs等より成る活性層
24と、第2伝導型例えばp型のAlGaAs等より成
る第1のクラッド層25と、例えばn型のAlGaAs
等より成る電流ブロック層26と、第2伝導型例えばn
型のAlGaAs等より成る第2のクラッド層27、例
えばp型のキャップ層29の各半導体層が1回のエピタ
キシャル成長作業によって形成されてなる。
As shown in FIG. 12 which is an enlarged schematic cross-sectional view of an example of this SDH type semiconductor laser, first, GaAs of the first conductivity type, for example, n type, and one main surface 1S of which is a {100} crystal face is used. On the main surface 1S of the semiconductor substrate 21 made of
For example, stripe-shaped mesa protrusions or ridges 22 extending in the <011> crystal axis direction orthogonal to the paper surface of FIG. 12 are formed by sandwiching both sides of the ridges 22 with grooves 22A. On the surface 21S, a first conductivity type, for example, n-type AlGaAs is successively formed on the surface 21S by a normal methyl-based MOCVD (Chemical Vapor Deposition) method.
And the like, an active layer 24 made of GaAs or AlGaAs having a low impurity concentration or undoped, a first cladding layer 25 made of second conductivity type, for example, p-type AlGaAs, and n-type AlGaAs.
And the second conduction type, for example, n.
The second clad layer 27 made of AlGaAs or the like, for example, each semiconductor layer of the p-type cap layer 29 is formed by one epitaxial growth operation.

【0010】このとき、上述したように基板21の主面
21Sの結晶面及びリッジ22の延長する結晶方位を選
定し、更にリッジ22の幅及び高さ、即ちその両側の溝
22Aの深さ、さらにn型のクラッド層23、活性層2
4、p型の第1のクラッド層25等の厚さを選定するこ
とによって、各層23、24及び25をリッジ22上と
溝22A上とにおいて互いに分断するように斜面28A
及び28Bより成る断層を形成することができる。
At this time, as described above, the crystal plane of the main surface 21S of the substrate 21 and the crystal orientation in which the ridge 22 extends are selected, and further, the width and height of the ridge 22, that is, the depth of the grooves 22A on both sides thereof, Further, the n-type clad layer 23 and the active layer 2
4. By selecting the thickness of the p-type first cladding layer 25, etc., the slopes 28A are formed so that the layers 23, 24 and 25 are separated from each other on the ridge 22 and the groove 22A.
And 28B can be formed.

【0011】これは、メチル系の有機金属を原料ガスと
して行ったMOCVD法による場合、{111}B結晶
面が一旦生じてくると、この面においてはエピタキシャ
ル成長が生じにくいことから、リッジ22上には、これ
ら斜面28A及び28Bによって分断された断面三角形
状でかつ図8の紙面に直交する方向に延長するエピタキ
シャル成長層30が形成されることによる。
This is because, in the MOCVD method using a methyl-based organic metal as a source gas, once the {111} B crystal plane is generated, it is difficult for epitaxial growth to occur on this plane. The reason is that the epitaxial growth layer 30 having a triangular cross section divided by the inclined surfaces 28A and 28B and extending in the direction orthogonal to the paper surface of FIG. 8 is formed.

【0012】そしてこの場合電流ブロック層26は、エ
ピタキシャル成長層30によってこれを挟んでその両側
に分断され、この分断によって生じた両端面が丁度活性
層24の両側端面の近傍、即ち斜面28A及び28Bに
臨む端面を覆うように衝合するようになされる。
In this case, the current blocking layer 26 is divided by the epitaxial growth layer 30 into both sides with the epitaxial growth layer 30 sandwiched therebetween, and both end faces generated by this division are just in the vicinity of both end faces of the active layer 24, that is, slopes 28A and 28B. It is made to butt to cover the end face that faces.

【0013】このようにしてリッジ22上のエピタキシ
ャル成長層30における活性層23が、これより屈折率
の小さい電流ブロック層26によって挟みこまれるよう
に形成されて横方向の閉じ込めがなされた発光動作領域
となるようにされ、しかもこの電流ブロック層26の存
在によって、ストライプ状エピタキシャル成長層30の
両外側においては、n型のクラッド層23とp型の第1
のクラッド層25とブロック層26、更にp型の第2の
クラッド層27とによってn−p−n−pのサイリスタ
が形成されてここにおける電流が阻止され、これによっ
てこのリッジ22上の活性層24に電流が集中するよう
になされて、低しきい値電流化をはかるようになされて
いる。
In this way, the active layer 23 in the epitaxial growth layer 30 on the ridge 22 is formed so as to be sandwiched by the current blocking layers 26 having a smaller refractive index than that, and a laterally confined light emitting operation region is formed. The presence of the current blocking layer 26 causes the n-type cladding layer 23 and the p-type first epitaxial layer 30 to be formed on both outer sides of the stripe-shaped epitaxial growth layer 30.
Clad layer 25, blocking layer 26, and p-type second clad layer 27 form an np-n-p thyristor for blocking current therethrough, which causes the active layer on the ridge 22 to be blocked. The current is concentrated on 24 to reduce the threshold current.

【0014】しかしながら、このようなSDH型構成に
おける低しきい値化半導体レーザにおいても、レーザ光
を基板に対し垂直な方向に取り出す面発光型構成が具体
化されておらず、2次元集積化の実現が望まれている。
However, even in the low threshold semiconductor laser having such an SDH type structure, the surface emitting type structure for extracting the laser light in the direction perpendicular to the substrate has not been embodied, and the surface emitting type structure can be used for two-dimensional integration. Realization is desired.

【0015】[0015]

【発明が解決しようとする課題】本発明は、レーザ光を
基板の主面に対して垂直な方向に取り出す面発光レーザ
において、上述したような諸問題を解決し、即ち劈開に
よる半導体レーザ装置と同程度の光出力−電流特性を有
し、半導体基体の表面に対して正確に垂直方向に収差、
ケラレのない光を取り出すことができて、2次元集積化
が可能な半導体レーザ装置を提供する。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in a surface emitting laser that extracts laser light in a direction perpendicular to the main surface of a substrate, that is, a semiconductor laser device by cleavage. It has the same optical output-current characteristics, and the aberration is accurately perpendicular to the surface of the semiconductor substrate.
A semiconductor laser device capable of extracting light without vignetting and capable of two-dimensional integration.

【0016】[0016]

【課題を解決するための手段】本発明半導体レーザは、
その一例の略線的拡大斜視図を図1に示すように、半導
体基板1上に、少なくとも第1伝導型のクラッド層2
と、活性層3と、第2伝導型のクラッド層4とを有して
成り、垂直エッチングで形成された共振器端面11A及
び11Bに対向して、半導体基板1の主面に対しほぼ4
5°の角度を成す結晶成長面を反射鏡面12A及び12
Bとして構成する。
The semiconductor laser of the present invention comprises:
As shown in FIG. 1 which is an enlarged schematic perspective view of an example thereof, at least a first conductivity type cladding layer 2 is formed on a semiconductor substrate 1.
And an active layer 3 and a second-conductivity-type clad layer 4, facing the cavity end faces 11A and 11B formed by vertical etching, and having a thickness of approximately 4 with respect to the main surface of the semiconductor substrate 1.
Reflective mirror surfaces 12A and 12 are used as crystal growth surfaces forming an angle of 5 °.
Configure as B.

【0017】また本発明は、図1において説明した半導
体レーザ装置において、半導体基板1の主面を{10
0}結晶面とし、矢印Aで示す共振器長方向を〈01
0〉結晶軸方向に選定して、結晶成長{110}結晶面
を反射鏡面12A及び12Bとして構成する。
In the semiconductor laser device described with reference to FIG. 1, the present invention has a main surface of the semiconductor substrate 1 of {10.
0} crystal plane, and the resonator length direction indicated by arrow A is <01
0> The crystal growth {110} crystal plane is formed as the reflecting mirror surfaces 12A and 12B by selecting the crystal axis direction.

【0018】或いは本発明は、{110}結晶面より成
る反射鏡面12A及び12Bを、半導体基板1の{10
0}結晶面より成る主面上に形成された結晶成長を阻止
する成長阻止層7の縁部7Eより成長される結晶面とさ
れ、この成長阻止層7の縁部7Eが〈001〉結晶軸方
向に延長し、〈010〉結晶軸方向に突出するように形
成して構成する。
Alternatively, according to the present invention, the reflecting mirror surfaces 12A and 12B composed of {110} crystal planes are formed on the semiconductor substrate 1 in {10}.
0} crystal plane is defined as a crystal plane grown by an edge portion 7E of a growth inhibiting layer 7 that inhibits crystal growth, and the edge portion 7E of the growth inhibiting layer 7 has a <001> crystal axis. Direction, and is formed so as to project in the <010> crystal axis direction.

【0019】更に本発明は、その一例の略線的拡大斜視
図を図3に示すように、半導体基板1を{100}結晶
面から矢印Cで示す〈0−11〉結晶軸方向に約9.7
°傾けたオフ基板より構成し、共振器長方向を〈0−1
1〉結晶軸方向から〈100〉結晶軸方向に約9.7°
傾いた方向に選定し、結晶成長{111}B結晶面を反
射鏡面12A及び12Bとして構成する。
Further, according to the present invention, as shown in FIG. 3 which is a schematic enlarged perspective view of an example thereof, the semiconductor substrate 1 is moved from the {100} crystal plane by about 9 in the <0-11> crystal axis direction indicated by the arrow C. .7
° off-substrate tilted,
Approximately 9.7 ° from the 1> crystal axis direction to the <100> crystal axis direction.
The crystal growth {111} B crystal planes are formed as the reflecting mirror surfaces 12A and 12B by selecting the inclined direction.

【0020】また更に本発明半導体レーザ装置は、その
一例の略線的拡大斜視図を図4に示すように、半導体基
板1上に、少なくとも第1伝導型のクラッド層2と、活
性層3と、第2伝導型のクラッド層4とを有して成り、
垂直エッチングで形成された共振器端面11A及び11
Bから出射されたレーザ光を、半導体基板1の主面に沿
う方向に取り出す垂直エッチングで形成された第1の反
射鏡面18を有し、第1の反射鏡面18からの反射光を
半導体基板1の主面に対し垂直な方向に取り出す結晶成
長面より成る第2の反射鏡面19を有して成る。
Further, the semiconductor laser device of the present invention has a schematic enlarged perspective view of an example thereof, as shown in FIG. 4, in which at least a first conductivity type cladding layer 2 and an active layer 3 are provided on a semiconductor substrate 1. , A second conductivity type cladding layer 4 and
Resonator end faces 11A and 11 formed by vertical etching
The semiconductor substrate 1 has a first reflecting mirror surface 18 formed by vertical etching for extracting the laser light emitted from B in a direction along the main surface of the semiconductor substrate 1. Has a second reflecting mirror surface 19 composed of a crystal growth surface taken out in a direction perpendicular to the main surface of the.

【0021】また本発明は、上述の半導体レーザ装置に
おいて、半導体基板1を{100}結晶面から〈0−1
1〉結晶軸方向に約9.7°傾けたオフ基板より構成
し、共振器長方向を〈011〉結晶軸方向に選定し、第
1の反射鏡面18を共振器長方向からほぼ45°を成し
て設け、結晶成長{111}B結晶面を第2の反射鏡面
19として構成する。
Further, according to the present invention, in the above-mentioned semiconductor laser device, the semiconductor substrate 1 is formed from the {100} crystal plane to <0-1.
1> It is composed of an off substrate tilted by about 9.7 ° to the crystal axis direction, the resonator length direction is selected as the <011> crystal axis direction, and the first reflecting mirror surface 18 is set at about 45 ° from the resonator length direction. The crystal growth {111} B crystal plane is formed as the second reflecting mirror surface 19.

【0022】更にまた本発明は、この図4に示す半導体
レーザ装置において、半導体基板1上に〈011〉結晶
軸方向に延長するリッジ20を設けて構成する。
Furthermore, the present invention is configured by providing the ridge 20 extending in the <011> crystal axis direction on the semiconductor substrate 1 in the semiconductor laser device shown in FIG.

【0023】また本発明半導体レーザ装置は、その一例
の略線的拡大斜視図を図5に示すように、半導体基板1
の主面を{100}結晶面より構成し、共振器長方向を
〈011〉結晶軸方向に選定し、第1の反射鏡面18を
共振器長方向からほぼ22.5°を成して、即ち共振器
端面11A又は11B(図示せず)に対し67.5°の
角度を成すように設け、結晶成長{110}結晶面を第
2の反射鏡面19として構成する。
Further, the semiconductor laser device of the present invention has a semiconductor substrate 1 as shown in FIG.
Of the principal plane of the {100} crystal plane, the resonator length direction is selected as the <011> crystal axis direction, and the first reflecting mirror surface 18 forms approximately 22.5 ° from the resonator length direction. That is, it is provided so as to form an angle of 67.5 ° with respect to the resonator end surface 11A or 11B (not shown), and the crystal growth {110} crystal plane is configured as the second reflecting mirror surface 19.

【0024】更にまた本発明は、この図5に示す半導体
レーザ装置において、半導体基板上に〈011〉結晶軸
方向に延長するリッジを設けて構成する。
Furthermore, the present invention is constructed by providing a ridge extending in the <011> crystal axis direction on the semiconductor substrate in the semiconductor laser device shown in FIG.

【0025】[0025]

【作用】本発明は、共振器端面を垂直エッチング又は結
晶成長により形成すると共に、特に結晶成長によって自
然発生的に得られ、且つ基板に対しほぼ正確に45°を
成す反射鏡面12A及び12Bを利用して、半導体基板
1に対し垂直な方向に効率良く出射光を取り出し得る半
導体レーザ装置を提供するものである。
According to the present invention, the cavity facets are formed by vertical etching or crystal growth, and in particular, the reflecting mirror surfaces 12A and 12B which are spontaneously obtained by crystal growth and which form substantially 45 ° with respect to the substrate are utilized. Then, a semiconductor laser device capable of efficiently extracting emitted light in a direction perpendicular to the semiconductor substrate 1 is provided.

【0026】即ち本発明は、図1に示すように半導体基
板1の主面を{100}結晶面とし、共振器長方向を
〈010〉結晶軸方向に選定するものであるが、このよ
うな構成において、MOCVD法等により結晶成長する
場合、その共振器端面11A及び11B上の縁部から自
然発生的に{110}結晶面が生じる。以下これを説明
する。
That is, according to the present invention, as shown in FIG. 1, the main surface of the semiconductor substrate 1 is a {100} crystal plane and the resonator length direction is selected as the <010> crystal axis direction. In the structure, when the crystal is grown by the MOCVD method or the like, the {110} crystal plane is spontaneously generated from the edges on the cavity end faces 11A and 11B. This will be described below.

【0027】図6Aに示すように、半導体基板1の{1
00}結晶面より成る主面1S上に、〈001〉結晶軸
方向に延長するレジスト33をパターン露光等により形
成した後、MOCVD法、MBE又は減圧MOCVD法
等によりGaAs、AlGaAs、InP、InAlG
aP等の半導体層34の結晶成長を行うと、レジスト3
3の縁部から一旦自然発生的に{110}結晶面が生じ
ると、この{110}結晶面上では成長速度が比較的遅
いことから、図6Bに示すように、レジスト33の縁部
から延長して主面1Sに対し45°を成す{110}結
晶面が形成される。またレジストに限ることなく、リッ
ジ又は溝、マスクで覆われた開口部等を上述のレジスト
33と同様に〈001〉結晶軸方向に延長するパターン
として形成すると、同様に自然発生的に主面1Sに対し
45°を成す{110}結晶面例えば(1−10)面よ
り成る斜面35A及び(110)面より成る斜面35B
が形成されることが本発明者等の鋭意考察研究の結果明
らかになった。
As shown in FIG. 6A, the semiconductor substrate 1 {1
After the resist 33 extending in the <001> crystal axis direction is formed on the main surface 1S composed of the (00) crystal planes by pattern exposure or the like, GaAs, AlGaAs, InP, InAlG is formed by MOCVD, MBE or low pressure MOCVD.
When crystal growth of the semiconductor layer 34 such as aP is performed, the resist 3
Once the {110} crystal plane spontaneously occurs from the edge of No. 3, the growth rate is relatively slow on this {110} crystal plane. Therefore, as shown in FIG. 6B, it extends from the edge of the resist 33. As a result, a {110} crystal plane forming an angle of 45 ° with the main surface 1S is formed. Further, not limited to the resist, if a ridge or a groove, an opening covered with a mask, or the like is formed as a pattern extending in the <001> crystal axis direction similarly to the resist 33 described above, the main surface 1S is spontaneously generated similarly. {110} crystal planes that form an angle of 45 ° with respect to, for example, a slope 35A composed of the (1-10) plane and a slope 35B composed of the (110) plane.
It was revealed as a result of the diligent study by the present inventors that the formation of the above phenomenon occurs.

【0028】従って、図1に示すように、この{11
0}結晶面を反射鏡面12A及び12Bとして構成する
ことによって、活性層3から出射されるレーザ光を図1
において矢印Bで示す〈100〉結晶軸方向、即ち基板
1にほぼ垂直な方向に取り出すことができる。
Therefore, as shown in FIG.
By constructing the 0} crystal planes as the reflecting mirror surfaces 12A and 12B, the laser light emitted from the active layer 3 is generated as shown in FIG.
Can be taken out in the <100> crystal axis direction indicated by arrow B, that is, in the direction substantially perpendicular to the substrate 1.

【0029】そしてこの場合結晶成長面であることか
ら、前述のRIBE法、IBAE法等の従来のドライ又
はウェットエッチングにより反射鏡面を形成する場合に
比し、その表面の平坦性、角度の制御性が格段に優れて
おり、また通常の半導体レーザと同様の成長条件をもっ
て形成し得るため極めて汎用性及び簡便性が高い。
In this case, since the surface is a crystal growth surface, the flatness of the surface and the controllability of the angle are better than in the case where the reflecting mirror surface is formed by the conventional dry or wet etching such as the above-mentioned RIBE method or IBAE method. Is remarkably excellent, and since it can be formed under the growth conditions similar to those of ordinary semiconductor lasers, it is extremely versatile and simple.

【0030】また本発明は、上述の構成において、特に
図2に示すように共振器端面11A及び11Bに結晶成
長を阻止する成長阻止層7を設けると共に、その縁部7
Eを〈001〉結晶軸方向に延長して〈010〉結晶軸
方向に突出するように設け、この縁部7Eから結晶成長
される面を反射鏡面12A及び12Bとすることによっ
て、共振器端面11A、11Bと反射鏡面12A、12
Bとをそれぞれ離間して対向させることができ、共振器
端面11A及び11Bから出射される光が反射鏡面12
A及び12Bで反射された後、成長阻止層7等によるケ
ラレを確実に回避して、基板1に対し垂直な方向に効率
良くレーザ光を取り出すことができる。
According to the present invention, in the above-mentioned structure, the growth blocking layer 7 for blocking the crystal growth is provided on the resonator end faces 11A and 11B as shown in FIG.
E is provided so as to extend in the <001> crystal axis direction so as to project in the <010> crystal axis direction, and the surfaces on which crystals are grown from this edge portion 7E are used as reflecting mirror surfaces 12A and 12B. , 11B and reflecting mirror surfaces 12A, 12
B can be made to face each other while being separated from each other, and the light emitted from the resonator end faces 11A and 11B can be reflected by the reflecting mirror surface 12
After being reflected by A and 12B, vignetting due to the growth blocking layer 7 and the like can be surely avoided, and laser light can be efficiently extracted in a direction perpendicular to the substrate 1.

【0031】また他の本発明は、図3に示すように、半
導体基板1を{100}結晶面から矢印Cで示す〈0−
11〉結晶軸方向に約9.7°傾けたオフ基板より構成
し、共振器長方向を〈0−11〉結晶軸方向から〈10
0〉結晶軸方向に約9.7°傾いた方向に選定するもの
であるが、この場合においてもMOCVD法等により結
晶成長することによって、共振器端面11A及び11B
に対向する位置には{111}Bが自然発生的に生じる
こととなる。この{111}B結晶面は、{100}結
晶面に対しほぼ54.7°を成すもので、この場合基板
1を{100}結晶面から〈0−11〉結晶軸に約9.
7°傾けたオフ基板を用いていることから、{111}
B結晶面は基板1の主面1Sに対しほぼ45°を成すこ
ととなる。従って、この{111}B結晶面を反射鏡面
12A及び12Bとして構成することによって、レーザ
光を矢印Dで示すように、基板1の主面1Sに対しほぼ
垂直な方向に取り出すことができる。
In another embodiment of the present invention, as shown in FIG. 3, the semiconductor substrate 1 is indicated by an arrow C from the {100} crystal plane <0-.
11> It is composed of an off-substrate tilted by about 9.7 ° with respect to the crystal axis direction, and the resonator length direction is <10-11 from the crystal axis direction.
0> It is selected in a direction inclined by about 9.7 ° with respect to the crystal axis direction. In this case as well, the crystal face is grown by the MOCVD method or the like so that the cavity facets 11A and 11B are
{111} B will spontaneously occur at the position opposite to. The {111} B crystal plane forms an angle of about 54.7 ° with respect to the {100} crystal plane, and in this case, the substrate 1 is oriented from the {100} crystal plane to the <0-11> crystal axis by about 9.
Since the off substrate tilted by 7 ° is used, {111}
The B crystal plane forms an angle of about 45 ° with the main surface 1S of the substrate 1. Therefore, by configuring the {111} B crystal planes as the reflecting mirror surfaces 12A and 12B, the laser light can be extracted in a direction substantially perpendicular to the main surface 1S of the substrate 1 as shown by an arrow D.

【0032】また更に本発明は、図4及び図5に示すよ
うに、半導体基板1上に、少なくとも第1伝導型のクラ
ッド層2と、活性層3と、第2伝導型のクラッド層4と
を有して成り、垂直エッチングで形成された共振器端面
11A及び11Bから出射されたレーザ光を、半導体基
板1の主面に沿う方向に取り出す垂直エッチングで形成
された第1の反射鏡面18を有し、この第1の反射鏡面
18からの反射光を半導体基板1の主面に対し垂直な方
向に取り出す結晶成長面を第2の反射鏡面19とするこ
とによって、レーザ光を効率良く垂直方向に取り出すこ
とができる。
Furthermore, according to the present invention, as shown in FIGS. 4 and 5, at least a first conductivity type cladding layer 2, an active layer 3, and a second conductivity type cladding layer 4 are provided on a semiconductor substrate 1. A first reflection mirror surface 18 formed by vertical etching for extracting laser light emitted from the cavity end faces 11A and 11B formed by vertical etching in a direction along the main surface of the semiconductor substrate 1. The second growth plane 19 has a crystal growth surface for extracting the light reflected from the first reflection mirror surface 18 in a direction perpendicular to the main surface of the semiconductor substrate 1, and thereby the laser light is efficiently emitted in the vertical direction. Can be taken out.

【0033】そしてこのような半導体レーザ装置におい
て、半導体基板1を{100}結晶面から〈0−11〉
結晶軸方向に約9.7°傾けたオフ基板より構成し、第
1の反射鏡面18を共振器長方向からほぼ45°を成し
て設けることにより、一旦レーザ光を基板1の主面1S
に沿う横方向に取出し、更に基板1に対し45°の角度
を成す自然発生的に生じる{111}B結晶面を第2の
反射鏡面19として構成するによって、レーザ光を正確
に垂直方向に取り出すことができる。
In such a semiconductor laser device, the semiconductor substrate 1 is formed from the {100} crystal plane to <0-11>.
The off-substrate tilted by about 9.7 ° in the crystal axis direction is provided, and the first reflecting mirror surface 18 is provided at an angle of about 45 ° from the cavity length direction.
The laser light is accurately extracted in the vertical direction by forming the spontaneously generated {111} B crystal plane forming an angle of 45 ° with respect to the substrate 1 as the second reflecting mirror surface 19 along the horizontal direction along the line. be able to.

【0034】また他の本発明においては、基板1上に
〈011〉結晶軸方向に延長するリッジ22を形成し、
この上に各半導体層がエピタキシャル成長される構成と
することから、前述の図8において説明した活性層の横
方向の閉じ込めがなされたSDH型構成の半導体レーザ
を構成することができ、低しきい値化がなされた面発光
レーザ装置を得ることができる。
In another embodiment of the present invention, a ridge 22 extending in the <011> crystal axis direction is formed on the substrate 1,
Since each semiconductor layer is epitaxially grown on this, a semiconductor laser having an SDH type structure in which the active layer is laterally confined as described above with reference to FIG. It is possible to obtain a surface-emitting laser device that has been optimized.

【0035】或いはまた本発明においては、半導体基板
11の主面を{100}結晶面より構成し、第1の反射
鏡面18を共振器長方向からほぼ22.5°を成して設
けることにより、レーザ光を基板1の主面1Sに沿っ
て、共振器長方向からほぼ45°を成す方向に取出し、
更にこの共振器長方向からほぼ45°を成す方向に沿っ
て自然発生的に形成される結晶成長{110}結晶面を
第2の反射鏡面19として構成することから、この基板
1の主面1Sに対し45°を成す第2の反射鏡面19に
よって、基板1に対し垂直な方向にレーザ光を取り出す
ことができる。
Alternatively, in the present invention, the main surface of the semiconductor substrate 11 is composed of {100} crystal faces, and the first reflecting mirror surface 18 is provided at an angle of approximately 22.5 ° from the cavity length direction. , The laser light is extracted along the main surface 1S of the substrate 1 in a direction forming an angle of about 45 ° from the cavity length direction,
Further, since the crystal growth {110} crystal plane spontaneously formed along the direction forming an angle of about 45 ° from the cavity length direction is configured as the second reflecting mirror surface 19, the main surface 1S of the substrate 1 is formed. With the second reflecting mirror surface 19 forming an angle of 45 ° with respect to, laser light can be extracted in a direction perpendicular to the substrate 1.

【0036】そして更に他の本発明においては、基板1
上に〈011〉結晶軸方向に延長するリッジ22を形成
して構成することから、同様に低しきい値化がなされた
SDH型構成の半導体レーザによって、低しきい値化が
なされた面発光レーザ装置を得ることができる。
In yet another embodiment of the present invention, the substrate 1
Since the ridge 22 extending in the <011> crystal axis direction is formed on the upper surface of the ridge 22, the semiconductor light emitting device of SDH type having the lower threshold value is similarly used to reduce the surface emission. A laser device can be obtained.

【0037】このように、本発明においては、劈開によ
ることなく多数の半導体レーザ装置を得ることができる
ため、2次元集積化が可能となると共に、垂直方向にレ
ーザ光を取り出す斜め反射鏡面を、結晶成長により自然
発生的に形成し得る構成とするため、半導体基体の表面
に対して正確に垂直方向に収差、ケラレのない光を取り
出すことができる。
As described above, in the present invention, since a large number of semiconductor laser devices can be obtained without cleavage, two-dimensional integration is possible, and an oblique reflecting mirror surface for extracting laser light in the vertical direction is provided. Since the structure can be formed spontaneously by crystal growth, it is possible to accurately extract light without aberration and vignetting in the direction perpendicular to the surface of the semiconductor substrate.

【0038】[0038]

【実施例】以下本発明半導体レーザ装置の各例を図面を
参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Each example of the semiconductor laser device of the present invention will be described in detail below with reference to the drawings.

【0039】先ず図1を参照して本発明の一例をその理
解を容易にするために製造方法と共に説明する。この例
においては、活性層の上にクラッド層を介して電流阻止
層を形成した後、この電流阻止層の導波領域近傍をエッ
チング除去することによって、導波領域近傍の実効的な
屈折率を大とし、電流狭窄と同時に光の閉じ込めがなさ
れるいわゆるSAN(Self-Aligned Narrow stripe)型
構成を採る場合を示す。
First, with reference to FIG. 1, an example of the present invention will be described together with a manufacturing method for easy understanding. In this example, after forming a current blocking layer on the active layer via the cladding layer, the effective refractive index near the waveguide region is removed by etching away the waveguide region near the current blocking layer. A case where a so-called SAN (Self-Aligned Narrow stripe) type configuration in which light is confined at the same time as current confinement is adopted is shown.

【0040】図1において1は第1伝導型の例えばn型
のGaAsより成る半導体基板で、1Sはその{10
0}結晶面の例えば(100)結晶面より成る主面を示
し、2は例えばn型のAlGaAsより成る第1伝導型
クラッド層、3は例えば真性のGaAsより成る活性
層、4及び6は例えばp型のAlGaAsより成る第2
伝導型クラッド層、5は例えばn型のGaAsより成る
第1伝導型の電流阻止層、7はSiNX 等より成る成長
阻止層、8は再成長により形成した例えばp型のGaA
sより成り、基板1の主面1Sに対し45°の角度を成
して成長する第2伝導型の結晶成長層で、9は結晶成長
層7に対しオーミックに接触される電極を示す。この場
合、図1において矢印Aで示す〈010〉結晶軸方向の
例えば〔010〕結晶軸方向に共振器が延長するよう
に、その共振器端面11A及び11BがRIE等の垂直
エッチングにより形成されて成り、これに対向する{1
10}結晶面の例えば(110)結晶面より成る基板1
の主面1Sに対し45°を成す結晶成長面を反射鏡面1
2A及び12Bとして構成する。10は一方の反射鏡面
12Aに被着される金属または誘電体多層膜より成る高
反射膜である。
In FIG. 1, 1 is a semiconductor substrate made of, for example, n-type GaAs of the first conductivity type, and 1S is its {10.
A major surface of the (0) crystal planes is, for example, a (100) crystal plane, 2 is a first-conductivity-type cladding layer made of, for example, n-type AlGaAs, 3 is an active layer made of, for example, intrinsic GaAs, and 4 and 6 are, for example. Second type consisting of p-type AlGaAs
The conductivity type cladding layer, 5 is a first conductivity type current blocking layer made of, for example, n type GaAs, 7 is a growth blocking layer made of SiN x, etc., and 8 is, for example, p type GaA formed by re-growth.
A second-conductivity-type crystal growth layer, which is made of s and grows at an angle of 45 ° with respect to the main surface 1S of the substrate 1, and 9 denotes an electrode in ohmic contact with the crystal growth layer 7. In this case, the resonator end faces 11A and 11B are formed by vertical etching such as RIE so that the resonator extends in, for example, the [010] crystal axis direction of the <010> crystal axis direction indicated by the arrow A in FIG. It becomes, and opposes this {1
Substrate 1 having, for example, a (110) crystal plane of a 10} crystal plane
The crystal growth surface forming an angle of 45 ° with respect to the main surface 1S of
2A and 12B. Reference numeral 10 is a highly reflective film made of a metal or dielectric multilayer film deposited on one of the reflecting mirror surfaces 12A.

【0041】図7及び図8を用いてこのような半導体レ
ーザ装置の製造工程の一例を説明する。先ず、図7Aに
示すように、第1伝導型この場合n型のGaAs等より
成る半導体基体1を用意し、この基板1の{100}結
晶面より成る主面1S上に、順次例えばMOCVD法に
よってn型AlGaAs等より成る第1伝導型クラッド
層2、真性のGaAs等より成る活性層3、p型AlG
aAs等より成る第2伝導型クラッド層4、n型AlG
aAs等より成る電流阻止層5を順次例えばMOCVD
法により成長する。
An example of the manufacturing process of such a semiconductor laser device will be described with reference to FIGS. First, as shown in FIG. 7A, a semiconductor substrate 1 made of GaAs or the like of the first conductivity type, in this case, n-type, is prepared, and is sequentially formed on the main surface 1S made of {100} crystal faces of the substrate 1 by, for example, MOCVD method. The first conductive clad layer 2 made of n-type AlGaAs, the active layer 3 made of intrinsic GaAs, and the p-type AlG
Second-conductivity-type cladding layer 4 made of aAs or the like, n-type AlG
The current blocking layer 5 made of aAs or the like is sequentially formed, for example, by MOCVD.
Grow by law.

【0042】そしてこの後導波領域50となる部分の上
部にレジストマスク(図示せず)を形成し、図7Bに示
すように、ウェットエッチング等により電流阻止層5の
一部を除去する。この場合〈010〉結晶軸方向に延長
するように、図7Bにおいて矢印Aで示す紙面に直交す
る方向に延長するパターンとして阻止層5の除去部のパ
ターニングを行う。そして更にこの上を覆うように全面
的に例えばp型AlGaAsより成る第2伝導型のクラ
ッド層6を同様にMOCVD法等によりエピタキシャル
成長する。このようにすることによって電流阻止層5の
除去された部分に電流狭窄がなされると共に、この近傍
領域の屈折率が他部に比し大となって光の閉じ込めがな
される。
Then, after that, a resist mask (not shown) is formed on the portion to be the waveguide region 50, and as shown in FIG. 7B, a part of the current blocking layer 5 is removed by wet etching or the like. In this case, the removal portion of the blocking layer 5 is patterned as a pattern extending in the direction orthogonal to the paper surface indicated by the arrow A in FIG. 7B so as to extend in the <010> crystal axis direction. Then, a second conduction type cladding layer 6 made of, for example, p-type AlGaAs is epitaxially grown on the entire surface so as to cover the same by MOCVD or the like. By doing so, current confinement is made in the removed portion of the current blocking layer 5, and the refractive index of this neighboring region is larger than that of the other portions, so that light is confined.

【0043】図7Bにおけるaa線上の断面図を図7C
に示すように、所定の共振器長LcをもってRIE等の
異方性エッチングにより基板1の主面1Sに直交する垂
直エッチングを基板1に達する深さまで行って、矢印A
で示す〈010〉結晶軸方向に延長する共振器を形成す
る。11A及び11Bは垂直エッチングによって形成さ
れた共振器端面を示す。
FIG. 7C is a sectional view taken along line aa in FIG. 7B.
As shown in FIG. 5, vertical etching perpendicular to the main surface 1S of the substrate 1 is performed by anisotropic etching such as RIE with a predetermined resonator length L c to a depth reaching the substrate 1, and an arrow A
A resonator extending in the <010> crystal axis direction is formed. Reference numerals 11A and 11B denote resonator end faces formed by vertical etching.

【0044】そしてこの後全面的に例えばSiNX 等よ
り成る保護材料膜を被着した後、RIE等により全面的
に垂直エッチングを行って第2伝導型のクラッド層6上
及び基板1の主面1S上の保護材料を除去して側壁部の
みを残し、図8Aに示すように、共振器端面11A及び
11B上の保護膜15を被着形成する。そして更にこの
保護膜15及び第2伝導型のクラッド層6上に、p型G
aAs等より成る材料層を被着した後フォトリソグラフ
ィの適用によって、キャップ層16を被着形成する。
After this, a protective material film made of, for example, SiN x is deposited over the entire surface, and then vertical etching is performed over the entire surface by RIE or the like to form the second conductivity type clad layer 6 and the main surface of the substrate 1. The protective material on 1S is removed, leaving only the side wall, and as shown in FIG. 8A, a protective film 15 is formed on the resonator end faces 11A and 11B by deposition. Further, on the protective film 15 and the second-conductivity-type cladding layer 6, a p-type G
After depositing the material layer made of aAs or the like, the cap layer 16 is deposited by applying photolithography.

【0045】次にこの上を覆うように全面的にSiO2
やSi3 4 等の誘電体層をプラズマ化学堆積法等によ
り被着した後、基板1の主面1Sに垂直な方向にRIE
等の異方性エッチングを行って側壁部のみを残し、共振
器端面11A及び11Bとこの上の保護膜15とを覆う
ように成長阻止層7を形成する。そして図8Bに示すよ
うに第2伝導型のクラッド層6上のキャップ層16を選
択エッチングにより除去する。
Next, the entire surface is covered with SiO 2 so as to cover it.
After depositing a dielectric layer such as Si 3 N 4 or the like by a plasma chemical deposition method or the like, RIE is performed in a direction perpendicular to the main surface 1S of the substrate 1.
Etching is performed anisotropically to leave the sidewalls alone, and form the growth blocking layer 7 so as to cover the resonator end faces 11A and 11B and the protective film 15 thereon. Then, as shown in FIG. 8B, the cap layer 16 on the second conductivity type cladding layer 6 is removed by selective etching.

【0046】この後、MOCVD法、MBE法又は減圧
MOCVD法等の例えば常圧MOCVD法により、通常
の成長条件、即ち成長温度780℃以上、V/III 比
(V族元素とIII 族元素の原子数比)を20以上として
例えばp型GaAsより成る第2伝導型の結晶成長層8
をエピタキシャル成長して、図8Cに示すように、垂直
エッチングで形成された共振器端面11A及び11Bに
対向して、半導体基板の主面に対しほぼ45°の角度を
成す{110}結晶面より成る反射鏡面12A及び12
Bを形成する。これは、前述したように基板1の主面1
S及び共振器長方向を適切に選定することによって、こ
の{110}結晶面上では成長速度が極めて遅いため、
自然発生的に得られるものである。この場合矢印Aで示
す図において左向きの共振器長方向を〔010〕結晶軸
方向とすると、反射鏡面12Aが(1−10)結晶面、
反射鏡面12Bが(110)結晶面となる。
After that, according to, for example, an atmospheric pressure MOCVD method such as an MOCVD method, an MBE method or a low pressure MOCVD method, a normal growth condition, that is, a growth temperature of 780 ° C. or more, a V / III ratio (atoms of a group V element and a group III element) (The number ratio) is 20 or more, and the second-conductivity-type crystal growth layer 8 is made of, for example, p-type GaAs.
Is epitaxially grown, and as shown in FIG. 8C, it is composed of {110} crystal planes facing the cavity end faces 11A and 11B formed by vertical etching and forming an angle of about 45 ° with the main surface of the semiconductor substrate. Reflecting mirror surfaces 12A and 12
Form B. This is the main surface 1 of the substrate 1 as described above.
By properly selecting S and the cavity length direction, the growth rate is extremely slow on this {110} crystal plane.
It is obtained spontaneously. In this case, when the cavity length direction to the left in the diagram indicated by the arrow A is the [010] crystal axis direction, the reflecting mirror surface 12A is the (1-10) crystal surface,
The reflecting mirror surface 12B becomes a (110) crystal plane.

【0047】このように、本発明においては反射鏡面1
2A及び12Bを結晶成長面とすることができることか
ら、その表面の平坦性及び角度の制御性を従来に比し格
段に良好にすることができる。そして更にこの場合、例
えば非常な高温による拡散等、比較的成長しにくい方法
を採ることなく、通常の半導体レーザと同様の温度条
件、V/III 比等の成長条件をもって形成することがで
きることから、汎用性及び簡便性において極めて有利と
なる。
As described above, in the present invention, the reflecting mirror surface 1
Since 2A and 12B can be used as the crystal growth surface, the flatness of the surface and the controllability of the angle can be remarkably improved as compared with the conventional case. Further, in this case, since it is possible to form under the same temperature condition as that of a normal semiconductor laser and the growth condition such as V / III ratio without adopting a method which is relatively difficult to grow such as diffusion due to extremely high temperature, It is extremely advantageous in terms of versatility and simplicity.

【0048】そしてこの後図1に示すように活性層3上
の結晶成長層8の上面と、図示しないが基板1の裏面と
にオーミック接続される電極9を被着し、また例えば一
方の反射鏡面12A上に誘電体等より成る高反射膜10
を被着して、本発明半導体レーザ装置を得ることができ
る。
Then, as shown in FIG. 1, an electrode 9 which is ohmic-connected to the upper surface of the crystal growth layer 8 on the active layer 3 and the back surface of the substrate 1 (not shown) is deposited, and one of the reflections is reflected, for example. Highly reflective film 10 made of a dielectric or the like on the mirror surface 12A
Then, the semiconductor laser device of the present invention can be obtained.

【0049】このようなレーザ装置に電流を注入する
と、二つの垂直な端面11A及び11Bの間で共振器が
構成されてレーザ発振を起こし、一旦基板1の主面1S
に対し平行に出射された光は、45°の反射鏡面12A
及び12Bにより基板1に垂直な方向に反射されること
になり、面発光が実現される。
When a current is injected into such a laser device, a resonator is formed between the two vertical end faces 11A and 11B to cause laser oscillation, and the main surface 1S of the substrate 1 is temporarily cut.
The light emitted in parallel with is the mirror surface 12A of 45 °.
And 12B, the light is reflected in the direction perpendicular to the substrate 1, and surface emission is realized.

【0050】またこの場合SAN型構成を採っているた
め、電流狭窄と共に光の横方向の閉じ込めもなされ、低
しきい値化がなされた面発光レーザを得ることができ
る。
Further, in this case, since the SAN type structure is adopted, the current is confined and the light is confined in the lateral direction, so that the surface emitting laser having a lower threshold value can be obtained.

【0051】またこの場合SAN型構成の例について説
明したが、その他図9に示すように活性層3上に共振器
長方向に延長するストライプ状のガイド層41を設けこ
の上にこれを覆うように第2伝導型のクラッド層4、電
流阻止層5等を順次被着するいわゆるRib型構成の半
導体レーザ装置に上述の本発明を適用することもでき
る。図9において、図1に対応する部分には同一符号を
付して重複説明を省略する。この場合においても、低し
きい値化がなされた面発光レーザを得ることができる。
In this case, the example of the SAN type structure has been described. In addition, as shown in FIG. 9, a striped guide layer 41 extending in the cavity length direction is provided on the active layer 3 so as to cover it. The present invention can also be applied to a semiconductor laser device having a so-called Rib type structure in which the second conductivity type cladding layer 4, the current blocking layer 5 and the like are sequentially applied to the semiconductor laser device. 9, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and duplicate description will be omitted. Even in this case, it is possible to obtain a surface emitting laser having a lowered threshold value.

【0052】次に、図2を参照して本発明の他の例を詳
細に説明する。この場合においては、成長阻止層7の基
部側の縁部7Eを共振器長方向即ち矢印Cで示す〈00
1〉結晶軸方向に延長し、矢印Aで示す〈010〉結晶
軸方向に突出するように設ける。この製造方法の一例を
図10A〜Cを参照して説明する。図2及び図10A〜
Cにおいて、図1及び図8A〜Cに対応する部分には同
一符号を付して重複説明を省略する。
Next, another example of the present invention will be described in detail with reference to FIG. In this case, the edge portion 7E of the growth blocking layer 7 on the base side is shown in the cavity length direction, that is, the arrow C <00.
1> Provided so as to extend in the crystal axis direction and project in the <010> crystal axis direction indicated by arrow A. An example of this manufacturing method will be described with reference to FIGS. 2 and 10A-
In C, parts corresponding to those in FIGS. 1 and 8A to 8C are denoted by the same reference numerals, and duplicate description will be omitted.

【0053】先ず図10Aに示すように、半導体基板1
上に、上述の図1の斜視図及び図8A〜Cの工程図にお
いて説明した例と同様に、各層2〜6及び保護膜15を
形成した後、図10Bに示すように、SiO2 、Si3
4 等の誘電体より成る成長阻止層7を、上述したよう
に基部側の縁部7Eが共振器長方向に突出するようにパ
ターニング形成する。そしてこの後第2伝導型の結晶成
長層8をエピタキシャル成長すると、成長阻止層7上に
おいては成長が生じず、成長層8は成長阻止層7の縁部
7Eから延長して形成される。この場合第2伝導型クラ
ッド層6の上部にも、成長阻止層7の頂部内側の縁部か
ら延長して成長層8が形成される。
First, as shown in FIG. 10A, the semiconductor substrate 1
After forming the respective layers 2 to 6 and the protective film 15 in the same manner as the example described above in the perspective view of FIG. 1 and the process diagrams of FIGS. 8A to 8C, as shown in FIG. 10B, SiO 2 , Si 3
The growth stop layer 7 made of a dielectric material such as N 4 is patterned so that the edge portion 7E on the base side projects in the cavity length direction as described above. Then, when the second-conductivity-type crystal growth layer 8 is epitaxially grown thereafter, no growth occurs on the growth blocking layer 7, and the growth layer 8 is formed extending from the edge portion 7E of the growth blocking layer 7. In this case, the growth layer 8 is also formed on the second conduction type clad layer 6 so as to extend from the inner edge of the top of the growth blocking layer 7.

【0054】そしてこの場合、基板1と45°を成して
結晶成長される反射鏡面12A及び12Bは、図1の例
に比し成長阻止層7からより離間して形成されることと
なり、この反射鏡面12A及び12Bで基板1と垂直な
方向に反射されたレーザ光は、成長阻止層7によってケ
ラレが生じることがなく、効率良く面発光を行うことが
できる。
In this case, the reflecting mirror surfaces 12A and 12B which are 45 ° in crystal growth with the substrate 1 are formed farther from the growth blocking layer 7 than in the example of FIG. The laser light reflected by the reflecting mirror surfaces 12A and 12B in the direction perpendicular to the substrate 1 can efficiently emit surface light without vignetting due to the growth blocking layer 7.

【0055】またこの場合においても、反射鏡面12A
及び12Bが結晶成長により形成され、良好な平坦性及
び角度制御性をもち、その成長条件も通常の半導体レー
ザと同程度であることから、汎用性及び簡便性に優れた
面発光型の半導体レーザ装置を得ることができる。
Also in this case, the reflecting mirror surface 12A
And 12B are formed by crystal growth, have good flatness and angle controllability, and their growth conditions are almost the same as those of ordinary semiconductor lasers. Therefore, the surface emitting semiconductor laser is excellent in versatility and simplicity. The device can be obtained.

【0056】尚、上述の図1及び図2において説明した
例において、成長阻止層7の厚さは効率良くレーザ光を
外部に出射させるためにはレーザ光の波長λに対しλ/
2程度に選定することが望ましい。
In the example described with reference to FIGS. 1 and 2, the growth stop layer 7 has a thickness of λ / λ with respect to the wavelength λ of the laser light in order to efficiently emit the laser light to the outside.
It is desirable to select around 2.

【0057】また上述の各例において共振器の両端面か
らレーザ光を出射させて2光束のレーザを得る場合、共
振器長及び成長阻止層7の厚さ、縁部7Eの長さ等を適
切に選定することによって、各レーザ光の間隔を任意に
制御性良く形成することができる。
Further, in the above-mentioned respective examples, when laser light is emitted from both end faces of the resonator to obtain a laser of two light fluxes, the resonator length, the thickness of the growth blocking layer 7, the length of the edge portion 7E, etc. are appropriate. By selecting, the interval of each laser beam can be arbitrarily formed with good controllability.

【0058】更にこれらの例においては、上述したよう
に活性層3上の結晶成長層8は、反射鏡面12A及び1
2Bを構成する成長層8と同様に基板1と45°を成す
{110}結晶面を形成しながら成長する。これを利用
して、例えば図11に示すように、半導体基板1の主面
に平行に〈010〉結晶軸方向に延長し、活性層の高さ
が上述の活性層3に比し高い位置に形成された半導体レ
ーザ(図示せず)を同一基板上に形成することによっ
て、矢印La及びLbで示すように2光束のレーザを得
ると共に、この両側に形成された他の半導体レーザから
の出射光Lc及びLdを、上述の活性層3上の反射鏡面
12C及び12Dにおいて垂直方向に出射させ、4光束
のマルチビーム面発光型の半導体レーザを得ることがで
きる。
Further, in these examples, as described above, the crystal growth layer 8 on the active layer 3 has the reflecting mirror surfaces 12A and 1A.
Similarly to the growth layer 8 forming 2B, the growth is performed while forming a {110} crystal plane forming 45 ° with the substrate 1. By utilizing this, as shown in FIG. 11, for example, the active layer extends in the <010> crystal axis direction parallel to the main surface of the semiconductor substrate 1 and the height of the active layer is higher than that of the active layer 3 described above. By forming the formed semiconductor laser (not shown) on the same substrate, a laser beam with two light fluxes is obtained as shown by arrows La and Lb, and emitted light from other semiconductor lasers formed on both sides of the laser beam is obtained. By emitting Lc and Ld in the vertical direction on the reflecting mirror surfaces 12C and 12D on the active layer 3 described above, a four-beam multi-beam surface emitting semiconductor laser can be obtained.

【0059】次に、図3を参照して本発明の他の例を詳
細に説明する。図3において、図1に対応する部分には
同一符号を付して重複説明を省略する。
Next, another example of the present invention will be described in detail with reference to FIG. In FIG. 3, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and redundant description will be omitted.

【0060】この場合、半導体基板1として、{10
0}結晶面から〈0−11〉結晶軸方向に約9.7°傾
けたオフ基板を用いて、共振器長方向を〈0−11〉結
晶軸方向から{100}結晶面と90°を成す〈10
0〉結晶軸方向に約9.7°傾いた方向に選定して、例
えば上述の図1に示す例と同様の材料組成、構成をもっ
て形成することができる。この場合反射鏡面12A及び
12Bとしては、同様に自然発生的に結晶成長{11
1}B結晶面の例えば(11−1)結晶面及び(1−1
1)結晶面として成長形成される。{111}B結晶面
は{100}結晶面に対しほぼ54.7°の角度を成
し、この場合{100}結晶面に対し9.7°の角度を
成すオフ基板を用いていることから、反射鏡面12A及
び12Bはそれぞれ基板1の主面1Sに対してほぼ45
°なすように設けることができる。
In this case, as the semiconductor substrate 1, {10
Using an off-substrate tilted by about 9.7 ° from the <0-11> crystal plane to the <0-11> crystal axis direction, the cavity length direction is set to 90 ° with the {100} crystal plane from the <0-11> crystal axis direction. Make up <10
0> It can be formed by selecting a direction inclined by about 9.7 ° with respect to the crystal axis direction and having, for example, the same material composition and constitution as the example shown in FIG. In this case, as the reflecting mirror surfaces 12A and 12B, similarly, crystal growth {11
For example, the (11-1) crystal plane and the (1-1) crystal plane of the 1} B crystal plane
1) It is grown and formed as a crystal plane. The {111} B crystal plane forms an angle of approximately 54.7 ° with respect to the {100} crystal plane, and in this case, an off-substrate that forms an angle of 9.7 ° with respect to the {100} crystal plane is used. , The reflecting mirror surfaces 12A and 12B are approximately 45 with respect to the main surface 1S of the substrate 1, respectively.
° It can be installed so that

【0061】従って、この場合においても、電流を注入
によりレーザ発振を起こし、一旦基板1の主面1Sに対
し平行に出射された光を、基板1に対し45°を成す反
射鏡面12A及び12Bにより基板1に垂直な方向に反
射させ、面発光を実現することができる。
Therefore, also in this case, the laser oscillation is generated by the injection of the current, and the light once emitted parallel to the main surface 1S of the substrate 1 is reflected by the reflecting mirror surfaces 12A and 12B forming 45 ° with respect to the substrate 1. Surface emission can be realized by reflecting the light in a direction perpendicular to the substrate 1.

【0062】次に図4を参照して本発明の他の例を詳細
に説明する。この例においては、前述の図12において
説明したSDH型構成の半導体レーザに本発明を適用し
た場合を示す。
Next, another example of the present invention will be described in detail with reference to FIG. In this example, the case where the present invention is applied to the semiconductor laser having the SDH type structure described in FIG. 12 is shown.

【0063】この場合{100}結晶面から〈0−1
1〉結晶軸方向に約9.7°傾けたオフ基板より成る基
板1のその主面1S上に、〈011〉結晶軸方向から
〈100〉結晶軸方向に9.7°傾斜した方向に延長す
るリッジ22を設け、その上に順次n型AlGaAs等
より成る第1伝導型クラッド層2、真性のGaAs等よ
り成る活性層3、p型のAlGaAs等より成る第2伝
導型クラッド層4を順次例えばMOCVD法により被着
形成する。このとき、リッジ22の縁部に沿って一旦
{111}B結晶面が生じると、この面上ではエピタキ
シャル成長が生じにくいため、リッジ22上と両側の溝
内とにおいて、各層2、3及び4は{111}B結晶面
より成る斜面に分断されて形成され、活性層3の横方向
端面がクラッド層4により埋め込まれて横方向の閉じ込
めがなされた低しきい値の半導体レーザとすることがで
きる。
In this case, from the {100} crystal plane, <0-1
1> Extending from the <011> crystal axis direction to the <100> crystal axis direction by 9.7 ° on the main surface 1S of the substrate 1 made of an off substrate tilted by about 9.7 degrees in the crystal axis direction. Ridge 22 is provided, and a first conduction type clad layer 2 made of n-type AlGaAs, an active layer 3 made of intrinsic GaAs, and a second conduction type clad layer 4 made of p-type AlGaAs are sequentially formed on the ridge 22. For example, it is deposited by MOCVD. At this time, once the {111} B crystal plane is formed along the edge of the ridge 22, epitaxial growth is unlikely to occur on this plane, so that the layers 2, 3 and 4 are formed on the ridge 22 and in the grooves on both sides. It is possible to obtain a low threshold semiconductor laser in which the lateral end face of the active layer 3 is formed by being divided into slopes composed of {111} B crystal planes, and the lateral end faces of the active layer 3 are buried by the cladding layer 4. .

【0064】そしてこの場合、図4に示すように、所定
の共振器長Lc をもってRIE等の垂直エッチングによ
り共振器端面11A及び11Bを形成すると共に、この
共振器長方向即ち矢印Fで示す〈011〉結晶軸方向に
沿う一の側面11C、更にこの両端面11A及び11B
に対し45°を成す第1の反射鏡面18を同様に垂直エ
ッチングにより形成し、いわばその上面がほぼM字型パ
ターンとなるようにフォトリソグラフィ等の適用によっ
てRIE等の異方性エッチングを用いてパターニング形
成する。
In this case, as shown in FIG. 4, the cavity facets 11A and 11B are formed by vertical etching such as RIE with a predetermined cavity length L c , and the cavity length direction, that is, arrow F indicates <. 011> One side surface 11C along the crystal axis direction, and both end surfaces 11A and 11B
Similarly, the first reflecting mirror surface 18 forming an angle of 45 ° is formed by vertical etching, and anisotropic etching such as RIE is applied by applying photolithography or the like so that the upper surface of the first reflecting mirror surface 18 becomes a substantially M-shaped pattern. Patterning is formed.

【0065】更にこの上に上述の図1及び図3の例と同
様に、SiO2 、Si3 4 等より成る成長阻止層7
を、全面被着、異方性エッチング及び選択エッチング等
により形成する。このとき、成長阻止層7は共振器端面
11A及び11B、側面11C、第1の反射鏡面18上
に被着されると共に、この共振器端面11A及び11B
と第1の反射鏡面18とに挟まれ且つ基板1の主面1S
に平行な底面部にも被着されるようにパターニング形成
し、成長阻止層7によって、矢印Fで示す〈011〉結
晶軸方向に延長する結晶面が基板1上に露出されるよう
になす。
Furthermore, similarly to the above-mentioned examples of FIGS. 1 and 3, a growth blocking layer 7 made of SiO 2 , Si 3 N 4 or the like is further formed thereon.
Are formed by overall surface deposition, anisotropic etching, selective etching, or the like. At this time, the growth stop layer 7 is deposited on the resonator end faces 11A and 11B, the side face 11C, and the first reflecting mirror surface 18, and at the same time, the resonator end faces 11A and 11B.
And the first reflecting mirror surface 18 and the main surface 1S of the substrate 1
Patterning is performed so that it is also deposited on the bottom surface parallel to the substrate 1. The growth blocking layer 7 exposes the crystal plane extending in the <011> crystal axis direction indicated by arrow F on the substrate 1.

【0066】そしてこの後p型GaAs等より成る第2
伝導型の結晶成長層8を再びMOCVD法又はMBE法
等によりエピタキシャル成長する。この場合において
も、〈011〉結晶軸方向に沿って延長する成長阻止層
7に沿って{111}B結晶面が一旦生じると、この面
においてはエピタキシャル成長が生じにくいため、{1
11}B結晶面のこの場合(1−11)結晶面より成る
第2の反射鏡面19が、共振器側面11Cに沿って、第
1の反射鏡面18に対向するように自然発生的に形成さ
れる。そしてこの場合においても、基板1を{100}
結晶面から〈0−11〉結晶軸方向に9.7度傾いたオ
フ基板を用いていることから、この{111}B結晶面
より成る第2の反射鏡面19は基板1の主面1Sに対し
45度を成すように形成される。
After that, a second layer made of p-type GaAs or the like is used.
The conduction type crystal growth layer 8 is again epitaxially grown by the MOCVD method or the MBE method. Also in this case, once the {111} B crystal plane is formed along the growth inhibition layer 7 extending along the <011> crystal axis direction, epitaxial growth is unlikely to occur on this plane.
The second reflecting mirror surface 19 of the 11} B crystal plane, which is the (1-11) crystal plane in this case, is spontaneously formed along the resonator side surface 11C so as to face the first reflecting mirror surface 18. It Also in this case, the substrate 1 is {100}
Since the off substrate tilted by 9.7 degrees from the crystal plane in the <0-11> crystal axis direction is used, the second reflecting mirror surface 19 composed of the {111} B crystal plane is formed on the main surface 1S of the substrate 1. It is formed to form an angle of 45 degrees.

【0067】そしてこのような構成において、図示しな
いが両共振器端面11A及び11Bに挟まれた発光領域
の上部と、基板1の裏面とにオーミックに接続する電極
を設けてここに電流供給することによって、レーザ発振
を起こし、端面11Aから出射された矢印L1 で示すレ
ーザ光を第1の反射鏡面18によって基板1の主面1S
に沿い且つ共振器長方向と45°を成す矢印L2 で示す
方向に取り出し、更にこの光を基板1の主面1Sに対し
45°を成す第2の反射鏡面19によって、矢印LO
示すように基板1に対し垂直な方向に取り出すことがで
き、面発光レーザを得ることができる。
In such a structure, although not shown, an electrode for ohmic connection is provided in the upper part of the light emitting region sandwiched between the two resonator end faces 11A and 11B and in the rear face of the substrate 1 to supply current thereto. The laser light shown by the arrow L 1 emitted from the end surface 11A is oscillated by the first reflecting mirror surface 18 and the main surface 1S of the substrate 1
The second reflecting mirror 19 along and taken out in the direction indicated by the arrow L 2 constituting the resonator length direction and 45 °, forming a further 45 ° the light to the main surface 1S of the substrate 1 are shown by arrows L O Thus, the surface emitting laser can be obtained by taking out in the direction perpendicular to the substrate 1.

【0068】次に、図5を参照して本発明の他の例を詳
細に説明する。図5において、図4に対応する部分には
同一符号を付して重複説明を省略する。この例において
は、半導体基板1の主面1Sを{100}結晶面より構
成し、共振器長方向を〈011〉結晶軸方向に選定する
と共に、共振器長方向に延長するリッジ22を形成して
この上にSDH型構成の低しきい値の半導体レーザを形
成する場合を示す。
Next, another example of the present invention will be described in detail with reference to FIG. 5, parts corresponding to those in FIG. 4 are designated by the same reference numerals, and redundant description will be omitted. In this example, the main surface 1S of the semiconductor substrate 1 is composed of {100} crystal faces, the resonator length direction is selected as the <011> crystal axis direction, and the ridge 22 extending in the resonator length direction is formed. A case where an SDH type low threshold semiconductor laser is formed on the lever is shown.

【0069】そして第1の反射鏡面18を、共振器長方
向からほぼ22.5°を成すように、即ち一方の共振器
端面11Aとの成す角度αを67.5°として、この共
振器端面11A及び11Bと同時に垂直エッチングによ
り形成して、同時に共振器長方向に沿う側面11Cを共
振器長方向に沿うように垂直エッチングにより形成す
る。
Then, the first reflecting mirror surface 18 is formed to form an angle of approximately 22.5 ° from the resonator length direction, that is, the angle α formed with one resonator end surface 11A is set to 67.5 °, and this resonator end surface is formed. 11A and 11B are simultaneously formed by vertical etching, and at the same time, a side surface 11C along the cavity length direction is formed by vertical etching along the cavity length direction.

【0070】そしてこの場合、端面11A及び11B、
第1の反射鏡面18及び側面11Cを覆うと共に、端面
11Aと第1の反射鏡面18とに挟まれ、主面1Sに沿
う底面部の一部を覆うようにSi3 4 、SiO2 等よ
り成る成長阻止層7を設け、特にこの底面部においてそ
の一の縁部7Sが矢印Fで示す〈001〉結晶軸方向に
沿うようにパターニング形成する。
In this case, the end faces 11A and 11B,
While covering the first reflecting mirror surface 18 and the side surface 11C, it is sandwiched between the end surface 11A and the first reflecting mirror surface 18, and is covered with Si 3 N 4 , SiO 2 or the like so as to cover a part of the bottom surface portion along the main surface 1S. The growth preventing layer 7 is formed, and in particular, patterning is performed so that one edge portion 7S thereof is along the <001> crystal axis direction indicated by the arrow F on the bottom surface portion.

【0071】このような構成において、MOCVD法又
はMBE法等により例えばp型AlGaAs等をエピタ
キシャル成長すると、上述の図1に示す例と同様に、自
然発生的に上述の縁部7Sに沿って基板1の主面1Sに
対し45°を成す{110}結晶面が成長し、これを第
2の反射鏡面19として構成することによって、共振器
端面11A及び11Bからの出射光L1 を、第1の反射
面18により矢印L2で示すように、共振器長方向から
約22.5°を成す方向に反射させた後、基板1の主面
1Sに対し45°を成す第2の反射鏡面19によって矢
印LO で示すように基板1に対し垂直な方向に取り出す
ことができる。
In such a structure, when, for example, p-type AlGaAs or the like is epitaxially grown by MOCVD or MBE, the substrate 1 is spontaneously formed along the edge 7S as in the example shown in FIG. The {110} crystal plane forming an angle of 45 ° with respect to the main surface 1S of the above is formed as the second reflecting mirror surface 19, so that the light L 1 emitted from the resonator end faces 11A and 11B can be converted into the first As shown by an arrow L 2 by the reflecting surface 18, after being reflected in a direction forming about 22.5 ° from the cavity length direction, by the second reflecting mirror surface 19 forming 45 ° with respect to the main surface 1S of the substrate 1. It can be taken out in a direction perpendicular to the substrate 1 as indicated by an arrow L O.

【0072】これら各例においては、劈開を施すことな
しにレーザ装置を作製することができ、基板表面に対し
正確に垂直な方向に、収差やケラレのないレーザ光を取
り出すことができる。このため、基板を素子毎に分割す
る以前にレーザの特性を測定することができ、検査時間
の低減、実装コストの低減化をはかることができる。ま
た、素子の形状を小さくすることができる。即ち劈開に
よる場合は300×300μm2 程度の形状であった
が、本発明においては、一素子当たり最小で10×10
μm2 程度の微小形状とすることができ、高密度の2次
元集積化面発光レーザを得ることができることとなる。
In each of these examples, a laser device can be manufactured without cleaving, and laser light free from aberration and vignetting can be taken out in a direction perpendicular to the surface of the substrate. Therefore, the characteristics of the laser can be measured before the substrate is divided into each element, and the inspection time and the mounting cost can be reduced. Further, the shape of the element can be reduced. That is, the shape of about 300 × 300 μm 2 was obtained by cleavage, but in the present invention, the minimum per element is 10 × 10.
It is possible to obtain a high-density two-dimensionally integrated surface-emitting laser because it can be formed in a minute shape of about μm 2 .

【0073】そして上述の各例による半導体レーザ装置
においては、一素子当たり10mW以上の光出力を得る
ことができ、垂直共振器型面発光レーザに比し大なる出
力とすることができ、また劈開により形成された半導体
レーザ素子と同程度の光出力−電流特性を得ることがで
きた。
In the semiconductor laser device according to each of the above-mentioned examples, an optical output of 10 mW or more per element can be obtained, a large output can be obtained as compared with the vertical cavity surface emitting laser, and the cleavage can be achieved. It was possible to obtain the same optical output-current characteristics as the semiconductor laser device formed by.

【0074】尚、本発明は上述の各実施例において説明
した構成に限定されることはなく、その他種々の材料構
成を採り得ることはいうまでもなく、例えば各層の組成
を上述したAlGaAs/GaAs系の他、可視光型の
InAlGaP/InGaP/GaAs系や、長波長型
のInGaAsP/InP系の材料を用いる等、種々の
半導体レーザ装置においても本発明を適用し得ることは
もちろんである。
It is needless to say that the present invention is not limited to the constitution described in each of the above-mentioned embodiments, and various other material constitutions can be adopted. For example, the composition of each layer is the above-mentioned AlGaAs / GaAs. Of course, the present invention can be applied to various semiconductor laser devices such as a visible light type InAlGaP / InGaP / GaAs system and a long wavelength type InGaAsP / InP type material.

【0075】[0075]

【発明の効果】上述したように本発明によれば結晶成長
反射鏡面を用いることから、劈開によって形成された半
導体レーザ装置と同程度の光出力−電流特性を得ること
ができ、また反射鏡面の角度制御性に優れているため半
導体基板に対し正確に垂直な方向に、収差やケラレのな
いレーザ光を取り出すことができる。そしてこのような
本発明によれば半導体レーザ装置の2次元集積化が可能
となる。
As described above, according to the present invention, since the crystal growth reflecting mirror surface is used, it is possible to obtain the same optical output-current characteristic as that of the semiconductor laser device formed by cleavage, and the reflecting mirror surface Since the angle controllability is excellent, it is possible to take out laser light without aberration and vignetting in a direction perpendicular to the semiconductor substrate accurately. According to the present invention as described above, the semiconductor laser device can be two-dimensionally integrated.

【0076】また本発明半導体レーザ装置は、例えば高
温成長等によることなく、通常の成長条件をもって形成
し得ることから、汎用性及び簡便性において極めて有利
となる。
Further, since the semiconductor laser device of the present invention can be formed under normal growth conditions without, for example, high temperature growth, it is extremely advantageous in versatility and simplicity.

【0077】また特に、その半導体レーザをSAN型構
成、Rib型構成としたり、又は共振器長の延長方向、
成長条件等を適切に選定してSDH型構成とすることに
よって、低しきい値の面発光レーザ装置を得ることがで
きる。
Further, in particular, the semiconductor laser has a SAN type structure, a Rib type structure, or an extension direction of the cavity length,
A low threshold surface emitting laser device can be obtained by appropriately selecting growth conditions and the like to form an SDH type structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明半導体レーザ装置の一例の略線的拡大斜
視図である。
FIG. 1 is an enlarged schematic perspective view of an example of a semiconductor laser device of the present invention.

【図2】本発明半導体レーザ装置の他の例の略線的拡大
斜視図である。
FIG. 2 is an enlarged schematic perspective view of another example of the semiconductor laser device of the present invention.

【図3】本発明半導体レーザ装置の他の例の略線的拡大
斜視図である。
FIG. 3 is an enlarged schematic perspective view of another example of the semiconductor laser device of the present invention.

【図4】本発明半導体レーザ装置の他の例の略線的拡大
斜視図である。
FIG. 4 is an enlarged schematic perspective view of another example of the semiconductor laser device of the present invention.

【図5】本発明半導体レーザ装置の他の例の略線的拡大
斜視図である。
FIG. 5 is an enlarged schematic perspective view of another example of the semiconductor laser device of the present invention.

【図6】反射鏡面の成長態様の説明図である。FIG. 6 is an explanatory diagram of a growth mode of a reflecting mirror surface.

【図7】本発明半導体レーザ装置の一例の製造工程図で
ある。
FIG. 7 is a manufacturing process diagram of an example of a semiconductor laser device of the present invention.

【図8】本発明半導体レーザ装置の一例の製造工程図で
ある。
FIG. 8 is a manufacturing process diagram of an example of a semiconductor laser device of the present invention.

【図9】本発明半導体レーザ装置の他の例の略線的拡大
斜視図である。
FIG. 9 is an enlarged schematic perspective view of another example of the semiconductor laser device of the present invention.

【図10】本発明半導体レーザ装置の他の例の製造工程
図である。
FIG. 10 is a manufacturing process diagram of another example of the semiconductor laser device of the present invention.

【図11】本発明半導体レーザ装置の他の例の略線的拡
大斜視図である。
FIG. 11 is a schematic enlarged perspective view of another example of the semiconductor laser device of the present invention.

【図12】従来の半導体レーザ装置の一例の略線的拡大
斜視図である。
FIG. 12 is an enlarged schematic perspective view of an example of a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 第1伝導型クラッド層 3 活性層 4 第2伝導型クラッド層 5 電流阻止層 6 第2伝導型クラッド層 7 成長阻止層 8 第2伝導型結晶成長層 9 電極 10 高反射膜 11A 共振器端面 11B 共振器端面 12A 反射鏡面 12B 反射鏡面 15 保護膜 18 第1の反射鏡面 19 第2の反射鏡面 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 1st conduction type clad layer 3 Active layer 4 2nd conduction type clad layer 5 Current blocking layer 6 2nd conduction type cladding layer 7 Growth inhibition layer 8 2nd conduction type crystal growth layer 9 Electrode 10 High reflection film 11A Resonator end surface 11B Resonator end surface 12A Reflective mirror surface 12B Reflective mirror surface 15 Protective film 18 First reflective mirror surface 19 Second reflective mirror surface

フロントページの続き (72)発明者 森 芳文 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内Front page continuation (72) Inventor Yoshifumi Mori 6-735 Kitashinagawa, Shinagawa-ku, Tokyo Sony Corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、少なくとも第1伝導型
のクラッド層と、活性層と、第2伝導型のクラッド層と
を有して成り、 垂直エッチングで形成された共振器端面に対向して、上
記半導体基板の主面に対しほぼ45°の角度を成す結晶
成長面が反射鏡面とされて成ることを特徴とする半導体
レーザ装置。
1. A semiconductor substrate having at least a first-conductivity-type cladding layer, an active layer, and a second-conductivity-type cladding layer, and facing a cavity end face formed by vertical etching. The semiconductor laser device is characterized in that the crystal growth surface forming an angle of about 45 ° with the main surface of the semiconductor substrate is a reflecting mirror surface.
【請求項2】 上記半導体基板の主面が{100}結晶
面より成り、共振器長方向が〈010〉結晶軸方向に選
定され、結晶成長{110}結晶面が反射鏡面とされて
成ることを特徴とする上記請求項1に記載の半導体レー
ザ装置。
2. The main surface of the semiconductor substrate is composed of a {100} crystal plane, the cavity length direction is selected to be the <010> crystal axis direction, and the crystal growth {110} crystal surface is a reflection mirror surface. The semiconductor laser device according to claim 1, wherein:
【請求項3】 上記{110}結晶面より成る反射鏡面
は、上記半導体基板の{100}結晶面より成る主面上
に形成された結晶成長を阻止する成長阻止層の縁部より
成長される結晶面とされ、上記成長阻止層の縁部が〈0
01〉結晶軸方向に延長し、〈010〉結晶軸方向に突
出するように形成されて成ることを特徴とする上記請求
項2に記載の半導体レーザ装置。
3. The reflecting mirror surface composed of the {110} crystal plane is grown from an edge portion of a growth blocking layer for preventing crystal growth formed on the main surface composed of the {100} crystal surface of the semiconductor substrate. It is a crystal plane, and the edge portion of the growth inhibiting layer is <0.
The semiconductor laser device according to claim 2, wherein the semiconductor laser device is formed so as to extend in the <01> crystal axis direction and project in the <010> crystal axis direction.
【請求項4】 上記半導体基板が{100}結晶面から
〈0−11〉結晶軸方向に約9.7°傾けたオフ基板よ
り成り、共振器長方向が〈0−11〉結晶軸方向から
〈100〉結晶軸方向に約9.7°傾いた方向に選定さ
れ、結晶成長{111}B結晶面が反射鏡面とされて成
ることを特徴とする上記請求項1に記載の半導体レーザ
装置。
4. The semiconductor substrate comprises an off-substrate tilted from the {100} crystal plane in the <0-11> crystal axis direction by about 9.7 °, and the cavity length direction is from the <0-11> crystal axis direction. 2. The semiconductor laser device according to claim 1, wherein the crystal growth {111} B crystal plane is selected as a direction inclined by about 9.7 [deg.] With respect to the <100> crystal axis direction and is a reflecting mirror surface.
【請求項5】 半導体基板上に、少なくとも第1伝導型
のクラッド層と、活性層と、第2伝導型のクラッド層と
を有して成り、 垂直エッチングで形成された共振器端面から出射された
レーザ光を、上記半導体基板の主面に沿う方向に取り出
す垂直エッチングで形成された第1の反射鏡面を有し、 上記第1の反射鏡面からの反射光を上記半導体基板の主
面に対し垂直な方向に取り出す結晶成長面より成る第2
の反射鏡面を有して成ることを特徴とする半導体レーザ
装置。
5. A semiconductor substrate having at least a first-conductivity-type cladding layer, an active layer, and a second-conductivity-type cladding layer, which is emitted from a cavity end facet formed by vertical etching. Has a first reflecting mirror surface formed by vertical etching for extracting the laser light in a direction along the main surface of the semiconductor substrate, and reflecting light from the first reflecting mirror surface to the main surface of the semiconductor substrate. Second, consisting of crystal growth planes taken out in the vertical direction
A semiconductor laser device having a reflecting mirror surface of.
【請求項6】 上記半導体基板が{100}結晶面から
〈0−11〉結晶軸方向に約9.7°傾けたオフ基板よ
り成り、 上記第1の反射鏡面が共振器長方向からほぼ45°を成
して設けられ、 結晶成長{111}B結晶面が上記第2の反射鏡面とさ
れて成ることを特徴とする上記請求項4に記載の半導体
レーザ装置。
6. The semiconductor substrate is an off-substrate tilted from the {100} crystal plane in the <0-11> crystal axis direction by about 9.7 °, and the first reflecting mirror surface is approximately 45 from the cavity length direction. 5. The semiconductor laser device according to claim 4, wherein the crystal growth {111} B crystal plane is provided as a second reflection mirror surface.
【請求項7】 上記半導体基板上に〈011〉結晶軸方
向に延長するリッジが設けられて成ることを特徴とする
上記請求項5に記載の半導体レーザ装置。
7. The semiconductor laser device according to claim 5, wherein a ridge extending in the <011> crystal axis direction is provided on the semiconductor substrate.
【請求項8】 上記半導体基板の主面が{100}結晶
面より成り、 上記第1の反射鏡面が共振器長方向からほぼ22.5°
を成して設けられ、 結晶成長{110}結晶面が上記第2の反射鏡面とされ
て成ることを特徴とする上記請求項4に記載の半導体レ
ーザ装置。
8. The main surface of the semiconductor substrate is composed of a {100} crystal plane, and the first reflecting mirror surface is approximately 22.5 ° from the cavity length direction.
5. The semiconductor laser device according to claim 4, wherein the crystal growth {110} crystal plane serves as the second reflecting mirror surface.
【請求項9】 上記半導体基板上に〈011〉結晶軸方
向に延長するリッジが設けられて成ることを特徴とする
上記請求項7に記載の半導体レーザ装置。
9. The semiconductor laser device according to claim 7, wherein a ridge extending in the <011> crystal axis direction is provided on the semiconductor substrate.
JP23054892A 1992-05-20 1992-08-28 Semiconductor laser device Expired - Lifetime JP3208860B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23054892A JP3208860B2 (en) 1992-05-20 1992-08-28 Semiconductor laser device
US08/062,209 US5373173A (en) 1992-05-20 1993-05-18 Apparatus for semiconductor laser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-127564 1992-05-20
JP12756492 1992-05-20
JP23054892A JP3208860B2 (en) 1992-05-20 1992-08-28 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH0637395A true JPH0637395A (en) 1994-02-10
JP3208860B2 JP3208860B2 (en) 2001-09-17

Family

ID=26463494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23054892A Expired - Lifetime JP3208860B2 (en) 1992-05-20 1992-08-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3208860B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014821A (en) * 2002-06-07 2004-01-15 Sony Corp Semiconductor laser device, structure substrate for semiconductor device and method for manufacturing semiconductor device
US7436482B2 (en) 2003-07-29 2008-10-14 Nippon Sheet Glass Company, Limited Laminated glass including a light adjuster with an electrode structure having particular thickness
JP7068560B1 (en) * 2021-06-14 2022-05-16 三菱電機株式会社 Manufacturing method of semiconductor laser device and semiconductor laser device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014821A (en) * 2002-06-07 2004-01-15 Sony Corp Semiconductor laser device, structure substrate for semiconductor device and method for manufacturing semiconductor device
US7436482B2 (en) 2003-07-29 2008-10-14 Nippon Sheet Glass Company, Limited Laminated glass including a light adjuster with an electrode structure having particular thickness
JP7068560B1 (en) * 2021-06-14 2022-05-16 三菱電機株式会社 Manufacturing method of semiconductor laser device and semiconductor laser device
WO2022264210A1 (en) * 2021-06-14 2022-12-22 三菱電機株式会社 Semiconductor laser device and method for manufacturing semiconductor laser device

Also Published As

Publication number Publication date
JP3208860B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
US6465269B2 (en) Semiconductor optical device and method of manufacturing the same
US6949394B2 (en) Optical semiconductor device and method of fabricating the same
JP2959902B2 (en) Semiconductor laser, device having the same, and method of manufacturing the same
JPH08107251A (en) Manufacture of reflection digital tuning laser
JP3153727B2 (en) Super luminescent diode
JP2716693B2 (en) Semiconductor laser
US5373173A (en) Apparatus for semiconductor laser
JP3813450B2 (en) Semiconductor laser element
JP2003198057A (en) Semiconductor laser element and method of manufacturing the same
JPH0461514B2 (en)
US5570385A (en) Semiconductor laser and method for manufacturing the same
JPH0637395A (en) Semiconductor laser device
JPH06132608A (en) Semiconductor laser and manufacture thereof
JPH055391B2 (en)
JP2004311556A (en) Semiconductor laser, optical module using the same, and functionally integrated laser
JP2000101200A (en) Semiconductor laser and multi semiconductor laser
JP2759275B2 (en) Light emitting diode and method of manufacturing the same
JPH065984A (en) Semiconductor laser and manufacture thereof
JP3049916B2 (en) Semiconductor laser
JP2940106B2 (en) Manufacturing method of semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JP3291783B2 (en) Semiconductor laser and its manufacturing method.
JP2726601B2 (en) Super luminescent diode and method for producing the same
JP3887733B2 (en) Method for manufacturing optical semiconductor element
JP2985349B2 (en) Manufacturing method of semiconductor laser

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9