JPH0636289Y2 - Fuel injection device for internal combustion engine - Google Patents

Fuel injection device for internal combustion engine

Info

Publication number
JPH0636289Y2
JPH0636289Y2 JP10269188U JP10269188U JPH0636289Y2 JP H0636289 Y2 JPH0636289 Y2 JP H0636289Y2 JP 10269188 U JP10269188 U JP 10269188U JP 10269188 U JP10269188 U JP 10269188U JP H0636289 Y2 JPH0636289 Y2 JP H0636289Y2
Authority
JP
Japan
Prior art keywords
needle
compressed air
insertion hole
needle insertion
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10269188U
Other languages
Japanese (ja)
Other versions
JPH0224067U (en
Inventor
孝寛 櫛部
学 立野
尚孝 調
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10269188U priority Critical patent/JPH0636289Y2/en
Priority to US07/386,609 priority patent/US4986247A/en
Priority to AU39192/89A priority patent/AU602819C/en
Priority to DE68910604T priority patent/DE68910604T3/en
Priority to EP89114397A priority patent/EP0353763B2/en
Publication of JPH0224067U publication Critical patent/JPH0224067U/ja
Application granted granted Critical
Publication of JPH0636289Y2 publication Critical patent/JPH0636289Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は内燃機関の燃料供給装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a fuel supply system for an internal combustion engine.

〔従来の技術〕 圧縮空気を用いて燃料を噴射させるためにニードルによ
って電磁的に開閉制御されるノズル口を具備し、ノズル
口からニードルに沿って延びる圧縮空気通路をニードル
周りに形成してこの圧縮空気通路を圧縮空気源に連結
し、ノズル口近傍のニードル上に圧縮空気通路内壁面に
より摺動案内されるニードルガイドを一体形成し、圧縮
空気通路内に開口するノズル室を設けてノズル室の奥部
に燃料噴射弁の噴口を配置し、噴口からニードルに向け
て燃料を噴射した後にニードルを開弁させることにより
噴射燃料を圧縮空気と共にノズル口から噴射せしめるよ
うにした燃料噴射弁、いわゆるエアブラスト弁が公知で
ある(特表昭63−500323号公報参照)。このエアブラス
ト弁では低圧の圧縮空気を用いて噴射燃料の良好な微粒
化を確保することができる。
[Prior Art] A nozzle opening that is electromagnetically controlled by a needle to inject fuel using compressed air is provided, and a compressed air passage extending from the nozzle opening along the needle is formed around the needle. The compressed air passage is connected to a compressed air source, a needle guide that is slidably guided by the inner wall surface of the compressed air passage is integrally formed on the needle near the nozzle opening, and a nozzle chamber that opens in the compressed air passage is provided. Of the fuel injection valve is arranged in the inner part of the fuel injection valve, the fuel is injected from the injection port toward the needle, and then the needle is opened to inject the injected fuel together with the compressed air from the nozzle opening. Air blast valves are known (see Japanese Patent Publication No. 63-500323). In this air blast valve, low-pressure compressed air can be used to ensure good atomization of the injected fuel.

〔考案が解決しようとする課題〕 しかしながら上述のエアブラスト弁のように圧縮空気通
路内に開口するノズル室の奥部に燃料噴射弁の噴口を配
置するとニードルが開弁したときに圧縮空気ノズル室内
をほとんど流れず、斯くしてノズル室の内壁面に付着し
た燃料を圧縮空気によって運び去ることができないため
に噴射燃料が蓄積してしまうという問題がある。
[Problems to be Solved by the Invention] However, when the injection port of the fuel injection valve is arranged in the inner part of the nozzle chamber that opens in the compressed air passage like the above-mentioned air blast valve, when the needle opens, the compressed air nozzle chamber There is a problem that the injected fuel accumulates because the fuel adhering to the inner wall surface of the nozzle chamber cannot be carried away by the compressed air.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記問題点を解決するために本考案によればニードル挿
入孔の一端にノズル口を形成し、ニードル挿入孔内にニ
ードル挿入孔よりも小径のニードルを挿入してニードル
を電磁的に制御することによりニードル先端に形成した
弁部によりノズル口を開閉制御し、圧縮空気源に連結さ
れた圧縮空気通路をニードル挿入孔に連結せしめると共
に上記ノズル口と反対側において圧縮空気通路とニード
ル挿入孔の直通部に隣接するニードル上にニードル挿入
孔の断面を閉鎖する膨大部を形成し、圧縮空気通路内に
燃料噴射弁を配置している。
According to the present invention, in order to solve the above problems, a nozzle opening is formed at one end of a needle insertion hole, and a needle having a diameter smaller than that of the needle insertion hole is inserted to electromagnetically control the needle. The valve opening formed at the tip of the needle controls the opening and closing of the nozzle opening to connect the compressed air passage connected to the compressed air source to the needle insertion hole, and to connect the compressed air passage and the needle insertion hole directly on the side opposite to the nozzle opening. An enlarged portion that closes the cross section of the needle insertion hole is formed on the needle adjacent to the portion, and the fuel injection valve is arranged in the compressed air passage.

〔作用〕[Action]

圧縮空気通路内に燃料噴射弁を配置しているので圧縮空
気通路の内壁面に付着した燃料を圧縮空気によりニード
ル挿入孔内に送り込むことができ、更にニードル膨大部
によって燃料がニードル挿入孔の奥部に侵入付着するの
を阻止できるので全噴射燃料がノズル口から噴出せしめ
られる。
Since the fuel injection valve is arranged in the compressed air passage, the fuel adhering to the inner wall surface of the compressed air passage can be sent into the needle insertion hole by compressed air, and the expanded fuel needle portion causes the fuel to go deeper in the needle insertion hole. Since it can be prevented from entering and adhering to the portion, all the injected fuel is ejected from the nozzle port.

〔実施例〕〔Example〕

第6図および第7図を参照すると、1はシリンダブロッ
ク、2はピストン、3はシリンダヘッド、4は燃焼室、
5は一対の給気弁、6は給気ポート、7は一対の排気
弁、8は排気ポート、9は点火栓を夫々示す。シリンダ
ヘッド3の内壁面上には排気弁7側の給気弁5周縁部と
弁座間の開口を給気弁5の全開弁期間に亘って閉鎖する
マスク壁10が形成される。従って給気弁5が開弁すると
新気が矢印Aで示されるように排気弁7と反対側から燃
焼室4内に流入する。一対の給気弁5の間に位置するシ
リンダヘッド3の内壁面上にはエアブラスト弁20が配置
される。
Referring to FIG. 6 and FIG. 7, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is a combustion chamber,
5 is a pair of air supply valves, 6 is an air supply port, 7 is a pair of exhaust valves, 8 is an exhaust port, and 9 is an ignition plug. A mask wall 10 is formed on the inner wall surface of the cylinder head 3 to close the opening between the periphery of the air supply valve 5 on the exhaust valve 7 side and the valve seat over the entire opening period of the air supply valve 5. Therefore, when the air supply valve 5 is opened, fresh air flows into the combustion chamber 4 from the side opposite to the exhaust valve 7 as indicated by arrow A. An air blast valve 20 is arranged on the inner wall surface of the cylinder head 3 located between the pair of air supply valves 5.

第1図はエアブラスト弁20の一部断面側面図を示す。第
1図を参照すると、エアブラスト弁20のハウジング21内
にはまっすぐに延びるニードル挿入孔22が形成され、こ
のニードル挿入孔22内にニードル挿入孔22よりも小径の
ニードル23が挿入される。ニードル挿入孔22の一端には
ノズル口24が形成され、このノズル口24はニードル23の
先端部に形成された弁部25によって開閉制御される。第
1図に示す実施例ではこのノズル口24は燃焼室4内に配
置される。また、ニードル23にはスプリングリテーナ26
が固定され、このスプリングリテーナ26とハウジング21
間には圧縮ばね27が挿入される。この圧縮ばね27のばね
力によりノズル口24は通常ニードル23の弁部25によって
閉鎖される。弁部25と反対側のニードル23の端部には可
動コア28が圧縮ばね29のばね力により常時当接せしめら
れており、ハウジング21内には可動コア28を吸引するた
めのソレノイド30とステータ31が配置される。ソレノイ
ド30が付勢されると可動コア28がステータ31に向けて移
動し、その結果ニードル23が圧縮ばね27のばね力に抗し
てノズル口24の方向に移動するのでノズル口24が開口せ
しめられる。
FIG. 1 shows a partial cross-sectional side view of the air blast valve 20. Referring to FIG. 1, a needle insertion hole 22 that extends straight is formed in a housing 21 of the air blast valve 20, and a needle 23 having a smaller diameter than the needle insertion hole 22 is inserted into the needle insertion hole 22. A nozzle port 24 is formed at one end of the needle insertion hole 22, and the nozzle port 24 is opened and closed by a valve unit 25 formed at the tip of the needle 23. In the embodiment shown in FIG. 1, this nozzle port 24 is arranged in the combustion chamber 4. In addition, the needle 23 has a spring retainer 26
Fixed, this spring retainer 26 and housing 21
A compression spring 27 is inserted between them. The nozzle opening 24 is normally closed by the valve portion 25 of the needle 23 by the spring force of the compression spring 27. A movable core 28 is constantly brought into contact with the end of the needle 23 on the side opposite to the valve portion 25 by a spring force of a compression spring 29, and a solenoid 30 for attracting the movable core 28 and a stator in the housing 21. 31 are placed. When the solenoid 30 is energized, the movable core 28 moves toward the stator 31, and as a result, the needle 23 moves in the direction of the nozzle opening 24 against the spring force of the compression spring 27, so that the nozzle opening 24 is opened. To be

一方、ハウジング21内には円筒状をなすノズル室32が形
成される。ノズル室32の一端32aは圧縮空気流入通路33
を介して圧縮空気源34に連通せしめられ、ノズル室32の
他端32bは圧縮空気流出通路35を介してニードル挿入孔2
2内に連通せしめられる。ノズル室32内には燃料噴射弁3
6の噴口37が配置され、更にこの噴口37はノズル室32内
の一端32aと他端32bとの間に位置する。第1図に示され
るように圧縮空気流出通路35はまっすぐに延びている。
噴口37は圧縮空気流出通路35の軸線上に配置され、噴口
37からは圧縮空気流出通路35の軸線に沿って広がり角の
小さな燃料が噴射される。圧縮空気流出通路35はノズル
口24方向に向けてニードル挿入孔22に対して斜めに延び
ており、ニードル挿入孔22に対し20度から45度をなして
ニードル挿入孔22に斜めに接続されてニードル挿入孔22
内に連通せしめられる。第1図および第2図に示される
ようにノズル口24と反対側において圧縮空気流出通路35
とニードル挿入孔22の連通部に隣接するニードル23上に
はニードル挿入孔22の断面を閉鎖する膨大部40が一対形
成される。第1図および第2図に示す実施例ではこの膨
大部40はほぼ円筒状をなし、その両端部40a,40bは円錐
状に形成される。第2図において実線はニードル23が閉
弁状態にあるときを示しており、破線はニードル23が開
弁状態にあるときを示している。従って第2図からわか
るようにニードル23が閉弁状態にあるときには膨大部40
の下端部がニードル挿入孔22に対する圧縮空気流出通路
35の連通開口の上線部に位置し、ニードル23が開弁する
と膨大部40の下端部が連通開口の一部を覆う。この膨大
部40はニードル23をニードル挿入孔22内において所定位
置に保持案内する役割と、後述するようにニードル挿入
孔22の奥部、即ち第2図において膨大部40よりも上方の
ニードル挿入孔22内に燃料が侵入して付着するのを阻止
する役割とを果す。
On the other hand, a cylindrical nozzle chamber 32 is formed in the housing 21. The one end 32a of the nozzle chamber 32 has a compressed air inflow passage 33.
And the other end 32b of the nozzle chamber 32 is connected to the compressed air source 34 via the compressed air outflow passage 35.
It is possible to communicate within 2. The fuel injection valve 3 is installed in the nozzle chamber 32.
Six nozzles 37 are arranged, and the nozzles 37 are located in the nozzle chamber 32 between one end 32a and the other end 32b. As shown in FIG. 1, the compressed air outflow passage 35 extends straight.
The nozzle 37 is arranged on the axis of the compressed air outflow passage 35,
From 37, fuel having a small spread angle is injected along the axis of the compressed air outflow passage 35. The compressed air outflow passage 35 extends obliquely toward the nozzle opening 24 with respect to the needle insertion hole 22, and is obliquely connected to the needle insertion hole 22 at an angle of 20 to 45 degrees with respect to the needle insertion hole 22. Needle insertion hole 22
It is possible to communicate in the inside. As shown in FIGS. 1 and 2, the compressed air outflow passage 35 is provided on the side opposite to the nozzle port 24.
On the needle 23 adjacent to the communicating portion of the needle insertion hole 22, a pair of enlarged portions 40 for closing the cross section of the needle insertion hole 22 are formed. In the embodiment shown in FIGS. 1 and 2, the enlarged portion 40 has a substantially cylindrical shape, and both end portions 40a, 40b thereof are formed in a conical shape. In FIG. 2, the solid line shows the needle 23 in the valve closed state, and the broken line shows the needle 23 in the valve opened state. Therefore, as can be seen from FIG. 2, when the needle 23 is closed, the enlarged portion 40
The lower end of the compressed air outflow passage for the needle insertion hole 22
When the needle 23 is opened, the lower end of the expanded portion 40 is located at the upper line of the communication opening 35 and covers a part of the communication opening. The enlarged portion 40 serves to hold and guide the needle 23 at a predetermined position in the needle insertion hole 22, and as will be described later, the inner portion of the needle insertion hole 22, that is, the needle insertion hole above the enlarged portion 40 in FIG. It plays the role of preventing the fuel from entering and adhering to the inside of 22.

ニードル挿入孔22、ノズル室32および圧縮空気流出通路
35は圧縮空気流入通路33を介して圧縮空気源34に連通し
ている。従ってこれらニードル挿入孔22、ノズル室32お
よび圧縮空気流出通路35内は圧縮空気で満たされてい
る。この圧縮空気中に噴口37から圧縮空気流出通路35に
軸線に沿って燃料が噴射される。第1図に示されるよう
に圧縮空気流出通路35がニードル挿入孔22に斜めに接続
されておりしかも噴射燃料はニードル膨大部40によって
ニードル挿入孔22の奥部に侵入するのが阻止されるので
噴射燃料の大部分は弁部25近傍のニードル23周りのニー
ドル挿入孔22内に達する。このとき一部の燃料は圧縮空
気流出通路35の内壁面およびノズル室32の内壁面上に付
着する。次いでソレノイド30が付勢されるとニードル23
がノズル口24を開弁する。このとき弁部25近傍に噴射燃
料が集まっているのでニードル23がノズル口24を開弁す
るや否や燃料と圧縮空気が共にノズル口24から燃料室4
内に噴出する。またこのときニードル膨大部40もノズル
口24に向けて移動せしめられるのでニードル膨大部40近
傍のニードル挿入孔22の内壁面上に付着した燃料がニー
ドル膨大部40の円錐端部40aによって掻き落とされる。
また、ニードル23がノズル口24を開弁すると圧縮空気が
圧縮空気流入通路33からノズル室32内に流入し、次いで
圧縮空気流出通路35を経てノズル口24に向かうために圧
縮空気流出通路35の内壁面およびノズル室32の内壁面上
に付着した燃料が圧縮空気流によって運び去られ、ノズ
ル口24から噴出せしめられる。従ってニードル23が開弁
するや否や噴射燃料の全てがノズル口24から噴出せしめ
られ、次いでこれらの全噴射燃料の噴出が完了すると圧
縮空気のみがノズル口24から噴出せしめられる。次いで
ソレノイド30が消勢されてニードル23がノズル口24を閉
弁する。従ってニードル23が閉弁せしめられる直前には
空気のみがノズル口24から噴出せしめられている。ニー
ドル23が閉弁する直前に燃料が依然としてノズル口24か
ら噴出しているとニードル23閉弁時にノズル口24の開口
面積が小さくなって圧縮空気の流速が低下したときに燃
料が微粒化されず、液状燃料がノズル口24周りに付着す
る。このように液状燃料がノズル口24周りに付着すると
ノズル口24周りにカーボンが堆積し、燃料噴射作用を阻
害することになる。しかしながら第1図に示す実施例で
はニードル23が閉弁する直前には圧縮空気のみしか噴出
しないのでノズル口24の周りに液状燃料が付着すること
がなく、従ってノズル口24周りにカーボンが堆積する危
険性はない。
Needle insertion hole 22, nozzle chamber 32 and compressed air outflow passage
35 communicates with a compressed air source 34 via a compressed air inflow passage 33. Therefore, the needle insertion hole 22, the nozzle chamber 32 and the compressed air outflow passage 35 are filled with compressed air. Fuel is injected into the compressed air from the injection port 37 into the compressed air outflow passage 35 along the axis. As shown in FIG. 1, the compressed air outflow passage 35 is obliquely connected to the needle insertion hole 22, and the injected fuel is prevented from entering the inner portion of the needle insertion hole 22 by the enlarged needle portion 40. Most of the injected fuel reaches the needle insertion hole 22 around the needle 23 near the valve portion 25. At this time, a part of the fuel adheres to the inner wall surface of the compressed air outflow passage 35 and the inner wall surface of the nozzle chamber 32. Then when the solenoid 30 is energized, the needle 23
Opens the nozzle port 24. At this time, since the injected fuel is gathered near the valve portion 25, as soon as the needle 23 opens the nozzle opening 24, both the fuel and the compressed air are discharged from the nozzle opening 24 into the fuel chamber 4.
Gush out inside. Further, at this time, since the expanded needle portion 40 is also moved toward the nozzle opening 24, the fuel attached to the inner wall surface of the needle insertion hole 22 near the expanded needle portion 40 is scraped off by the conical end 40a of the expanded needle portion 40. .
Further, when the needle 23 opens the nozzle port 24, the compressed air flows into the nozzle chamber 32 from the compressed air inflow passage 33, and then passes through the compressed air outflow passage 35 toward the nozzle port 24, so that the compressed air outflow passage 35 The fuel adhering to the inner wall surface and the inner wall surface of the nozzle chamber 32 is carried away by the compressed air flow and ejected from the nozzle port 24. Therefore, as soon as the needle 23 opens, all of the injected fuel is ejected from the nozzle port 24, and when the ejection of all the injected fuel is completed, only compressed air is ejected from the nozzle port 24. Next, the solenoid 30 is deenergized and the needle 23 closes the nozzle port 24. Therefore, just before the needle 23 is closed, only the air is ejected from the nozzle port 24. If the fuel is still ejected from the nozzle opening 24 immediately before the needle 23 is closed, the fuel is not atomized when the opening area of the nozzle opening 24 is reduced and the flow velocity of the compressed air is reduced when the needle 23 is closed. The liquid fuel adheres around the nozzle opening 24. When the liquid fuel adheres to the periphery of the nozzle opening 24 as described above, carbon is deposited around the nozzle opening 24, which hinders the fuel injection action. However, in the embodiment shown in FIG. 1, only the compressed air is ejected immediately before the needle 23 is closed, so that liquid fuel does not adhere to the vicinity of the nozzle opening 24, and therefore carbon is deposited around the nozzle opening 24. There is no danger.

第3図および第4図はニードル膨大部の別の実施例を示
す。この実施例ではニードル膨大部41がニードル挿入孔
22に対する圧縮空気流出通路35の連通開口を覆うように
配置されており、この連通開口に対面するニードル膨大
部41の外周面上に切欠き41aが形成されている。この実
施例では噴射燃料が表面積の小さな切欠き41aの表面に
衝突することになるので連通開口周りにおける付着燃料
の量が少なくなり、それだけニードル弁部25近傍のニー
ドル挿入孔22内に送り込まれる燃料量を増大せしめるこ
とができるという利点がある。
3 and 4 show another embodiment of the expanded needle portion. In this embodiment, the enlarged needle portion 41 is the needle insertion hole.
It is arranged so as to cover the communication opening of the compressed air outflow passage 35 with respect to 22, and a notch 41a is formed on the outer peripheral surface of the expanded needle portion 41 facing this communication opening. In this embodiment, since the injected fuel collides with the surface of the notch 41a having a small surface area, the amount of the adhered fuel around the communication opening is reduced, and the fuel fed into the needle insertion hole 22 near the needle valve portion 25 is accordingly reduced. There is an advantage that the amount can be increased.

第5図は圧縮空気流出通路35′がニードル挿入孔22にほ
ぼ直角に接続された場合を示している。
FIG. 5 shows a case where the compressed air outflow passage 35 'is connected to the needle insertion hole 22 at a right angle.

第7図はエアブラスト弁20を2サイクル機関に適用した
場合を示しており、エアブラスト弁20からの燃料噴射は
給気弁5が閉弁する少し手前から開始される。機関低負
荷運転時には燃焼室4内に流入する新気Aの流速が遅い
ために噴射燃料は点火栓9の周りに集まり、斯くして良
好な着火が行なわれる。一方、機関高負荷運転時には新
気Aの流速が早いために強力なループ掃気が行なわれ、
しかも噴射燃料がループ状に流れる新気流Aによって燃
焼室4の内壁面に沿い運ばれるので燃焼室4内には均一
混合気が形成される。その結果、機関高出力を確保する
ことができる。
FIG. 7 shows a case where the air blast valve 20 is applied to a two-cycle engine, and fuel injection from the air blast valve 20 is started just before the air supply valve 5 is closed. During engine low load operation, the flow velocity of the fresh air A flowing into the combustion chamber 4 is slow, so the injected fuel gathers around the spark plug 9, and thus good ignition is performed. On the other hand, during high engine load operation, the flow velocity of the fresh air A is high, so strong loop scavenging is performed,
Moreover, since the injected fuel is carried along the inner wall surface of the combustion chamber 4 by the new air flow A flowing in a loop, a uniform air-fuel mixture is formed in the combustion chamber 4. As a result, high engine output can be secured.

〔考案の効果〕[Effect of device]

圧縮空気通路内に燃料噴射弁を配置し、ニードルに膨大
部を形成してこの膨大部により噴射燃料がニードル挿入
孔の奥部に侵入するのを阻止することによって、燃料噴
射弁から噴射された全燃料を圧縮空気と共に噴出せしめ
ることができる。その結果、噴射燃料量がばらつくこと
がなく、斯くして安定した燃焼を確保することができ
る。
The fuel injection valve is arranged in the compressed air passage, and an enlarged portion is formed in the needle, and the enlarged portion prevents the injected fuel from entering the inner portion of the needle insertion hole. All fuel can be ejected with compressed air. As a result, the injected fuel amount does not vary, and thus stable combustion can be ensured.

【図面の簡単な説明】[Brief description of drawings]

第1図はエアブラスト弁の一部断面側面図、第2図は第
1図の矢印Kで示す部分の拡大断面図、第3図は別の実
施例を示す拡大断面図、第4図は第3図の矢印IVに沿っ
てみた側面図、第5図は更に別の実施例を示す拡大断面
図、第6図はシリンダヘッド内壁面の底面図、第7図は
2サイクル機関の側面断面図である。 20…エアブラスト弁、22…ニードル挿入孔、 23…ニードル、24…ノズル口、 30…ソレノイド、32…ノズル室、 33…圧縮空気流入通路、 34…圧縮空気源、 35…圧縮空気流出通路、 36…燃料噴射弁、37…ノズル口、 40,41…膨大部。
1 is a partial sectional side view of an air blast valve, FIG. 2 is an enlarged sectional view of a portion indicated by an arrow K in FIG. 1, FIG. 3 is an enlarged sectional view showing another embodiment, and FIG. 3 is a side view taken along the arrow IV in FIG. 3, FIG. 5 is an enlarged sectional view showing still another embodiment, FIG. 6 is a bottom view of the inner wall surface of the cylinder head, and FIG. 7 is a side sectional view of a two-cycle engine. It is a figure. 20 ... Air blast valve, 22 ... Needle insertion hole, 23 ... Needle, 24 ... Nozzle port, 30 ... Solenoid, 32 ... Nozzle chamber, 33 ... Compressed air inflow passage, 34 ... Compressed air source, 35 ... Compressed air outflow passage, 36 ... Fuel injection valve, 37 ... Nozzle port, 40, 41 ... Enlarged part.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 調 尚孝 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (56)参考文献 特表 昭63−500323(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takataka Cho Nao, 1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd. (56) References Special table Sho 63-500323 (JP, A)

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ニードル挿入孔の一端にノズル口を形成
し、該ニードル挿入孔内にニードル挿入孔よりも小径の
ニードルを挿入して該ニードルを電磁的に制御すること
によりニードル先端に形成された弁部によりノズル口を
開閉制御し、圧縮空気源に連結された圧縮空気通路をニ
ードル挿入孔に連結せしめると共に上記ノズル口と反対
側において圧縮空気通路とニードル挿入孔の連通部に隣
接するニードル上にニードル挿入孔の断面を閉鎖する膨
大部を形成し、上記圧縮空気通路内に燃料噴射弁を配置
した内燃機関の燃料噴射装置。
A nozzle opening is formed at one end of a needle insertion hole, a needle having a diameter smaller than that of the needle insertion hole is inserted into the needle insertion hole, and the needle is electromagnetically controlled to be formed at the needle tip. The valve opening and closing is controlled by the valve portion to connect the compressed air passage connected to the compressed air source to the needle insertion hole and the needle adjacent to the communication portion between the compressed air passage and the needle insertion hole on the side opposite to the nozzle opening. A fuel injection device for an internal combustion engine, in which an enlarged portion that closes a cross section of a needle insertion hole is formed above and a fuel injection valve is arranged in the compressed air passage.
JP10269188U 1988-08-04 1988-08-04 Fuel injection device for internal combustion engine Expired - Lifetime JPH0636289Y2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10269188U JPH0636289Y2 (en) 1988-08-04 1988-08-04 Fuel injection device for internal combustion engine
US07/386,609 US4986247A (en) 1988-08-04 1989-07-31 Fuel supply device of an engine
AU39192/89A AU602819C (en) 1988-08-04 1989-08-01 A fuel supply of an engine
DE68910604T DE68910604T3 (en) 1988-08-04 1989-08-03 Engine fueling device.
EP89114397A EP0353763B2 (en) 1988-08-04 1989-08-03 A fuel supply device of an engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10269188U JPH0636289Y2 (en) 1988-08-04 1988-08-04 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0224067U JPH0224067U (en) 1990-02-16
JPH0636289Y2 true JPH0636289Y2 (en) 1994-09-21

Family

ID=31332833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10269188U Expired - Lifetime JPH0636289Y2 (en) 1988-08-04 1988-08-04 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0636289Y2 (en)

Also Published As

Publication number Publication date
JPH0224067U (en) 1990-02-16

Similar Documents

Publication Publication Date Title
US5048497A (en) Fuel injection unit
EP0375789B1 (en) Two-stroke internal combustion engine
EP0353763B2 (en) A fuel supply device of an engine
US5172865A (en) Fuel supply device of an engine
JPH0352379U (en)
JPH0636289Y2 (en) Fuel injection device for internal combustion engine
JP2602710B2 (en) Fuel injection device for internal combustion engine
JP2531526Y2 (en) Fuel injection device for internal combustion engine
JPH0636290Y2 (en) Fuel supply device for internal combustion engine
JP2767004B2 (en) Air blast valve
JP2518278Y2 (en) Fuel injection device for internal combustion engine
JP2668130B2 (en) Fuel injection device for internal combustion engine
JP2581185B2 (en) Fuel injection device for internal combustion engine
JP2523138Y2 (en) Fuel injection valve for internal combustion engine
EP0377784B2 (en) A fuel supply device of an engine
JPH02252967A (en) Fuel injector for internal combustion engine
JP2767003B2 (en) Air blast valve
JPH0752372Y2 (en) Electromagnetic fuel injection valve for internal combustion engine
JP2732716B2 (en) Air blast valve
JP2523883B2 (en) Fuel injection device for internal combustion engine
JPH02181067A (en) Fuel injection device for internal combustion engine
JPH0137181Y2 (en)
JPH0354364A (en) Fuel injection device of internal combustion engine
JP2810972B2 (en) Air blast valve
JPS6027827Y2 (en) diesel engine