JPH0637334A - Structure of pressure sensor - Google Patents

Structure of pressure sensor

Info

Publication number
JPH0637334A
JPH0637334A JP23125492A JP23125492A JPH0637334A JP H0637334 A JPH0637334 A JP H0637334A JP 23125492 A JP23125492 A JP 23125492A JP 23125492 A JP23125492 A JP 23125492A JP H0637334 A JPH0637334 A JP H0637334A
Authority
JP
Japan
Prior art keywords
diaphragm
thin film
short side
polycrystalline thin
strain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23125492A
Other languages
Japanese (ja)
Inventor
Makoto Oizumi
誠 大泉
Mitsuhiro Fukuda
光宏 福田
Hajime Kano
一 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Copal Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copal Electronics Co Ltd filed Critical Copal Electronics Co Ltd
Priority to JP23125492A priority Critical patent/JPH0637334A/en
Publication of JPH0637334A publication Critical patent/JPH0637334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To enlarge a change in resistance by forming a rectangular diaphragm on the surface of a silicon wafer by anisotropic etching. CONSTITUTION:A rectangular diaphragm 3 of 1.4X2.1mm is formed on the surface side of a silicon wafer 2 by anisotropic etching. On the rear side, an insulating film 5 is formed by thermal oxidation or the like, polycrystalline thin film strain gages 1 are deposited thereon by P. C. V. D. or the like and patterned and thereby an SOI structure is prepared. Thereafter a protective film 6 of Si3N4 or the like and an electrode film 7 of Al or the like are formed and patterned 4 and thereby an active bridge is constructed. In this case, polycrystalline thin film strain gages 1 are disposed in parallel to a short side Al and a short side A2 of the diaphragm 3 and in the center between the short side A1 and the short side A2 so that they are in accord with the direction of a current and in such a manner that two of them are disposed in the vicinity of the center of the diaphragm and two in the vicinity of edges thereof. By making the direction of a higher stress be in accord with the direction of the current of the polycrystalline thin film strain gages 1, a change in the resistance of the poly-crystalline thin film strain gages 1 can be enlarged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧力センサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor.

【0002】[0002]

【従来の技術】従来、図4,図5に示すように、シリコ
ンウェハー11の表面に、異方性エッチングにより長方
形のダイヤフラム12を形成した圧力センサには、拡散
歪ゲージ10を使用しており、その配置は主としてダイ
ヤフラム12の応力分布と拡散歪ゲージ10の結晶方向
により決定されている。
2. Description of the Related Art Conventionally, as shown in FIGS. 4 and 5, a diffusion strain gauge 10 is used as a pressure sensor in which a rectangular diaphragm 12 is formed on a surface of a silicon wafer 11 by anisotropic etching. The arrangement is mainly determined by the stress distribution of the diaphragm 12 and the crystal orientation of the diffusion strain gauge 10.

【0003】[0003]

【発明が解決しようとする課題】本発明の多結晶薄膜歪
ゲージを使用した圧力センサでは、歪ゲージの電流の方
向に対して、歪ゲージとしての感度が異なり、従来の拡
散歪ゲージ10と同じ配置をした場合には、充分な出力
が得られないという問題があった。尚、歪ゲージの電流
の流れる方向と平行な向きに対する歪感度を縦感度、垂
直な向きを横感度と表現すると以下の相違があった。 拡散歪ゲージ 縦感度:横感度≒1:1 薄膜歪ゲージ 縦感度:横感度≒1:0.1〜0.3
The pressure sensor using the polycrystalline thin film strain gauge of the present invention has the same sensitivity as the strain gauge with respect to the current direction of the strain gauge, and is the same as the conventional diffusion strain gauge 10. In the case of arrangement, there was a problem that sufficient output could not be obtained. When the strain sensitivity with respect to the direction parallel to the current flow direction of the strain gauge is expressed as the vertical sensitivity and the vertical direction is expressed as the lateral sensitivity, there are the following differences. Diffusion strain gauge Vertical sensitivity: Horizontal sensitivity ≈ 1: 1 Thin film strain gauge Vertical sensitivity: Horizontal sensitivity ≈ 1: 0.1-0.3

【0004】[0004]

【課題を解決するための手段】本発明は前記課題を解決
するためになされたもので、実施例に対応する図1〜図
3で説明すると、本発明による圧力センサの構造は、シ
リコンウェハー2の表面に異方性エッチングにより長方
形ダイヤフラム3を、裏面に絶縁膜5,多結晶薄膜歪ゲ
ージ1,保護膜6,電極膜7を、それぞれ形成し、上記
多結晶薄膜歪ゲージ1は、ダイヤフラム3の短辺A1と
短辺A2と平行にかつ短辺A1と短辺A2との中心に、
電流の方向と一致させて上記ダイヤフラム3の中心付近
に2本、エッジ付近に2本それぞれ配置して、4−アク
ティブブリッジを構成したものである。
The present invention has been made to solve the above-mentioned problems, and the structure of the pressure sensor according to the present invention will be described below with reference to FIGS. 1 to 3 corresponding to the embodiments. The rectangular diaphragm 3 is formed on the front surface of the same by anisotropic etching, and the insulating film 5, the polycrystalline thin film strain gauge 1, the protective film 6, and the electrode film 7 are formed on the rear surface thereof. Parallel to the short side A1 and the short side A2 and at the center of the short side A1 and the short side A2,
The four active bridges are configured by arranging two in the vicinity of the center of the diaphragm 3 and two in the vicinity of the edges so as to match the direction of the current.

【0005】[0005]

【作用】シリコンウェハー2の表面に異方性エッチング
により長方形ダイヤフラム3を形成することにより、圧
力が加わると、図6に示すようにダイヤフラム3が変形
し、応力が発生する。ここで長方形のダイヤフラム3の
場合、発生する応力は短辺部のEに対し、長辺部のDが
大きく、同様に短辺部のFに対して長辺部のCが大きく
発生する。尚、この場合、長辺部のDの圧縮応力より長
辺部のCの圧縮応力が大となる。また、ダイヤフラム3
の中心部に発生する引張り応力は、B方向に対してA方
向が大きい。従って、本発明では応力の高いA方向に多
結晶薄膜歪ゲージ1を2本、C方向に同様に2本配置し
てある。依って、応力の高い方向と多結晶薄膜歪ゲージ
1の電流の方向とを一致させることにより、多結晶薄膜
歪ゲージ1の抵抗変化を大きくとることができる。
By forming a rectangular diaphragm 3 on the surface of the silicon wafer 2 by anisotropic etching, when pressure is applied, the diaphragm 3 is deformed as shown in FIG. 6 and stress is generated. Here, in the case of the rectangular diaphragm 3, the generated stress is such that D on the long side is large with respect to E on the short side, and similarly C on the long side is large with respect to F on the short side. In this case, the compressive stress of C on the long side is larger than the compressive stress of D on the long side. Also, the diaphragm 3
The tensile stress generated in the central part of A is larger in the A direction than in the B direction. Therefore, in the present invention, two polycrystalline thin film strain gauges 1 are arranged in the A direction where the stress is high, and two polycrystalline thin film strain gauges 1 are similarly arranged in the C direction. Therefore, by matching the direction of high stress and the direction of current of the polycrystalline thin film strain gauge 1, the resistance change of the polycrystalline thin film strain gauge 1 can be made large.

【0006】[0006]

【実施例】以下、本発明を図により説明する。図1,図
2に示すように、本発明による圧力センサの構造は、シ
リコンウェハー2の表面から1.4×2.1mmの長方
形ダイヤフラム3を異方性エッチングにより形成する。
この時のダイヤフラム3の厚さは約30μmである。裏
面には、熱酸化またはP.C.V.D等により絶縁膜5
を形成し、その上にP.C.V.D等により多結晶薄膜
歪ゲージ1をデポジットしてフォトリソグラフィにより
パターニングし、SOI構造とする。その後Si
、SiOなどの保護膜6、Alなどの電極膜7
を形成パターニングして4−アクティブブリッジを構成
する。この場合、多結晶薄膜歪ゲージ1はダイヤフラム
3の短辺A1と短辺A2と平行にかつ短辺A1と短辺A
2との中心に、電流の方向と一致させて上記ダイヤフラ
ム3の中心付近に2本、エッジ付近に2本それぞれ配置
する。以上により形成したシリコンウェハー2をダイシ
ングし、ケースに接着して、ボンディング等の配線を行
って圧力センサとする。
The present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2, in the structure of the pressure sensor according to the present invention, a rectangular diaphragm 3 of 1.4 × 2.1 mm is formed from the surface of the silicon wafer 2 by anisotropic etching.
The thickness of the diaphragm 3 at this time is about 30 μm. On the back side, thermal oxidation or P. C. V. Insulating film 5 by D etc.
Forming a P. C. V. The polycrystalline thin film strain gauge 1 is deposited by D or the like and patterned by photolithography to form an SOI structure. Then Si
3 N 4 , protective film 6 such as SiO 2 , electrode film 7 such as Al
Are formed and patterned to form a 4-active bridge. In this case, the polycrystalline thin film strain gauge 1 is parallel to the short side A1 and the short side A2 of the diaphragm 3 and the short side A1 and the short side A.
Two diaphragms are arranged near the center of the diaphragm 3 and two diaphragms are arranged near the edge of the diaphragm 3 at the center of the diaphragm 3 and the direction of the current. The silicon wafer 2 formed as described above is diced, adhered to a case, and wiring such as bonding is performed to form a pressure sensor.

【0007】ダイヤフラム3の中心部に発生する引張り
応力は、図6を用いて説明したようにB方向に対してA
方向が大きい。従って、応力の高いA方向に多結晶薄膜
歪ゲージ1を2本、C方向に同様に2本配置してあるの
で、応力の高い方向と多結晶薄膜歪ゲージ1の電流の方
向とを一致させることにより、多結晶薄膜歪ゲージ1の
抵抗変化を大きくとることができる。この圧力センサに
定格圧力の1kg/cmを加えた場合、75mVの出
力が得られた。この出力は、従来の拡散歪ゲージと同様
の横方向配置をした場合と比較して3.1倍の出力であ
った。
The tensile stress generated in the central portion of the diaphragm 3 is A in the B direction as described with reference to FIG.
The direction is big. Therefore, since two polycrystalline thin film strain gauges 1 are arranged in the A direction where the stress is high and two polycrystalline gauge strain gauges 1 are similarly arranged in the C direction, the high stress direction and the current direction of the polycrystalline thin film strain gauge 1 are made to coincide with each other. As a result, the resistance change of the polycrystalline thin film strain gauge 1 can be made large. When a rated pressure of 1 kg / cm 2 was applied to this pressure sensor, an output of 75 mV was obtained. This output was 3.1 times as large as that in the case where the same lateral arrangement as that of the conventional diffusion strain gauge was used.

【0008】[0008]

【発明の効果】高い応力の位置に多結晶薄膜歪ゲージを
配置し、しかも歪感度の高い向きにパターニングしてあ
るため、ダイヤフラムの変形に対して多結晶薄膜歪ゲー
ジの抵抗変化が大きく得られ、充分な出力が得られる。
さらに、拡散歪ゲージと同様に横方向の配置をした場合
と比較して、2〜3倍の高出力が得られる。また、多結
晶薄膜歪ゲージのパターンを小さくしてスポット配置を
行うとさらに大きな出力が得られる。
EFFECTS OF THE INVENTION Since the polycrystalline thin film strain gauge is arranged at a position of high stress and is patterned in a direction having high strain sensitivity, a large resistance change of the polycrystalline thin film strain gauge can be obtained with respect to the deformation of the diaphragm. , Sufficient output is obtained.
Further, as compared with the case of disposing in the lateral direction like the diffusion strain gauge, a high output of 2-3 times can be obtained. Further, a larger output can be obtained by arranging the spots by reducing the pattern of the polycrystalline thin film strain gauge.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による圧力センサの平面図。FIG. 1 is a plan view of a pressure sensor according to the present invention.

【図2】本発明による圧力センサの断面図。FIG. 2 is a sectional view of a pressure sensor according to the present invention.

【図3】本発明による圧力センサの断面詳細図。FIG. 3 is a detailed sectional view of a pressure sensor according to the present invention.

【図4】従来の圧力センサの平面図。FIG. 4 is a plan view of a conventional pressure sensor.

【図5】従来の圧力センサの断面図。FIG. 5 is a sectional view of a conventional pressure sensor.

【図6】シリコンダイヤフラムの応力線図。FIG. 6 is a stress diagram of a silicon diaphragm.

【符号の説明】[Explanation of symbols]

1 多結晶薄膜歪ゲージ 2,11 シリコンウェハー 3,12 ダイヤフラム 4 ダイヤフラムエッジ 5 絶縁膜 6 保護膜 7 電極膜 10 拡散歪ゲージ 1 Polycrystalline thin film strain gauge 2,11 Silicon wafer 3,12 Diaphragm 4 Diaphragm edge 5 Insulation film 6 Protective film 7 Electrode film 10 Diffusion strain gauge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコンウェハー(2)の表面に異方性
エッチングにより長方形ダイヤフラム(3)を、裏面に
絶縁膜(5),多結晶薄膜歪ゲージ(1),保護膜
(6),電極膜(7)を、それぞれ形成し、上記多結晶
薄膜歪ゲージ(1)は上記ダイヤフラム(3)の短辺A
1と短辺A2と平行にかつ短辺A1と短辺A2との中心
に、電流の方向と一致させて上記ダイヤフラム(3)の
中心付近に2本、エッジ付近に2本それぞれ配置して、
4−アクティブブリッジを構成したことを特徴とする圧
力センサの構造。
1. A rectangular diaphragm (3) is formed on the surface of a silicon wafer (2) by anisotropic etching, and an insulating film (5), a polycrystalline thin film strain gauge (1), a protective film (6) and an electrode film on the back surface. (7) are formed respectively, and the polycrystalline thin film strain gauge (1) has a short side A of the diaphragm (3).
1 parallel to 1 and the short side A2 and at the center of the short side A1 and the short side A2, two are arranged near the center of the diaphragm (3) and two are arranged near the edge, respectively, in line with the direction of the current.
4-Structure of the pressure sensor characterized by comprising an active bridge.
JP23125492A 1992-07-16 1992-07-16 Structure of pressure sensor Pending JPH0637334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23125492A JPH0637334A (en) 1992-07-16 1992-07-16 Structure of pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23125492A JPH0637334A (en) 1992-07-16 1992-07-16 Structure of pressure sensor

Publications (1)

Publication Number Publication Date
JPH0637334A true JPH0637334A (en) 1994-02-10

Family

ID=16920739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23125492A Pending JPH0637334A (en) 1992-07-16 1992-07-16 Structure of pressure sensor

Country Status (1)

Country Link
JP (1) JPH0637334A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125923A1 (en) * 2010-04-01 2011-10-13 日立オートモティブシステムズ株式会社 Thermal flow sensor
US20160282205A1 (en) * 2015-03-26 2016-09-29 Sensata Technologies, Inc. Semiconductor strain gauge
US10323998B2 (en) 2017-06-30 2019-06-18 Sensata Technologies, Inc. Fluid pressure sensor
CN109913880A (en) * 2017-12-13 2019-06-21 南京机器人研究院有限公司 A kind of weldment method for protecting surface
US10488289B2 (en) 2016-04-11 2019-11-26 Sensata Technologies, Inc. Pressure sensors with plugs for cold weather protection and methods for manufacturing the plugs
US10545064B2 (en) 2017-05-04 2020-01-28 Sensata Technologies, Inc. Integrated pressure and temperature sensor
US10557770B2 (en) 2017-09-14 2020-02-11 Sensata Technologies, Inc. Pressure sensor with improved strain gauge
US10724907B2 (en) 2017-07-12 2020-07-28 Sensata Technologies, Inc. Pressure sensor element with glass barrier material configured for increased capacitive response
US10871413B2 (en) 2016-04-20 2020-12-22 Sensata Technologies, Inc. Method of manufacturing a pressure sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215062A (en) * 2010-04-01 2011-10-27 Hitachi Automotive Systems Ltd Thermal flow sensor
US8935959B2 (en) 2010-04-01 2015-01-20 Hitachi Automotive Systems, Ltd. Thermal type flow rate sensor
WO2011125923A1 (en) * 2010-04-01 2011-10-13 日立オートモティブシステムズ株式会社 Thermal flow sensor
US20160282205A1 (en) * 2015-03-26 2016-09-29 Sensata Technologies, Inc. Semiconductor strain gauge
US9714876B2 (en) * 2015-03-26 2017-07-25 Sensata Technologies, Inc. Semiconductor strain gauge
US10488289B2 (en) 2016-04-11 2019-11-26 Sensata Technologies, Inc. Pressure sensors with plugs for cold weather protection and methods for manufacturing the plugs
US10871413B2 (en) 2016-04-20 2020-12-22 Sensata Technologies, Inc. Method of manufacturing a pressure sensor
US11105698B2 (en) 2017-05-04 2021-08-31 Sensata Technologies, Inc. Method of assembling a sensing device having a double clinch seal
US10545064B2 (en) 2017-05-04 2020-01-28 Sensata Technologies, Inc. Integrated pressure and temperature sensor
US10969288B2 (en) 2017-06-30 2021-04-06 Sensata Technologies, Inc. Fluid pressure sensor
US10323998B2 (en) 2017-06-30 2019-06-18 Sensata Technologies, Inc. Fluid pressure sensor
US10724907B2 (en) 2017-07-12 2020-07-28 Sensata Technologies, Inc. Pressure sensor element with glass barrier material configured for increased capacitive response
US10557770B2 (en) 2017-09-14 2020-02-11 Sensata Technologies, Inc. Pressure sensor with improved strain gauge
CN109913880A (en) * 2017-12-13 2019-06-21 南京机器人研究院有限公司 A kind of weldment method for protecting surface

Similar Documents

Publication Publication Date Title
US4016644A (en) Methods of fabricating low pressure silicon transducers
JP3489309B2 (en) Method for manufacturing semiconductor dynamic quantity sensor and anisotropic etching mask
US4025942A (en) Low pressure transducers employing large silicon diaphragms having non-critical electrical properties
JPH0637334A (en) Structure of pressure sensor
JPH11344402A (en) Semiconductor pressure sensor
JP2617287B2 (en) Silicon micro sensor
JP3427462B2 (en) Manufacturing method of semiconductor acceleration sensor
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JP3061249B2 (en) Capacitive pressure sensor and method of manufacturing the same
JP3287287B2 (en) Distortion detecting element and method of manufacturing the same
JPS6310575A (en) Semiconductor strain detector
JPS63102377A (en) Manufacture of thin film pressure sensor
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JPS62268167A (en) Thin-film pressure sensor
JP2002162409A (en) Semiconductor acceleration sensor and its manufacturing method
JPH07221323A (en) Semiconductor sensor and its manufacture
JPH08293615A (en) Vibrating pressure sensor
JPH11101818A (en) Semiconductor sensor and its manufacture
JPH09292297A (en) Pressure sensor and its manufacture
JPH06331471A (en) Semiconductor pressure sensor
JPH06148229A (en) Semiconductor acceleration sensor
JPH0624773Y2 (en) Semiconductor acceleration sensor
JPH01239466A (en) Manufacture of semiconductor acceleration sensor
JPH06224450A (en) Manufacture of semiconductor device
JPH09126922A (en) Pressure sensor