JPH0637307B2 - Method for producing ferrous chloride aqueous solution - Google Patents

Method for producing ferrous chloride aqueous solution

Info

Publication number
JPH0637307B2
JPH0637307B2 JP9828589A JP9828589A JPH0637307B2 JP H0637307 B2 JPH0637307 B2 JP H0637307B2 JP 9828589 A JP9828589 A JP 9828589A JP 9828589 A JP9828589 A JP 9828589A JP H0637307 B2 JPH0637307 B2 JP H0637307B2
Authority
JP
Japan
Prior art keywords
aqueous solution
iron
ferrous chloride
magnetic
ferric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9828589A
Other languages
Japanese (ja)
Other versions
JPH02279528A (en
Inventor
亘章 加治
邦夫 高橋
正人 豊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9828589A priority Critical patent/JPH0637307B2/en
Publication of JPH02279528A publication Critical patent/JPH02279528A/en
Publication of JPH0637307B2 publication Critical patent/JPH0637307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、塩化第一鉄水溶液の製造に係り、より詳細に
はオーディオテープ、ビデオテープ、磁気カード等の磁
気記録媒体用磁性酸化鉄粉末及び磁性鉄粉末を製造する
際に原料として好適な塩化第一鉄水溶液の製造方法に関
するものである。
Description: FIELD OF THE INVENTION The present invention relates to the production of ferrous chloride aqueous solution, and more specifically to magnetic iron oxide powder for magnetic recording media such as audio tapes, video tapes and magnetic cards. And a method for producing a ferrous chloride aqueous solution suitable as a raw material when producing magnetic iron powder.

[従来の技術] 一般に、オーディオテープ、ビデオテープ、磁気カード
等に使用する磁気記録媒体用磁性酸化鉄粉末及び磁性鉄
粉末は、湿式法としては塩化第一鉄水溶液からのα−オ
キシ水酸化鉄、γ−オキシ水酸化鉄を出発原料とし、こ
れに焼成(脱水、焼きしめ)、還元、酸化等の処理を順
次に施して、針状のγ−Fe2O3を得、あるいその粒子表
面にコバルト変性処理によってコバルト被着したCo-γ-
Fe2O3を得ることにより、あるいは焼成還元して磁性鉄
粉末を得ることにより製造されている。この場合、得ら
れた磁性酸化鉄粉末及び磁性鉄粉末の磁気特性は、上記
出発物質であるオキシ水酸化鉄の性状、例えば粒度分布
や粒子径に依存するため、磁気記録媒体に適した磁性酸
化鉄粉末及び磁性鉄粉末を得るには優れた性状の出発物
質を使用する必要がある。
[Prior Art] Generally, magnetic iron oxide powder and magnetic iron powder for magnetic recording media used for audio tapes, video tapes, magnetic cards and the like are obtained by a wet method from α-iron oxyhydroxide from an aqueous solution of ferrous chloride. , Γ-iron oxyhydroxide is used as a starting material, and this is sequentially subjected to treatments such as firing (dehydration, baking), reduction, and oxidation to obtain needle-shaped γ-Fe 2 O 3 , or its particles. Co-γ-Cobalt-deposited on the surface by cobalt modification treatment
It is manufactured by obtaining Fe 2 O 3 or by firing reduction to obtain magnetic iron powder. In this case, the magnetic properties of the obtained magnetic iron oxide powder and magnetic iron powder depend on the properties of the above-mentioned starting material iron oxyhydroxide, for example, the particle size distribution and particle diameter, and therefore, the magnetic oxidation suitable for the magnetic recording medium. In order to obtain iron powder and magnetic iron powder, it is necessary to use starting materials with excellent properties.

[発明が解決しようとする課題] 近似、電子機器の発展に伴い、磁気記録媒体用磁性酸化
鉄粉末及び磁性鉄粉末は、そのメモリーの主たる材料で
あるためより一層の高性能化が要求され、微細で軸比が
大きく粒度分布の良い、分散性に優れた粒子が要求され
ている。
[Problems to be Solved by the Invention] With the development of approximations and electronic devices, magnetic iron oxide powders and magnetic iron powders for magnetic recording media are the main materials of the memory, and thus higher performance is required. There is a demand for fine particles having a large axial ratio and a good particle size distribution and excellent dispersibility.

しかし、出発物質として主として使用されている塩化第
一鉄水溶液中に塩化第二鉄が含まれていると粒度の不均
一なオキシ水酸化鉄が生じ、脱水、焼成、還元、酸化し
て得られる磁性粉においてもこの影響を受け、粒度の不
均一な磁性粉しか得られない。
However, when ferric chloride is contained in the aqueous solution of ferrous chloride, which is mainly used as a starting material, ferric oxyhydroxide having non-uniform particle size is produced, which is obtained by dehydration, calcination, reduction and oxidation. The magnetic powder is also affected by this, and only magnetic powder having a non-uniform particle size can be obtained.

このような現象は鉄鋼の酸洗い工程等より生ずる塩化第
一鉄水溶液にあっても塩化第二鉄の混入が避けられず、
やむをえず塩化第一スズ溶液を添加して第二鉄を第一鉄
に還元したものを原料として使用する操作が行なわれて
いる。
Such a phenomenon is unavoidable even if the ferrous chloride aqueous solution generated from the pickling process of steel etc. is mixed with ferric chloride,
It is unavoidable to add stannous chloride solution to reduce ferric iron to ferrous iron as a raw material.

しかしながらこのような従来の方法では、生成オキシ水
酸化鉄に悪い影響を与える不純分としての第二鉄を消滅
させることは出来るが、スズのような他の金属元素が不
純物として混入してくることが避けられず、問題があっ
た。
However, with such a conventional method, it is possible to eliminate ferric iron as an impurity that adversely affects the produced iron oxyhydroxide, but other metal elements such as tin are mixed in as impurities. There was a problem inevitable.

また、磁性酸化鉄粉末には粒度等による不良品が生じ、
これを鉄源として再利用するため塩酸で処理すると塩化
第二鉄となる。この塩化第二鉄を高純度の塩化第一鉄と
することが必要である。
In addition, magnetic iron oxide powder has defective products due to particle size etc.
When it is treated with hydrochloric acid to reuse it as an iron source, it becomes ferric chloride. It is necessary to make this ferric chloride high-purity ferrous chloride.

化学理論からすれば、塩化第二鉄に金属鉄を反応させれ
ば次の様に反応するとされていた。
According to the chemical theory, if ferric chloride is reacted with metallic iron, it will react as follows.

すなわち、(3)式によると化学的にはHClは該反応に
よって生成も消滅もしないことになり、単に塩化第二鉄
が消失して塩化第一鉄が生成するはずである。
That is, according to the formula (3), HCl is chemically not generated or disappeared by the reaction, and ferric chloride should be simply disappeared to produce ferrous chloride.

しかし、現実に塩化第二鉄水溶液に金属鉄を浸漬すると
水素が発生すると共に液のpHは顕著に上昇する。これ
は(1)式の2Hがすべて(2)式の反応に預かるので
なく、一部はHガスとして逸出し、HClが減少する
からである。そしてpHが大旨1を越えた付近から第二
鉄が還元されずにβ−オキシ水酸化鉄となる。このβ−
オキシ水酸化鉄の発生を抑えるにはpHを1以下とする
ことが必要である。
However, when metallic iron is actually immersed in an aqueous solution of ferric chloride, hydrogen is generated and the pH of the liquid remarkably rises. This is because not all 2H of the formula (1) is stored in the reaction of the formula (2), but a part thereof escapes as H 2 gas and HCl decreases. Then, ferric iron is not reduced from the vicinity where the pH exceeds 1 to become β-iron oxyhydroxide. This β-
In order to suppress the generation of iron oxyhydroxide, it is necessary to set the pH to 1 or less.

ここで出来るβ−オキシ水酸化鉄は極めて細かな粒子
で、濾過も困難であるばかりでなく、細かすぎるためこ
の後の焼成、還元、酸化の過程の制御を困難とし、得ら
れた磁性粉は粒度も不均一であって磁気記録用磁性酸化
鉄粉末又は磁性鉄粉末の原料として不適当なオキシ水酸
化鉄である。
The β-iron oxyhydroxide formed here is extremely fine particles and is not only difficult to filter, but also too fine to make it difficult to control the subsequent firing, reduction and oxidation processes, and the obtained magnetic powder is It is an iron oxyhydroxide having a non-uniform particle size and unsuitable as a raw material for magnetic iron oxide powder or magnetic iron powder for magnetic recording.

したがって本発明は、塩化第二鉄水溶液、または塩化第
一鉄を含有する塩化第二鉄水溶液から、スズのごとき他
の金属元素を含有しない、磁性酸化鉄又は磁性鉄を製造
するに適した塩化第一鉄水溶液を製造することを目的と
する。
Therefore, the present invention is suitable for producing magnetic iron oxide or magnetic iron containing no other metal element such as tin from an aqueous ferric chloride solution or an aqueous ferric chloride solution containing ferrous chloride. The purpose is to produce a ferrous iron aqueous solution.

[課題を解決するための手段] 本発明者らは上記課題を解決するため種々検討を行なっ
たが、意外にも簡単な手段で目的を達成できることがわ
かった。
[Means for Solving the Problems] The inventors of the present invention have made various studies to solve the above problems, but it was found that the object can be achieved by a surprisingly simple means.

すなわち、塩化第二鉄水溶液に金属鉄及び塩酸を加え、
pHを1以下で反応させることにより、磁気記録媒体に
適した粒度分布、粒子径のオキシ水酸化鉄が得られる。
That is, metallic iron and hydrochloric acid were added to the ferric chloride aqueous solution,
By reacting at a pH of 1 or less, iron oxyhydroxide having a particle size distribution and particle size suitable for a magnetic recording medium can be obtained.

この場合、原料となる水溶液中の塩化第二鉄含有量は全
く制限がなく、純粋の塩化第二鉄水溶液の飽和溶液であ
っても塩化第一鉄水溶液に第二鉄がわずか混在する状態
であっても良い。
In this case, the ferric chloride content in the aqueous solution as the raw material is not limited at all, and even in a saturated solution of a pure ferric chloride aqueous solution, ferric chloride aqueous solution contains a small amount of ferric iron. It may be.

添加する酸塩の量は、含有する第二鉄イオンがすべて第
一鉄イオンにまで還元される間中、液のpHが1以下を
保持できる量が最少量である。γ−Fe2O3を得るには生
成した塩化第一鉄水溶液はアルカリにて中和後、酸化状
態においてオキシ水酸化鉄を沈降させる工程に付される
ので、塩酸の量の過剰量は少ない程よい。添加塩酸量は
pH1以下を維持する量より少ないときは、β−オキシ
水酸化鉄が副生することが避けられなくなる。金属鉄に
よる第二鉄イオンの還元は、経済的な面から室温〜10
0℃位になるであろう。
The amount of the acid salt to be added is such that the pH of the liquid can be kept at 1 or less during the reduction of all contained ferric ions to ferrous ions. In order to obtain γ-Fe 2 O 3 , the produced ferrous chloride aqueous solution is subjected to a step of precipitating iron oxyhydroxide in an oxidized state after neutralizing with an alkali, so that the excess amount of hydrochloric acid is small. Moderate. When the amount of added hydrochloric acid is less than the amount that maintains pH of 1 or less, it is unavoidable that β-iron oxyhydroxide is by-produced. The reduction of ferric ion by metallic iron is from room temperature to 10 at room temperature.
It will be around 0 ° C.

[作 用] 理論的には完全な解明は出来ないが、次のごとく考えて
いる。
[Operation] Theoretically, it is not possible to make a complete elucidation, but I think as follows.

すなわち、塩化第二鉄水溶液に塩酸を添加し金属鉄で中
和すると、塩化第二鉄は水素イオンが水素になるより低
い電位で塩化第一鉄になるので、優先的に塩化第一鉄に
還元されることになる。しかし、pHが1より高くなる
と次のような反応が起こる。
That is, when hydrochloric acid is added to a ferric chloride aqueous solution and neutralized with metallic iron, ferric chloride becomes ferrous chloride at a lower potential than hydrogen ions become hydrogen, so ferric chloride is preferentially converted to ferrous chloride. Will be reduced. However, when the pH is higher than 1, the following reaction occurs.

FeCl3+2H2O →FeOOH+3HCl この反応は酸化還元反応に無関係に進み、ここで生成し
た塩酸は残っている金属鉄と反応して消費されるためp
Hも変化せず、上記の反応は更に右の方に進み、β−オ
キシ水酸化鉄がどんどん生成してくる。この反応を生起
させないためには第二鉄イオンが第一鉄イオンに還元し
終るまでにpHが1を越えないだけの塩酸を添加してお
く必要がある。
FeCl 3 + 2H 2 O → FeOOH + 3HCl This reaction proceeds regardless of the redox reaction, and the hydrochloric acid produced here is consumed by reacting with the remaining metallic iron.
H did not change, and the above reaction proceeded further to the right, and β-iron oxyhydroxide was produced more and more. In order to prevent this reaction from occurring, it is necessary to add hydrochloric acid such that the pH does not exceed 1 before the ferric ion is reduced to ferrous ion.

[実施例] (1)塩化第二鉄0.6mol/、塩化第一鉄0.1
mol/の混合水溶液に濃塩酸27.1g添加して、
全体を200mlにして金属鉄100g添加した。窒素
雰囲気で室温に放置した。4時間後にFe2+は、1.0
mol/になり、Fe3+はほとんど存在しなかった
(検出限界以下)。
[Example] (1) Ferric chloride 0.6 mol /, ferrous chloride 0.1
27.1 g of concentrated hydrochloric acid was added to the mol / mixed aqueous solution,
The whole was made up to 200 ml and 100 g of metallic iron was added. It was left at room temperature in a nitrogen atmosphere. Fe 2+ is 1.0 after 4 hours
It became mol /, and Fe 3+ was almost absent (below the detection limit).

(2)塩化第二鉄0.96mol/、塩化第一鉄0.
23mol/の混合水溶液に濃塩酸42.1g添加し
て、全体を200mlにして金属鉄100g添加した。
窒素雰囲気で温度を60℃にして、3時間後にFe2+
1.4mol/になり、Fe3+はほとんど存在しなか
った。
(2) Ferric chloride 0.96 mol /, ferrous chloride 0.
To the 23 mol / mixed aqueous solution, 42.1 g of concentrated hydrochloric acid was added to make the whole 200 ml, and 100 g of metallic iron was added.
The temperature was set to 60 ° C. in a nitrogen atmosphere, and after 3 hours, Fe 2+ became 1.4 mol /, and Fe 3+ was hardly present.

実施例1および2で得られた塩化第一鉄溶液は、高純度
で磁性酸化鉄の原料として好適であった。すなわち、こ
れらの塩化第一鉄水溶液を原料として製造したγ−オキ
シ水酸化鉄は微細で、軸比が大きく、粒度分布の良い、
分散性に優れた粒子であった。
The ferrous chloride solutions obtained in Examples 1 and 2 were highly pure and suitable as a raw material for magnetic iron oxide. That is, γ-iron oxyhydroxide produced from these ferrous chloride aqueous solutions as a raw material is fine, has a large axial ratio, and has a good particle size distribution.
The particles were excellent in dispersibility.

[効 果] 以上説明した様に、塩化第二鉄が塩化第一鉄水溶液に混
入していたとしても充分に湿式法により、磁性酸化鉄の
原料として使用可能な塩化第一鉄水溶液にすることが簡
単な操作で、しかも低コストで実現できる。
[Effects] As described above, even if ferric chloride is mixed in the ferrous chloride aqueous solution, it should be sufficiently wet to prepare a ferrous chloride aqueous solution that can be used as a raw material for magnetic iron oxide. Can be realized with simple operation and at low cost.

また、粒度等が規格外となった磁性酸化鉄粉末も、それ
を簡単に磁性酸化鉄粉末を製造する原料として好適な塩
化第一鉄水溶液を製造することができる。
In addition, magnetic iron oxide powders whose particle sizes and the like are out of the standard can be easily produced as a ferrous chloride aqueous solution suitable as a raw material for producing magnetic iron oxide powders.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】塩化第二鉄水溶液に金属鉄及び塩酸を加
え、pHを1以下で反応させることを特徴とする塩化第
一鉄水溶液の製造方法。
1. A method for producing an aqueous solution of ferrous chloride, comprising adding metallic iron and hydrochloric acid to an aqueous solution of ferric chloride and reacting the solution at a pH of 1 or less.
【請求項2】塩化第一鉄を含む塩化第二鉄水溶液に金属
鉄及び塩酸を加え、pH1以下で反応させることからな
る請求項(1)の塩化第一鉄水溶液の製造方法。
2. The method for producing an aqueous solution of ferrous chloride according to claim 1, which comprises adding metallic iron and hydrochloric acid to an aqueous solution of ferric chloride containing ferrous chloride and reacting them at a pH of 1 or less.
JP9828589A 1989-04-18 1989-04-18 Method for producing ferrous chloride aqueous solution Expired - Lifetime JPH0637307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9828589A JPH0637307B2 (en) 1989-04-18 1989-04-18 Method for producing ferrous chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9828589A JPH0637307B2 (en) 1989-04-18 1989-04-18 Method for producing ferrous chloride aqueous solution

Publications (2)

Publication Number Publication Date
JPH02279528A JPH02279528A (en) 1990-11-15
JPH0637307B2 true JPH0637307B2 (en) 1994-05-18

Family

ID=14215659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9828589A Expired - Lifetime JPH0637307B2 (en) 1989-04-18 1989-04-18 Method for producing ferrous chloride aqueous solution

Country Status (1)

Country Link
JP (1) JPH0637307B2 (en)

Also Published As

Publication number Publication date
JPH02279528A (en) 1990-11-15

Similar Documents

Publication Publication Date Title
JP5105503B2 (en) ε Iron oxide production method
JPH0637307B2 (en) Method for producing ferrous chloride aqueous solution
EP0041257B1 (en) Process for preparing ferromagnetic particles comprising metallic iron
US4115106A (en) Method for producing metallic oxide compounds
JPH0368923B2 (en)
JP5674083B2 (en) Iron oxyhydroxide sol and method for producing the same
CA1132008A (en) Metallic iron particles for magnetic recording produced by reducing an iron oxide precursor coated with an antimony compound
US4305752A (en) Metallic iron particles for magnetic recording
JP2791565B2 (en) Method for producing Sr ferrite particle powder
JPS62108737A (en) Production of ferromagnetic iron oxide powder
JPS6253444B2 (en)
US4054643A (en) Manufacture of γ-Fe2 O3
JPH0623053B2 (en) Method for producing equiaxed magnetic iron oxide pigment
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JPH04503938A (en) Method for producing magnetic hexaferrite particles, obtained particles and products containing the same
JP3466504B2 (en) High purity iron oxide powder for ferrite and method for producing the same
JP3006305B2 (en) Method for producing ferric chloride solution
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
TWI417249B (en) Method for manufacturing particle of ferric ferrous oxide powder
JP3104720B2 (en) Nickel removal method from nickel-containing iron chloride aqueous solution
JPS62252327A (en) Production in iron oxide for magnetic recording
KR920001518B1 (en) Process for the preparation iron oxide of particle size
JP3483914B2 (en) Acicular α-FeOOH and method for producing the same
JPH05152114A (en) Method of stabilizing acicular ferromagnetic metallic powder intrinsically composed of iron
JPS62196308A (en) Magnetic metallic powder and its production