JPH0637100B2 - Carbon fiber reinforced plastic structure - Google Patents

Carbon fiber reinforced plastic structure

Info

Publication number
JPH0637100B2
JPH0637100B2 JP62329497A JP32949787A JPH0637100B2 JP H0637100 B2 JPH0637100 B2 JP H0637100B2 JP 62329497 A JP62329497 A JP 62329497A JP 32949787 A JP32949787 A JP 32949787A JP H0637100 B2 JPH0637100 B2 JP H0637100B2
Authority
JP
Japan
Prior art keywords
reinforced plastic
heat
fiber reinforced
carbon fiber
prepreg material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62329497A
Other languages
Japanese (ja)
Other versions
JPH01171850A (en
Inventor
昭 中井
啓二 亀井
安宏 大森
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP62329497A priority Critical patent/JPH0637100B2/en
Publication of JPH01171850A publication Critical patent/JPH01171850A/en
Publication of JPH0637100B2 publication Critical patent/JPH0637100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 概 要 炭素繊維強化プラスチック構造物に関し、 宇宙空間等の高真空環境下でも他金属類と電蝕を発生す
ることなく、重量構造物を支持する剛性と被支持物から
発生する熱を他の部品に伝熱しにくくする断熱特性を有
する炭素繊維強化プラスチック構造物を提供することを
目的とし、 炭素繊維強化プラスチックのプリプレグ材を積層した構
造物において、繊維方向が一方向をプリプレグ材と繊維
方向を任意方向に複数有し、且つその複数の繊維方向が
各方向の力やモーメントに対して均一な強度を有するプ
リプレグ材とを積層して構成し、構造物断面の芯部は繊
維方向が各方向の力やモーメントに対して均一な強度を
有するプリプレグ材により成形し、両表面側は主に繊維
方向が一方向のプリプレグ材により成形すると共に、異
種金属と接触する部分にガラス繊維強化プラスチックを
設けて構成する。
[Detailed Description of the Invention] Outline Regarding a carbon fiber reinforced plastic structure, the rigidity and the supported object for supporting a heavy structure without causing electrolytic corrosion with other metals even in a high vacuum environment such as outer space. The purpose of the present invention is to provide a carbon fiber reinforced plastic structure having heat insulating properties that makes it difficult for the generated heat to be transferred to other parts.In a structure in which prepreg materials of carbon fiber reinforced plastic are laminated, the fiber direction is A core portion of a cross section of a structure, which is formed by laminating a prepreg material and a plurality of fiber directions in an arbitrary direction, and the plurality of fiber directions having a uniform strength against a force or moment in each direction. Is made of prepreg material that has uniform strength against the forces and moments in each direction, and both surface sides are mainly made of prepreg material with one direction of fiber. Together constituting provided glass fiber-reinforced plastic parts in contact with dissimilar metals.

産業上の利用分野 本発明は炭素繊維強化プラスチック構造物に関する。TECHNICAL FIELD The present invention relates to a carbon fiber reinforced plastic structure.

宇宙空間に打上げられた人工衛星等において、モータ等
の発熱部品を支持する支持構造物は、宇宙空間の特殊な
環境にさらされるために、この環境に適合するような特
性及び構造が要求される。すなわち、発熱部品を搭載し
た支持構造物はベース上に載置されるが、発熱部品から
の熱が支持構造物を介してベースに伝導されると、この
ベースに載置された他の部品が熱膨張により変形してそ
の寸法制度が狂うことになるため、支持構造物にはベー
ス方向への熱伝導を有効に防止する断熱特性が要求され
る。更に、このような支持構造物を人工衛星に搭載しよ
うとすると、ロケット打上げ時に15〜20Gの重力加
速度が加わるために、地上の15〜20倍の重力加速度
に耐えるだけの強度が必要とされる。そこで、このよう
な宇宙空間での使用に耐え得る特性を有する支持構造物
が要望されている。
In an artificial satellite launched into outer space, a supporting structure that supports heat-generating components such as a motor is exposed to a special environment in outer space, and therefore, a characteristic and structure suitable for this environment are required. . That is, the support structure on which the heat-generating component is mounted is placed on the base, but when the heat from the heat-generating component is conducted to the base via the support structure, other components mounted on this base are Since it is deformed by thermal expansion and its dimensional accuracy is changed, the support structure is required to have a heat insulating property that effectively prevents heat conduction in the base direction. Further, when such a support structure is mounted on an artificial satellite, a gravitational acceleration of 15 to 20 G is applied when the rocket is launched, and therefore a strength sufficient to withstand a gravitational acceleration 15 to 20 times that of the ground is required. . Therefore, there is a demand for a support structure having such characteristics that it can be used in outer space.

従来の技術 第3図は断熱特性を有する従来の支持構造物の模式図を
示しており、断熱部2を有する支持構造物1上にヒータ
あるいはモータ等の発熱部4を有する被支持物3を搭載
し、支持構造物1はベース5上に載置されている。6は
発熱部4で発生した熱を宇宙空間に放熱するためのヒー
トパイプ等の放熱部材である。
2. Description of the Related Art FIG. 3 is a schematic view of a conventional support structure having heat insulating properties, in which a supported object 3 having a heat generating portion 4 such as a heater or a motor is provided on a support structure 1 having a heat insulating portion 2. It is mounted and the support structure 1 is mounted on the base 5. Reference numeral 6 denotes a heat radiating member such as a heat pipe for radiating the heat generated in the heat generating portion 4 to outer space.

放熱部4で発生した熱は放熱経路A,Bを通して外部へ
逃げるが、ベス5への伝熱はベース5上に搭載した他の
部品が熱膨脹することによりその位置制度の狂いが生じ
るため、この方向への熱伝導を断熱部2で防止してい
る。このような支持構造物1において、断熱部2の材料
として断熱特性を有するマイカ、GFRP(ガラス繊維
強化プラスチック)、ゴム、ガラス等が用いられてい
る。又支持構造物1の他の部分はAl、SUS等の金属
から構成されている。
The heat generated in the heat radiating section 4 escapes to the outside through the heat radiating paths A and B, but the heat transfer to the vess 5 is caused by the thermal expansion of other parts mounted on the base 5, so that the positional accuracy of the heat is distorted. The heat conduction in the direction is prevented by the heat insulating portion 2. In such a support structure 1, mica, GFRP (glass fiber reinforced plastic), rubber, glass or the like having heat insulating properties is used as the material of the heat insulating portion 2. The other part of the support structure 1 is made of a metal such as Al or SUS.

発明が解決しようとする問題点 このような構造物を人工衛星に搭載しようとすると、ロ
ケット打上げ時に、支持構造物に15〜20Gの重力加
速度が加わると共に、ある範囲の周波数領域で振動を受
けるため、以下のような問題が発生する。
Problems to be Solved by the Invention If an attempt is made to mount such a structure on an artificial satellite, a gravitational acceleration of 15 to 20 G is applied to the support structure at the time of launch of the rocket, and vibration is generated in a frequency range within a certain range. , The following problems occur.

(イ)構造物の共振周波数と加振周波数が接近している
と、共振現象のため構造物が破壊する。
(B) When the resonance frequency and the excitation frequency of the structure are close to each other, the structure is destroyed due to the resonance phenomenon.

(ロ)地上の15〜20倍の重力加速度に耐えられるだ
けの強度を必要とする。
(B) The strength is required to withstand the gravitational acceleration 15 to 20 times that on the ground.

(ハ)人工衛星搭載物としての軽量化が必要とされる。(C) It is necessary to reduce the weight of the satellite as a payload.

(ニ)宇宙空間の高真空状態では、構造物を金属から形
成すると、この構造物が接触する異種金属間で電蝕が発
生するという問題がある。
(D) In a high vacuum state of outer space, when a structure is made of metal, there is a problem that galvanic corrosion occurs between dissimilar metals in contact with the structure.

前記(イ)、(ロ)は構造物の強度を上げるためにその
体積・質量を増加する必要があり、(ハ)とは相反する
要求である。
In (a) and (b), it is necessary to increase the volume and mass of the structure in order to increase its strength, which is a contradictory requirement to (c).

本発明はこのような点に鑑みなされたものであり、その
目的とするところは、宇宙空間等の高真空環境下でも他
金属類と電蝕を発生することなく、重量構造物を支持す
る剛性と被支持物から発生する熱を他の部品に伝熱しに
くくする断熱特性を有する炭素繊維強化プラスチックを
提供することである。
The present invention has been made in view of the above points, and an object thereof is a rigidity for supporting a heavy structure without causing electrolytic corrosion with other metals even in a high vacuum environment such as outer space. Another object of the present invention is to provide a carbon fiber reinforced plastic having heat insulating properties that makes it difficult to transfer the heat generated from the supported object to other parts.

問題点を解決するための手段 強度、断熱特性を有する材料として、ヤング率が大きく
熱伝導率の低い炭素繊維強化プラスチック(以下CFR
Pという)を採用し、更に構造物の共振周波数を上げる
ため、密度が小さくヤング率の大きいCFRPの積層構
造とする。積層構造に関しては、大きいモーメントが表
面側に発生するため、高強度、高ヤング率を有する繊維
方向が一方向のプリプレグ材22,24を表面側に配置
し、芯材としては曲げ剛性よりも各方向の力やモーメン
トに対して均一の強度を有するように、主に繊維方向が
等方向のプリプレグ材26を配置する積層構造とする。
又、ボルトやベース等の異種金属と構造物が接触する部
分には、絶縁物であるGFRP(ガラス繊維強化プラス
チック)を貼り、構造物の炭素繊維と他の金属類が直接
接触するのを防止する。
Means for Solving Problems As a material having strength and heat insulation properties, carbon fiber reinforced plastic (hereinafter referred to as CFR) having a large Young's modulus and a low thermal conductivity.
(Referred to as “P”) and to further increase the resonance frequency of the structure, a CFRP laminated structure having a small density and a large Young's modulus is used. Regarding the laminated structure, since a large moment is generated on the surface side, prepreg materials 22 and 24 having a high strength and a high Young's modulus and a fiber direction of one direction are arranged on the surface side, and as a core material, a flexural rigidity rather than a flexural rigidity is used. In order to have uniform strength against a force or moment in the direction, a prepreg material 26 having fiber directions that are mainly in the same direction is arranged to have a laminated structure.
In addition, GFRP (glass fiber reinforced plastic), which is an insulator, is attached to the part where the structure comes into contact with dissimilar metals such as bolts and bases to prevent direct contact between the carbon fiber of the structure and other metals. To do.

作 用 構造物をCFRPの積層構造としたために、人工衛星搭
載物としての軽量化を十分に図れると共に、高強度のC
FRPを特殊な積層構造としているために、ロケット打
上げ時に印加される15〜20Gの重力加速に耐えるこ
とができる。又、CFRPの特殊積層構造のために、構
造の共振現象を有効に防止することができる。更に、異
種金属と接触する部分にGFRPを貼付したことによ
り、宇宙空間での電蝕を有効に防止することができる。
Since the working structure is a laminated structure of CFRP, it is possible to sufficiently reduce the weight as an artificial satellite loading object, and to use a high-strength C
Since the FRP has a special laminated structure, it can withstand the gravity acceleration of 15 to 20 G applied at the time of launching the rocket. Also, due to the special laminated structure of CFRP, the resonance phenomenon of the structure can be effectively prevented. Furthermore, by attaching GFRP to the portion that comes into contact with the dissimilar metal, it is possible to effectively prevent electrolytic corrosion in outer space.

実施例 以下本発明の実施例を図面に基づいて詳細に説明する。Embodiments Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図はCFRP構造物の実施例断面図であり、芯部1
2、内側表面部14及び外側表面部16は種類・特性が
異なるCFRPを積層して構成されている。第2図は第
1図の構造物を成形するためのCFRPのプリプレグ材
を示しており、図中の線は繊維方向を示している。尚第
2図の(A)及び(B)は同一のCFRPプリプレグ材
を90゜角度をずらして配置した状態を示している。第
1図の芯部12、内側表面部14及び外側表面部16を
成形するために、第2図に示したプリプレグ材の組合せ
を変えている。内側表面14及び外側表面部16では、
曲げモーメントに強くなるように繊維方向が一方向であ
るプリプレグ材22,24を多く使用し、曲げ剛性の向
上を図っている。但し、繊維方向が一方向のプリプレグ
材22,24のみを多用すると、繊維方向と直角方向の
力(剪断力)に弱くなるため、第2図(C)、(D)の
プリプレグ材26を適宜補強材として組合せている。一
方、芯部12については、曲げ剛性よりも各方向の力や
モーメントに対し均一の強度を有するように、繊維方向
を一方向とせず、複数の任意方向に繊維方向を均一に有
する繊維方向とした第2図の(C)、(D)に示すプリ
プレグ材26を多用している。
FIG. 1 is a sectional view of a CFRP structure according to an embodiment of the present invention.
2, the inner surface portion 14 and the outer surface portion 16 are formed by laminating CFRP having different types and characteristics. FIG. 2 shows a CFRP prepreg material for molding the structure of FIG. 1, and the line in the drawing shows the fiber direction. 2A and 2B show a state in which the same CFRP prepreg material is arranged with a 90 ° offset. In order to mold the core portion 12, the inner surface portion 14 and the outer surface portion 16 of FIG. 1, the combination of the prepreg materials shown in FIG. 2 is changed. In the inner surface 14 and the outer surface portion 16,
A large number of prepreg materials 22 and 24 having a unidirectional fiber direction are used so as to be strong against the bending moment, and the bending rigidity is improved. However, if only the prepreg materials 22 and 24 whose fiber direction is one direction are frequently used, the prepreg material 26 of FIGS. 2C and 2D is appropriately used because it becomes weak against the force (shearing force) in the direction perpendicular to the fiber direction. Combined as a reinforcing material. On the other hand, with respect to the core portion 12, the fiber direction is not set to one direction, and the fiber direction is uniformly set to a plurality of arbitrary directions so as to have a uniform strength against a force and a moment in each direction rather than bending rigidity. The prepreg material 26 shown in FIGS. 2C and 2D is frequently used.

18はボルト穴であり、構造物10上に図示しない発熱
部を有する被支持物を搭載してボルト止めすると共に、
構造物10をベース20にボルト止めするために使用さ
れる。ボルト穴18、構造物10の最上層面及び構造物
10がベース20に接触する最下面には絶縁体であるG
FRPのプリプレグ材30が貼付されている。このGF
RPのプリプレグ材は、大2図(C)に示すような繊維
方向がクロスしているプリプレグ材を用いるのが望まし
い。又、ボルト貫通穴18は、GFRPを貼付する代わ
りに、CFRPの炭素繊維が表面に出ないようにボルト
穴部を逃げて編むようにし、CFRPの樹脂成分がボル
ト山部に接するような構造にしてもよい。
Reference numeral 18 denotes a bolt hole, which is used to mount a supported object having a heat generating portion (not shown) on the structure 10 for bolting,
Used to bolt structure 10 to base 20. The bolt holes 18, the uppermost layer surface of the structure 10 and the lowermost surface where the structure 10 contacts the base 20 are insulators G.
The prepreg material 30 of FRP is attached. This GF
As the RP prepreg material, it is desirable to use a prepreg material in which the fiber directions are crossed as shown in FIG. Further, the bolt through hole 18 has a structure in which, instead of attaching GFRP, the carbon fiber of CFRP is escaped and knitted so that the carbon fiber of CFRP does not appear on the surface, and the resin component of CFRP is in contact with the bolt mountain portion. May be.

CFRP及びGFRPのプリプレグ材は、その厚さが約
0.2mm程度であり、第1図の構造物を成形するために
は、シルクハット形状の雄型を作り、この雄型の上に順
々に第2図に示すようなプリプレグ材22,24を積層
し、熱と圧力を加えて成形するSMC法かハンドレイア
ップ法で成形する。
The CFRP and GFRP prepreg materials have a thickness of about 0.2 mm, and in order to mold the structure of FIG. Then, the prepreg materials 22 and 24 as shown in FIG. 2 are laminated and molded by the SMC method or the hand lay-up method of molding by applying heat and pressure.

このように構成された構造物10の断熱性は、CFRP
のプリプレグ材を積層しているため、構造物の厚さ方向
の熱伝導性が悪く断熱性が優れている。又、内側表面部
14、外側表面部16は高弾性材を使用しているので熱
伝導が良いが、これらの部分の断面積を小さくすること
により熱伝導を十分に抑えることができる。
The heat insulating property of the structure 10 configured as described above is
Since the prepreg material is laminated, the heat conductivity in the thickness direction of the structure is poor and the heat insulating property is excellent. Further, since the inner surface portion 14 and the outer surface portion 16 are made of a high elastic material, the heat conduction is good, but the heat conduction can be sufficiently suppressed by reducing the cross-sectional area of these portions.

本実施例によれば、CFRPとGFRPを積層した構成
にすることにより、強度はアルミニウム構造物の3〜5
倍、質量は約1/2となり、断熱材としても充分な性能
を得ることができる。
According to the present embodiment, the strength is 3 to 5 of the aluminum structure due to the structure in which CFRP and GFRP are laminated.
The mass is about 1/2, and sufficient performance can be obtained as a heat insulating material.

発明の効果 本発明のCFRP構造物は以上詳述したように構成した
ので、宇宙空間で使用した場合でも他の金属類との電蝕
を発生することなく、充分な断熱特性と充分な剛性とを
有するという効果を奏する。このため宇宙空間での特殊
環境で使用されるのに特に適している。
EFFECTS OF THE INVENTION Since the CFRP structure of the present invention is configured as described in detail above, it does not cause galvanic corrosion with other metals even when it is used in outer space, and has sufficient heat insulation properties and sufficient rigidity. Has the effect of having. This makes it particularly suitable for use in special environments in outer space.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例断面図、 第2図は実施例の構造物を成形するための各種プリプレ
グ材の斜視図、 第3図は断熱特性を有する従来の支持構造物の模式図で
ある。 1……支持構造物、2……断熱部、 3……被支持物、4……発熱部、 5……ベース、6……放熱部材、 10……支持構造物、12……芯部、 14……内側表面部、16……外側表面部、 18……ボルト穴、20……ベース、 22,24,26……プリプレグ材、 30……GFRP。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a perspective view of various prepreg materials for molding the structure of the embodiment, and FIG. 3 is a schematic view of a conventional support structure having heat insulating properties. is there. 1 ... Support structure, 2 ... Insulation part, 3 ... Supported object, 4 ... Heat generating part, 5 ... Base, 6 ... Heat dissipation member, 10 ... Support structure, 12 ... Core part, 14 ... inner surface part, 16 ... outer surface part, 18 ... bolt hole, 20 ... base, 22, 24, 26 ... prepreg material, 30 ... GFRP.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維強化プラスチックのプリプレグ材
を積層した構造物において、 繊維方向が一方向のプリプレグ材(22,24) と繊維方向を
任意方向に複数有し、且つその複数の繊維方向が各方向
の力やモーメントに対して均一な強度を有するプリプレ
グ材(26)とを積層して構成し、 構造物断面の芯部(12)は主に繊維方向が各方向の力やモ
ーメントに対して均一な強度を有するプリプレグ材(26)
により成形し、両表面側(14,16) は主に繊維方向が一方
向のプリプレグ材(22,24) により成形すると共に、 異種金属と接触する部分にガラス繊維強化プラスチック
(30)を設けたことを特徴とする炭素繊維強化プラスチッ
ク構造物。
1. A structure in which prepreg materials made of carbon fiber reinforced plastic are laminated, and a prepreg material (22, 24) having a unidirectional fiber direction and a plurality of fiber directions in arbitrary directions, and the plurality of fiber directions are The core part (12) of the cross section of the structure is composed mainly of the prepreg material (26) that has uniform strength against the forces and moments in each direction. And uniform prepreg material (26)
The prepreg material (22,24) whose fiber direction is unidirectional is mainly used for both surface sides (14,16), and glass fiber reinforced plastic is applied to the part that comes into contact with dissimilar metals.
A carbon fiber reinforced plastic structure having (30).
JP62329497A 1987-12-28 1987-12-28 Carbon fiber reinforced plastic structure Expired - Lifetime JPH0637100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62329497A JPH0637100B2 (en) 1987-12-28 1987-12-28 Carbon fiber reinforced plastic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329497A JPH0637100B2 (en) 1987-12-28 1987-12-28 Carbon fiber reinforced plastic structure

Publications (2)

Publication Number Publication Date
JPH01171850A JPH01171850A (en) 1989-07-06
JPH0637100B2 true JPH0637100B2 (en) 1994-05-18

Family

ID=18222030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329497A Expired - Lifetime JPH0637100B2 (en) 1987-12-28 1987-12-28 Carbon fiber reinforced plastic structure

Country Status (1)

Country Link
JP (1) JPH0637100B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3957474A4 (en) 2019-04-16 2023-02-08 Nippon Steel Corporation Metal/fiber-reinforced resin composite
CN112552830A (en) * 2020-11-27 2021-03-26 郑州大学 Processing method for improving performance of CFRP-steel plate bonding interface

Also Published As

Publication number Publication date
JPH01171850A (en) 1989-07-06

Similar Documents

Publication Publication Date Title
US5520976A (en) Composite enclosure for electronic hardware
US4568603A (en) Fiber-reinforced syntactic foam composites prepared from polyglycidyl aromatic amine and polycarboxylic acid anhydride
US5949650A (en) Composite heat sink/support structure
US4682744A (en) Spacecraft structure
JP2538351B2 (en) Thermal protection system
EP2247421B1 (en) Thermally efficient tooling for composite component manufacturing
US6663051B2 (en) Thermal protection structure
US5467814A (en) Graphite/epoxy heat sink/mounting for common pressure vessel
US5895726A (en) Lightweight high damping porous metal/phthalonitrile composites
JP3054380B2 (en) Battery system, battery pack, and battery system manufacturing method
Steeves et al. Optimization of thermal protection systems utilizing sandwich structures with low coefficient of thermal expansion lattice hot faces
JP3020461B2 (en) Battery system, method of manufacturing the same, and battery pack
EP3072680A1 (en) High thermal conductivity composite base plate and output multiplexer chassis
RU2762750C2 (en) Combined insulating non-oxide system of heat protection of increased rigidity and method for manufacturing non-oxide ceramic composite for its creation
US5824404A (en) Hybrid composite articles and missile components, and their fabrication
JPH0637100B2 (en) Carbon fiber reinforced plastic structure
JPH0761493A (en) Panel for heat insulation of extremely low temperature tank
US6523246B1 (en) Jig used for formation of fiber-reinforced composite structure and method for formation of fiber-reinforced composite structure using jig
JP6836474B2 (en) Manufacturing method for flexible mandrel and composite parts
US20060110588A1 (en) Metallic-polymeric composite materials
JPS5961203A (en) Microstrip array antenna
JP6669456B2 (en) Spacecraft and radiator panel for spacecraft having composite facesheet
US6102112A (en) Thermally conductive support structure
JP2003198245A (en) Artificial satellite mounting antenna reflector and manufacturing method therefor
JP2004019990A (en) Sandwich panel with heat pipe

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term