JPH0636036A - Holonic visual recognizing device - Google Patents

Holonic visual recognizing device

Info

Publication number
JPH0636036A
JPH0636036A JP4189132A JP18913292A JPH0636036A JP H0636036 A JPH0636036 A JP H0636036A JP 4189132 A JP4189132 A JP 4189132A JP 18913292 A JP18913292 A JP 18913292A JP H0636036 A JPH0636036 A JP H0636036A
Authority
JP
Japan
Prior art keywords
information
line
storage unit
detection
input section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4189132A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4189132A priority Critical patent/JPH0636036A/en
Publication of JPH0636036A publication Critical patent/JPH0636036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)
  • Character Discrimination (AREA)
  • Image Generation (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To provide the holonic visual recognizing device which recognizes a curved line figure by using line end information on segments in N-azimuths detected from the curved line figure as a meaning information. CONSTITUTION:This visual recognizing device consists of an information input part 101 which composes an image reception surface of pixels arranged in a simple square lattice, an information generation part 102 which has N (N: natural number) detection azimuths and generates the line end information corresponding to partial line information from the image information of the information input part, and a meaning storage part 103 which arranges relative positions in the detection directions and has plural couples of line end information in the same azimuth and opposite directions. The gradients of ridges of a regular inverted 2N-angled pyramid whose apexes are arranged in the detection azimuths are regarded as a weight function used to information interchanging between the information generation part 102 and meaning storage part 103.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、入力される文字・画像
(静止画、動画)などの図形情報から創出される意味情
報群と記憶されている図形の意味情報群との間のホロニ
ックな関係付け(つまり、意味情報のトップダウンとボ
トムアップからなる情報ループによる関係付け)で図形
認識を行う視覚認識装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a holonic system between semantic information groups created from input graphic information such as characters / images (still images, moving images) and stored semantic information groups of graphics. The present invention relates to a visual recognition device that performs pattern recognition by associating (that is, associating an information loop including top-down and bottom-up of semantic information).

【0002】[0002]

【従来の技術】人間の視覚系を網膜(および外側膝状
体)、第1次視覚野皮質、記憶機能という三階層で捉
え、非線形振動子の引き込み現象を利用して情報処理を
行うモデルがホロビジョン(参考文献:清水博、山口陽
子:『大脳の情報原理とそのバイオ・コンピュータへの
応用』、生体の科学 Vol.37, No.1, pp.26〜40, 1986)
として知られる視覚認識モデルである。
2. Description of the Related Art A model that captures the human visual system in three layers, the retina (and the lateral geniculate body), the primary visual cortex, and the memory function, and uses the non-linear oscillator pull-in phenomenon to process information is known. Holovision (Reference: Hiroshi Shimizu, Yoko Yamaguchi: "Cerebrum Information Principle and Its Application to Bio-Computers", Biological Science Vol.37, No.1, pp.26-40, 1986)
Is a visual recognition model known as.

【0003】ホロビジョンの基本モデルを第3図に示
す。ホロビジョンの構成は、図5に示すように、情報入
力部301(R平面)・情報生成部302(V層)・意
味記憶部303(S層)の三階層からなり、これらはそ
れぞれ人間の視覚系の網膜(および外側膝状体)・第1
次視覚野皮質・記憶機能に対応する。情報入力部301
は、受像画素が単純正方格子状に配列された受像面(図
では4×4画素の例である)であり、2値の画素情報
(素情報とも呼び、図では黒丸●が信号を示す)300
で構成される図形情報が画素に入力される。情報生成部
302は、入力された素情報の並びから線の方位(図中
では\、|、/、―で表示される方位)を検出するSユ
ニット312群と線端(図中では
A basic model of holographic vision is shown in FIG. As shown in FIG. 5, the structure of holographic vision is composed of three layers of an information input unit 301 (R plane), an information generation unit 302 (V layer), and a meaning storage unit 303 (S layer). Retina (and lateral geniculate body) of the visual system, first
Corresponds to the next visual cortex and memory function. Information input unit 301
Is an image receiving surface in which image receiving pixels are arranged in a simple square lattice (4 × 4 pixel is an example in the figure), and binary pixel information (also called raw information, black circles ● indicate signals) 300
The graphic information composed of is input to the pixel. The information generation unit 302 detects the azimuth of a line (the azimuth indicated by \, |, /,-in the figure) from the array of input elementary information and the S unit 312 group and the line end (in the figure,

【0004】[0004]

【外1】 [Outer 1]

【0005】で表示される線端)を検出するTユニット
322群の集合体から成る。情報入力部301の1個の
画素に対応する情報生成部302のユニットの集合体3
32(図中の斜線部)をハイパーコラム332と呼称
し、ハイパーコラム332を構成する基本コラムは図6
に示すように線の方位情報を生成するSユニット312
と矢印方向の線端情報を生成するTL ユニット341と
TR ユニット342で構成されるTユニット322から
なる。基本コラムを構成する各々のユニットは非線形振
動子である。ハイパーコラム332とは、異なる方位の
基本コラムを積層したものである。意味記憶部303
は、記憶図形の意味を各辺の線端の方向(図中では
It is composed of an assembly of T unit 322 groups for detecting the line end displayed by. An aggregate 3 of units of the information generation unit 302 corresponding to one pixel of the information input unit 301
32 (hatched portion in the figure) is called a hyper column 332, and the basic column forming the hyper column 332 is shown in FIG.
S unit 312 for generating line azimuth information as shown in FIG.
And a T unit 322 composed of a TL unit 341 and a TR unit 342 for generating line end information in the arrow direction. Each unit forming the basic column is a non-linear oscillator. The hyper column 332 is a stack of basic columns having different orientations. Meaning storage unit 303
Means the meaning of the memory figure in the direction of the line end of each side (in the figure,

【0006】[0006]

【外2】 [Outside 2]

【0007】で表示される方向)と線端の相対位置(図
中ではL1、L2、L3、L4、L5、L6、L7、L8で表示
される相対位置)として記憶するMユニット313の集
合体から成る。Mユニットも非線形振動子である。意味
記憶部303は Li → Lj (i,j=1〜8;i≠j)という
変換を行うことで図形の回転にも対応可能である。な
お、意味記憶部303の1個の相対位置に対応する異な
る線端方向のユニット集合体333を(図中のL6 斜線
部)をメモリコラム333と呼称する。
A collection of M units 313 to be stored as relative positions (directions indicated by) and relative positions of line ends (relative positions indicated by L1, L2, L3, L4, L5, L6, L7, L8 in the figure). Consists of. The M unit is also a nonlinear oscillator. The meaning storage unit 303 can also correspond to the rotation of the figure by performing the conversion Li → Lj (i, j = 1 to 8; i ≠ j). The unit assembly 333 in different line end directions corresponding to one relative position of the meaning storage unit 303 (the hatched portion of L6 in the figure) is referred to as a memory column 333.

【0008】次に、図中のVSリレー304は、情報生
成部302で検出された線端の絶対位置を相対位置に変
換する機能を有する。情報入力部301が4×4画素か
らなるホロビジョンを例に取れば、VSリレーの動作
は、図7に示すような重み関数を情報生成部の信号に掛
け合わせ、同一の配列位置における信号の最大値をその
配列位置の信号とする処理のことである。この場合の重
み関数は頂点が線検出の方位と一致した倒立の正八角錐
の稜線の勾配に相当する。同様に、図中のSVリレー3
05は、意味記憶部303に記憶されている線端の相対
位置を絶対位置に変換する機能を有する。情報入力部3
01が4×4画素のホロビジョンを例に取れば、SVリ
レーの動作は、図8に示すような重み関数を意味記憶部
の信号に掛け合わせ、同一の配列位置における信号の最
大値をその配列位置の信号とする処理のことである。こ
の場合の重み関数も頂点が線検出の方位と一致した倒立
の正八角錐の稜線の勾配に相当するが、稜線と稜線の間
に相当する配列位置は内挿した勾配が用いられる。こう
した位置に関する変換機能は位置・大きさに依存しない
図形認識を可能にする。これら両リレーが同時に動作す
ることにより、情報生成部302と意味記憶部303と
の間で線端情報に関する同期(非線形振動子の集合体相
互の引き込み作用のこと)・脱同期(非線形振動子の集
合体相互の抑圧作用のこと)が行われ、入力図形を意味
する線端情報群(つまり線端相互の関係を表す線端情報
の集合)と図形の意味として記憶されている線端情報群
(つまり線端相互の関係を表す線端情報の集合)が対応
づけられ、図形認識が成立する。
Next, the VS relay 304 in the figure has a function of converting the absolute position of the line end detected by the information generator 302 into a relative position. If the information input unit 301 is a holographic system having 4 × 4 pixels as an example, the operation of the VS relay is such that the weighting function shown in FIG. This is a process in which the maximum value is used as the signal at that array position. In this case, the weighting function corresponds to the slope of the ridge of an inverted regular octagonal pyramid whose apex coincides with the direction of line detection. Similarly, SV relay 3 in the figure
Reference numeral 05 has a function of converting the relative positions of the line ends stored in the meaning storage unit 303 into absolute positions. Information input section 3
If the 01 is a 4 × 4 pixel holvision, for example, the operation of the SV relay is to multiply the signal of the meaning storage unit by the weighting function as shown in FIG. 8, and to obtain the maximum value of the signal at the same array position. This is the process of setting the signal at the array position. The weighting function in this case also corresponds to the gradient of the ridgeline of an inverted regular octagonal pyramid whose apex coincides with the azimuth of line detection, but an interpolated gradient is used for the array position corresponding to the ridgeline. The position conversion function enables graphic recognition independent of position and size. As both of these relays operate at the same time, the information generation unit 302 and the meaning storage unit 303 are synchronized with respect to the line end information (the mutual pulling action of the collection of nonlinear oscillators) and desynchronized (of the nonlinear oscillators). Suppression of mutual aggregation) is performed, and the line end information group that represents the input figure (that is, the set of line end information that represents the relationship between the line ends) and the line edge information group that is stored as the figure meaning (That is, a set of line end information representing the relationship between the line ends) is associated with each other, and graphic recognition is established.

【0009】このように、情報入力部に入力された図形
の線情報から情報生成部で生成される線端情報の集合を
図形の意味情報として意味記憶部にボトムアップ(これ
はVSリレーが行う)し、意味記憶部に記憶されている
図形の意味情報を情報生成部にトップダウン(これはS
Vリレーが行う)することで形成される情報ループの中
で意味情報を担う意味記憶部と情報生成部それぞれの非
線形振動子群が引き込み状態となる、すなわち入力図形
と記憶図形の意味情報レベルでのマッチングを行う構成
・原理により、位置・大きさ・回転に拠らない図形認識
が可能となる。
As described above, the set of line end information generated by the information generation unit from the line information of the graphic input to the information input unit is bottom-up to the meaning storage unit as the semantic information of the graphic (this is performed by the VS relay). ), And top-down the semantic information of the graphic stored in the meaning storage unit to the information generation unit (this is S
In the information loop formed by the V relay), the non-linear oscillator groups of the semantic storage unit and the information generation unit, which carry the semantic information, are in the pull-in state, that is, at the semantic information level of the input figure and the stored figure. With the configuration and principle of matching, it is possible to recognize figures regardless of position, size, or rotation.

【0010】次に、ホロビジョンが四角形を認識する様
子を図9を用いて説明する。 (1)まず、情報入力部301の受像面に一辺が3ドット
の四角形を入力する。
Next, how the holographic vision recognizes a quadrangle will be described with reference to FIG. (1) First, a quadrangle having 3 dots on each side is input to the image receiving surface of the information input unit 301.

【0011】(2)情報生成部302の中では、入力情報
のドットの並びから線の方位を非線形振動子の引き込み
作用で検出するSユニット312が、図に示すように―
と|の方位の線情報を生成する。
(2) In the information generating section 302, the S unit 312, which detects the direction of the line from the arrangement of the dots of the input information by the pulling action of the nonlinear oscillator, as shown in FIG.
Line information of the azimuths of and | is generated.

【0012】(3)次に、Sユニット312で生成した線
情報から、Tユニット322(具体的には、線端の向き
に対応したTR ユニット342とTL ユニット341)
が←、→、↓、↑の方向の線端情報を非線形振動子の引
き込み作用で生成する。
(3) Next, based on the line information generated by the S unit 312, the T unit 322 (specifically, the TR unit 342 and the TL unit 341 corresponding to the direction of the line end).
Generates line end information in the directions of ←, →, ↓, and ↑ by the pulling action of the nonlinear oscillator.

【0013】水平方向の線情報に対して線端情報を生成
する仕組みを図10に示す。図で実線は相互興奮結合を
表し、点線は相互抑制結合を表す。受像面301に斜線
で示す線情報が存在するとき、斜線を付したSユニット
312が興奮し、斜線を付したTL ユニット351が興
奮して線端情報の生成となる。
FIG. 10 shows a mechanism for generating line end information for horizontal line information. In the figure, the solid line represents mutual excitatory coupling, and the dotted line represents mutual inhibitory coupling. When line information indicated by diagonal lines is present on the image receiving surface 301, the shaded S unit 312 is excited, and the shaded TL unit 351 is excited to generate line end information.

【0014】(4)一方、意味記憶部303のMユニット
313に記憶されている四角形の意味情報は、線端の相
対位置と方向を表現した矢印をL2、L4、L6、L8 の
相対位置に2個づつ配置することで表現している。例え
ば、図の円周上にあるL6 は図5のメモリコラム333
を表現したもので、矢印がその方位に情報があること、
すなわち非線形振動子が励起していることを意味する。
情報の強度(すなわち非線形振動子の振幅強度)は矢印
の長さで表現している。これらの情報集合(つまり8個
の矢印で表現される意味情報)は、非線形振動子の引き
込み状態で表現されるため、記憶に関係する振動子群は
全て同一の位相をもって振動する。
(4) On the other hand, the quadrilateral meaning information stored in the M unit 313 of the meaning storage unit 303 is such that the arrows representing the relative position and direction of the line ends are set to the relative positions of L2, L4, L6 and L8. It is expressed by placing two of each. For example, L6 on the circumference of the figure is the memory column 333 of FIG.
That there is information in the direction of the arrow,
That is, it means that the nonlinear oscillator is excited.
The strength of information (that is, the amplitude strength of the nonlinear oscillator) is represented by the length of the arrow. Since this information set (that is, the semantic information represented by the eight arrows) is represented in the retracted state of the nonlinear oscillator, all the oscillator groups related to memory vibrate with the same phase.

【0015】(5)上記の(3) の過程で生成した絶対位置
で定義される線端から生じる意味情報群(つまりボトム
アップの意味情報群)と、上記(4) の過程で生成される
相対位置で定義される線端から生じる意味情報群(つま
りトップダウンの意味情報群)とが、SVリレーとVS
リレーにより情報ループを形成し、非線形振動子の引き
込みによって対応づけられ、図形認識が成立する。
(5) Semantic information group (that is, bottom-up semantic information group) generated from the line end defined by the absolute position generated in the above step (3), and generated in the above step (4) The semantic information group (that is, the top-down semantic information group) generated from the line end defined by the relative position is the SV relay and VS.
An information loop is formed by the relays, which are associated with each other by pulling in the non-linear oscillator, and figure recognition is established.

【0016】[0016]

【発明が解決しようとする課題】しかしながら上記ホロ
ビジョンは、入力された図形の線情報から得た線端情報
の集合を図形の意味情報としてボトムアップし、意味記
憶部に記憶されている図形の意味情報をトップダウンし
て形成される情報ループの中で、両者の意味情報を担う
非線形振動子群の間の引き込みにより図形認識する原理
であるために、このままでは受像面に入力された曲線や
曲線を有する図形(具体的には、円、楕円、半円、三日
月形など)の認識することができない。
However, in the above-mentioned horovision, the set of line end information obtained from the line information of the input figure is bottomed up as the semantic information of the figure, and the figure stored in the meaning storage section is stored. In the information loop formed by top-downing the semantic information, it is the principle of figure recognition by drawing in between the non-linear oscillator groups that carry the semantic information of both, so if it is as it is, the curves and A figure having a curved line (specifically, a circle, an ellipse, a semicircle, a crescent, etc.) cannot be recognized.

【0017】本発明の目的は、この様な課題に注目し
て、情報入力部の受像面に入力される曲線や曲線を有す
る図形(具体的には、円、楕円、半円、三日月形など)
を認識するホロニック視覚認識装置を提供することであ
る。
The object of the present invention is to pay attention to such a problem, and a curve or a figure having a curve (specifically, a circle, an ellipse, a semicircle, a crescent shape, etc.) to be inputted to the image receiving surface of the information input section. )
It is to provide a holonic visual recognition device that recognizes.

【0018】[0018]

【課題を解決するための手段】本発明は上記目的を達成
するために、単純正方格子に配置された画素で受像面を
構成する情報入力部と、N(Nは自然数)個の検出方位
を有し前記情報入力部の画像情報から部分的な線情報に
対応した線端情報を生成する情報生成部と、前記検出方
位に相対位置を配置し同一方位で反対向きの線端情報を
複数組有する意味記憶部とからなり、前記検出方位に頂
点が配置された倒立正2N角錐の稜線の勾配を前記情報
生成部と前記意味記憶部との情報交換で用いる重み関数
とするホロニック視覚認識装置、もしくは単純正方格子
に配置された画素で受像面を構成する情報入力部と、N
(Nは自然数)個の検出方位を有し前記情報入力部の画
像情報から部分的な線情報に対応した線端情報を生成す
る情報生成部と、前記検出方位の中間に相対位置を配置
し180度より小さい角度を表す2個一組の線端情報を
複数組有する意味記憶部とからなり、前記検出方位の中
間に頂点が配置された倒立正2N角錐の稜線の勾配を前
記情報生成部と前記意味記憶部との情報交換で用いる重
み関数とするホロニック視覚認識装置を提供する。
In order to achieve the above-mentioned object, the present invention comprises an information input section forming an image receiving surface with pixels arranged in a simple square lattice, and N (N is a natural number) detection directions. An information generation unit that generates line end information corresponding to partial line information from the image information of the information input unit, and a plurality of sets of line end information in the same azimuth and opposite directions with relative positions arranged in the detection azimuth. A holonic visual recognition device comprising a meaning storage unit having, and a gradient of a ridgeline of an inverted regular 2N pyramid having vertices arranged in the detection direction as a weighting function used in information exchange between the information generation unit and the meaning storage unit, Alternatively, an information input unit that constitutes an image receiving surface with pixels arranged in a simple square lattice, and N
An information generation unit that has (N is a natural number) detection azimuths and generates line edge information corresponding to partial line information from the image information of the information input unit, and a relative position is arranged in the middle of the detection azimuths. The information generating unit includes a meaning storage unit having a plurality of pairs of line end information representing an angle smaller than 180 degrees, and a slope of an ridgeline of an inverted regular 2N pyramid having a vertex in the middle of the detection orientation. And a holonic visual recognition device that uses a weighting function for information exchange between the meaning storage unit and the above.

【0019】[0019]

【作用】本発明は前記した構成により、曲線や曲線を有
する図形(具体的には、円、楕円、半円、三日月形な
ど)を認識することが可能になり、画像や手書き文書の
認識装置として実用的価値大なるものがある。
With the above-described structure, the present invention makes it possible to recognize a curve or a figure having a curve (specifically, a circle, an ellipse, a semicircle, a crescent, etc.), and an apparatus for recognizing an image or a handwritten document. There are things with great practical value.

【0020】[0020]

【実施例】図1、図2、図3および図4は円・楕円を認
識する本発明の実施例である。以下、図を用いて説明す
る。図1は4方位を検出するホロビジョンの基本構成と
同じであり、画素が単純正方格子状に配列された受像面
(図では4×4画素の例である)からなる情報入力部1
01と、入力された図形の画素情報の並びから線の方位
(図中では\、|、/、―で表示される方位)を検出す
るSユニット112群と線端(図中では
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1, 2, 3 and 4 are embodiments of the present invention for recognizing circles and ellipses. Hereinafter, description will be given with reference to the drawings. FIG. 1 is the same as the basic configuration of a horovision that detects four directions, and an information input unit 1 including an image receiving surface in which pixels are arranged in a simple square lattice (in the figure, an example of 4 × 4 pixels).
01 and the S unit 112 group for detecting the azimuth of the line (the azimuth displayed by \, |, /,-in the figure) from the arrangement of the input pixel information of the figure and the line end (in the figure,

【0021】[0021]

【外3】 [Outside 3]

【0022】で表示される線端)を検出するTユニット
122群の集合体から成る情報生成部102と、記憶図
形の意味を各辺の線端の方向(図中では
An information generating unit 102 composed of an assembly of T unit 122 groups for detecting the line ends displayed by, and the meaning of the memory graphic are the directions of the line ends of each side (in the figure,

【0023】[0023]

【外4】 [Outside 4]

【0024】で表示される方向)と線端の相対位置(図
中ではL1、L2、L3、L4、L5、L6、L7、L8で表示
される相対位置)として記憶するMユニット113の集
合体からなる意味記憶部103とからなり、VSリレー
104は情報生成部102で生成した線端情報に頂点が
検出方位と一致した倒立正八角錐の稜線の勾配を重み関
数として掛け合わせて意味記憶部103に送り、SVリ
レー105は意味記憶部の線端情報に頂点が検出方位と
一致した倒立正八角錐の稜線の勾配を重み関数として掛
け合わせて情報生成部に送る第1のホロニック視覚認識
装置である。
A collection of M units 113 to be stored as a relative position (direction indicated by) and a relative position of line ends (relative positions indicated by L1, L2, L3, L4, L5, L6, L7, L8 in the figure). The VS relay 104 multiplies the line end information generated by the information generation unit 102 by the gradient of the ridge of the inverted regular octagonal pyramid whose vertex matches the detected azimuth as a weighting function. The SV relay 105 is a first holonic visual recognition device that multiplies the line edge information of the meaning storage unit with the gradient of the ridgeline of the inverted regular octagonal pyramid whose vertex coincides with the detected azimuth as a weighting function and sends it to the information generation unit. .

【0025】図2は4方位を検出するホロビジョンの基
本構成に一部修正が施されており、上記情報入力部10
1と上記情報生成部102は同じであるが、意味記憶部
133(この意味記憶部133は、第1のホロニック視
覚認識装置の意味記憶部103を[π/4]だけ反時計
回りに回転したもので、この場合もMユニット143の
集合体である)とからなり、VSリレー134は情報生
成部102で生成した線端情報に頂点が検出方位の中間
に配置された倒立正八角錐の稜線の勾配を重み関数とし
て掛け合わせて意味記憶部133に送り、SVリレー1
35は意味記憶部の線端情報に頂点が検出方位の中間に
配置された倒立正八角錐の稜線の勾配を重み関数として
掛け合わせて情報生成部102に送る第2のホロニック
視覚認識装置である。
In FIG. 2, a part of the basic structure of the holovision for detecting four directions is modified, and the information input section 10 is described above.
1 and the information generation unit 102 are the same, but the meaning storage unit 133 (this meaning storage unit 133 rotates the meaning storage unit 103 of the first holonic visual recognition device counterclockwise by [π / 4]). In this case, the VS relay 134 is also an aggregate of M units 143), and the VS relay 134 includes the ridgeline of the inverted regular octagonal pyramid in which the vertex is arranged in the middle of the detection direction in the line end information generated by the information generation unit 102. The gradient is multiplied as a weighting function and sent to the meaning storage unit 133, and the SV relay 1
Reference numeral 35 denotes a second holonic visual recognition device that multiplies the line edge information of the meaning storage unit with the gradient of the ridgeline of an inverted regular octagonal pyramid whose vertex is located in the middle of the detection direction as a weighting function and sends it to the information generation unit 102.

【0026】図3(c-1) に示す真円がホロニック視覚認
識装置(特に第1や第2と限定しないときは両者に当て
はまるものとする)の情報入力部101に入力される
と、情報入力部101の受像面が画素を単純正方格子配
列したものであるため、図3(c-2) のように検出方位に
一致してはいるが線端部で途切れた線情報が情報生成部
102に生成される。実際には曲線の一部が直線情報と
して検出されるため、図3(c-3) のように線端情報の非
線形振動子の振幅は小さくなるが、問題は生じない。
When the true circle shown in FIG. 3 (c-1) is input to the information input unit 101 of the holonic visual recognition device (not limited to the first and the second, it applies to both), the information is input. Since the image receiving surface of the input unit 101 is a simple square lattice array of pixels, line information that is coincident with the detection direction as shown in FIG. 3 (c-2) but is interrupted at the line end is the information generation unit. 102 is generated. In reality, since a part of the curve is detected as straight line information, the amplitude of the nonlinear oscillator of the line end information becomes small as shown in FIG. 3 (c-3), but no problem occurs.

【0027】図1に示す第1のホロニック視覚認識装置
で円を認識する場合、図3(c-3) から分かるように、円
から検出される線分の線端は検出方位の中間部に現れ
る。従って、図3(a-1) のような頂点が検出方位と一致
した倒立正八角錐の稜線の勾配を重み関数としてVSリ
レー部に用いれば、検出方位の中間部に現れる線端情報
は両方の検出方位に同程度に現れることとなり、図3(a
-2) のような線端情報が意味記憶部103に送られる。
図3(a-2) の線端情報のうちで円周の接線に対応する同
一方位で同じ大きさで反対向きの線端に注目すれば、こ
の線端情報は全部で8組(これは検出方位をNとすると
2N組に相当する)存在し、これが曲線図形以外の通常
の図形では決して現れない円図形の意味情報となる。従
って、意味記憶部103には2N組の同一方位で同じ大
きさで反対向きの線端の集合として円の意味情報を記憶
することが可能になる。この結果、SVリレー部に頂点
が検出方位と一致した倒立正八角錐の稜線の勾配を重み
関数として用いれば円の意味情報である2N組の同一方
位で同じ大きさで反対向きの線端の集合は可能な絶対位
置情報を与えられて意味記憶部103から情報生成部1
02に送られる。円の意味情報を担う情報生成部と意味
記憶部の非線形振動子群が引き込まれれば円図形が認識
される。
When recognizing a circle with the first holonic visual recognition device shown in FIG. 1, as can be seen from FIG. 3 (c-3), the line end of the line segment detected from the circle is in the middle part of the detection direction. appear. Therefore, if the gradient of the ridge of an inverted regular octagonal pyramid whose apex coincides with the detection direction as shown in FIG. 3 (a) is used as a weighting function in the VS relay section, the line end information appearing in the middle section of the detection direction is It appears to the same degree in the detection direction, and
Line end information such as -2) is sent to the meaning storage unit 103.
In the line-end information of FIG. 3 (a-2), if one pays attention to the line-ends of the same direction but the same size and opposite directions corresponding to the tangent of the circumference, the line-end information is 8 sets in total (this is There are 2N sets when the detected azimuth is N), and this is the semantic information of a circular figure that never appears in a normal figure other than a curved figure. Therefore, the meaning storage unit 103 can store the meaning information of a circle as a set of 2N sets of line edges in the same direction, the same size, and opposite directions. As a result, if the gradient of the ridge of an inverted regular octagonal pyramid whose apex coincides with the detected azimuth is used as a weighting function in the SV relay unit, a set of 2N sets of the same azimuth, which are the same azimuth, which is the semantic information of the circle, and which have opposite directions Is given the possible absolute position information, the meaning storage unit 103 to the information generation unit 1
Sent to 02. A circular figure is recognized when the non-linear oscillator group of the information generation unit that carries the semantic information of the circle and the meaning storage unit is pulled in.

【0028】図2に示す第2のホロニック視覚認識装置
で円を認識する場合も、図3(c-3)から分かるように、
円から検出される線分の線端は検出方位の中間部に現れ
る。従って、図3(b-1) のような頂点が検出方位の中間
にある倒立正八角錐の稜線の勾配を重み関数としてVS
リレー部に用いれば、検出方位の中間部に現れる線端情
報は検出方位を[π/4]回転した方向に現れることと
なり、図3(b-2) のような線端情報が意味記憶部133
に送られる。図3(b-2) の線端情報は円周の内接する正
八角形の頂点部分に対応する外側に凸で180度より小
さくしかも180度に最も近い角度を挟む大きさが等し
い2個一組の線端情報(これを、以下簡単のために
『く』の字型線端情報と呼ぶ)が外側に凸を維持しなが
ら相対位置毎に[π/N]度づつ回転したものとなって
いる。この『く』の字型線端情報に注目すれば、この線
端情報は全部で8組(これは検出方位をNとすると2N
組に相当する)存在し、これは単純正方格子の受像面で
検出方位がNの時に検出され得る最大の正N角形の線端
情報でもある。しかし、Nが大きくなれば正N角形と円
の区別は困難となり、円の意味情報として利用すること
ができる。従って、意味記憶部133には2N組の
『く』の字型線端情報の集合として円の意味情報を記憶
することが可能になる。この結果、SVリレー部に頂点
が検出方位の中間に配置される倒立正八角錐の稜線の勾
配を重み関数として用いれば円の意味情報である2N組
の『く』の字型線端情報の集合は可能な絶対位置情報を
与えられて意味記憶部133から情報生成部102に送
られる。円の意味情報を担う情報生成部と意味記憶部の
非線形振動子群が引き込まれれば円図形が認識される。
Also when recognizing a circle with the second holonic visual recognition device shown in FIG. 2, as can be seen from FIG. 3 (c-3),
The line ends detected from the circle appear in the middle of the detection direction. Therefore, as shown in Fig. 3 (b-1), the gradient of the ridge of an inverted regular octagonal pyramid whose vertex is in the middle of the detection direction is VS as the weighting function.
If used in the relay section, the line end information that appears in the middle of the detection direction will appear in the direction that the detection direction is rotated by [π / 4], and the line end information as shown in Fig. 3 (b-2) will appear in the meaning storage section. 133
Sent to. The line-end information in Fig. 3 (b-2) is a set of two that are convex outward and correspond to the vertex of a regular octagon inscribed in the circumference, are smaller than 180 degrees, and have the same size sandwiching the angle closest to 180 degrees. The line-end information (which will be referred to as "ku" -shaped line-end information for the sake of simplicity) is rotated by [π / N] degrees for each relative position while maintaining the outward convexity. There is. If we pay attention to this "ku" -shaped line end information, there will be a total of 8 sets of this line end information (this is 2N when the detection direction is N).
(Corresponding to a set), this is also the maximum regular N-gonal line edge information that can be detected when the detection direction is N on the image receiving surface of the simple square lattice. However, if N becomes large, it becomes difficult to distinguish between a regular N-gon and a circle, and it can be used as semantic information of the circle. Therefore, it becomes possible to store the meaning information of the circle in the meaning storage unit 133 as a set of 2N sets of "K" -shaped line end information. As a result, if the gradient of the ridge of an inverted regular octagonal pyramid whose apex is located in the middle of the detection direction in the SV relay part is used as a weighting function, a set of 2N sets of "ku" -shaped line end information, which is the semantic information of the circle, is used. Is provided with possible absolute position information and is sent from the meaning storage unit 133 to the information generation unit 102. A circular figure is recognized when the non-linear oscillator group of the information generation unit that carries the semantic information of the circle and the meaning storage unit is pulled in.

【0029】次に、図4(d-1) に示す楕円がホロニック
視覚認識装置(特に第1や第2と限定しないときは両者
に当てはまるものとする)の情報入力部101に入力さ
れると、情報入力部101の受像面が画素を単純正方格
子配列したものであるため、図4(d-2) のように検出方
位に一致してはいるが線端部で途切れた線情報が情報生
成部102に生成される。実際には曲線の一部が直線情
報として検出されるため、図4(d-3) のように線端情報
の非線形振動子の振幅は小さくなるが、問題は生じな
い。
Next, when the ellipse shown in FIG. 4 (d-1) is input to the information input unit 101 of the holonic visual recognition device (which applies to both of the first and the second unless otherwise specified). Since the image receiving surface of the information input unit 101 is a simple square lattice array of pixels, line information which is coincident with the detection direction but is interrupted at the line end is information as shown in FIG. 4 (d-2). It is generated by the generation unit 102. Actually, since a part of the curve is detected as straight line information, the amplitude of the nonlinear oscillator of the line end information becomes small as shown in FIG. 4 (d-3), but no problem occurs.

【0030】図1に示す第1のホロニック視覚認識装置
で円を認識する場合、図4(d-3) から分かるように、円
から検出される線分の線端は検出方位の中間部に現れ
る。従って、図4(a-3) のような頂点が検出方位と一致
した倒立正八角錐の稜線の勾配を重み関数としてVSリ
レー部に用いれば、検出方位の中間部に現れる線端情報
は両方の検出方位に同程度に現れることとなり、図4(a
-4) のような線端情報が意味記憶部103に送られる。
図3(a-2) の線端情報のうちで円周の接線に対応する同
一方位で反対向きの線端に注目すれば、この線端情報は
全部で8組(これは検出方位をNとすると2N組に相当
する)存在し、これが曲線図形以外の通常の図形では決
して現れない楕円図形の意味情報となる。従って、意味
記憶部103には2N組の同一方位で反対向きの線端の
集合として楕円の意味情報を記憶することが可能にな
る。この結果、SVリレー部に頂点が検出方位と一致し
た倒立正八角錐の稜線の勾配を重み関数として用いれば
楕円の意味情報である2N組の同一方位で反対向きの線
端の集合は可能な絶対位置情報を与えられて意味記憶部
103から情報生成部102に送られる。円の意味情報
を担う情報生成部と意味記憶部の非線形振動子群が引き
込まれれば円図形が認識される。
When recognizing a circle with the first holonic visual recognition device shown in FIG. 1, as can be seen from FIG. 4 (d-3), the line end of the line segment detected from the circle is in the middle part of the detection direction. appear. Therefore, if the gradient of the ridge of the inverted regular octagonal pyramid whose apex coincides with the detection direction as shown in Fig. 4 (a-3) is used as the weighting function in the VS relay section, the line end information appearing in the middle section of the detection direction will be It appears to the same degree in the detection direction, and
The line end information such as -4) is sent to the meaning storage unit 103.
In the line-end information of FIG. 3 (a-2), if one pays attention to the line ends of the same azimuth and opposite directions corresponding to the tangents of the circumference, this line-end information has a total of 8 sets (the detection azimuth is N Then, it corresponds to 2N sets), and this becomes the semantic information of an elliptical figure that never appears in a normal figure other than a curved figure. Therefore, the meaning storage unit 103 can store the meaning information of an ellipse as a set of 2N sets of line edges in the same direction but in opposite directions. As a result, if the slope of the ridge of an inverted regular octagonal pyramid whose apex coincides with the detected azimuth is used as a weighting function in the SV relay part, a set of 2N sets of opposite azimuths, which is the semantic information of the ellipse, is possible. The position information is given and sent from the meaning storage unit 103 to the information generation unit 102. A circular figure is recognized when the non-linear oscillator group of the information generation unit that carries the semantic information of the circle and the meaning storage unit is pulled in.

【0031】図2に示す第2のホロニック視覚認識装置
で楕円を認識する場合も、図4(d-3) から分かるよう
に、楕円から検出される線分の線端は検出方位の中間部
に現れる。従って、図4(b-3) のような頂点が検出方位
の中間にある倒立正八角錐の稜線の勾配を重み関数とし
てVSリレー部に用いれば、検出方位の中間部に現れる
線端情報は検出方位を[π/4]回転した方向に現れる
こととなり、図4(b-4)のような線端情報が意味記憶部
133に送られる。図4(b-4) の線端情報は円周の内接
する正八角形の頂点部分に対応する外側に凸で180度
より小さくしかも180度に最も近い角度を挟む大きさ
が等しい2個一組の線端情報(これを、以下簡単のため
に変形『く』の字型線端情報と呼ぶ)が外側に凸を維持
しながら相対位置毎に[π/N]度づつ回転したものと
なっている。この変形『く』の字型線端情報に注目すれ
ば、この線端情報は全部で8組(これは検出方位をNと
すると2N組に相当する)存在し、これは単純正方格子
の受像面で検出方位がNの時に検出され得る最大の線対
称N角形の線端情報でもある。しかし、Nが大きくなれ
ば線対称N角形と楕円の区別は困難となり、楕円の意味
情報として利用することができる。従って、意味記憶部
133には2N組の変形『く』の字型線端情報の集合と
して楕円の意味情報を記憶することが可能になる。この
結果、SVリレー部に頂点が検出方位の中間に配置され
る倒立正八角錐の稜線の勾配を重み関数として用いれば
楕円の意味情報である2N組の変形『く』の字型線端情
報の集合は可能な絶対位置情報を与えられて意味記憶部
133から情報生成部102に送られる。楕円の意味情
報を担う情報生成部と意味記憶部の非線形振動子群が引
き込まれれば楕円図形が認識される。
Also when recognizing an ellipse by the second holonic visual recognition device shown in FIG. 2, as can be seen from FIG. 4 (d-3), the line end detected from the ellipse is the middle part of the detection direction. Appear in. Therefore, if the gradient of the ridge of an inverted regular octagonal pyramid whose vertex is in the middle of the detection direction as shown in Fig. 4 (b-3) is used as the weighting function in the VS relay section, the line end information appearing in the middle section of the detection direction can be detected. It appears in the direction in which the azimuth is rotated by [π / 4], and the line end information as shown in FIG. 4B-4 is sent to the meaning storage unit 133. The line end information in Fig. 4 (b-4) is a set of two pieces that are convex outward and correspond to the vertex of a regular octagon inscribed in the circumference, are smaller than 180 degrees, and have the same size sandwiching the angle closest to 180 degrees. The line end information (which will be referred to as the modified "ku" -shaped line end information for simplicity hereinafter) is rotated by [π / N] degrees for each relative position while maintaining the outward convexity. ing. Paying attention to this modified "ku" -shaped line end information, there are a total of 8 sets of this line end information (this corresponds to 2N sets when the detection direction is N), which is the image of a simple square lattice. It is also the line edge information of the maximum line symmetry N polygon which can be detected when the detection direction is N on the surface. However, if N becomes large, it becomes difficult to distinguish between an axisymmetric N-gon and an ellipse, and it can be used as semantic information of the ellipse. Therefore, it becomes possible to store the meaning information of the ellipse in the meaning storage unit 133 as a set of 2N sets of the deformed "ku" -shaped line end information. As a result, if the gradient of the ridgeline of the inverted regular octagonal pyramid whose apex is located in the middle of the detection direction in the SV relay section is used as a weighting function, the 2N sets of modified "ku" -shaped line end information, which is the semantic information of the ellipse, can be obtained. The set is given possible absolute position information and sent from the meaning storage unit 133 to the information generation unit 102. An ellipse figure is recognized when the non-linear oscillator group of the information generation unit and the meaning storage unit that carries the meaning information of the ellipse is drawn.

【0032】以上では、円や楕円の図形認識について説
明したが、曲線に関しては円や楕円の一部と見なせるの
で拡張は容易である。
In the above, the graphic recognition of a circle or an ellipse has been described, but a curve can be regarded as a part of a circle or an ellipse, so that it can be easily expanded.

【0033】[0033]

【発明の効果】以上のように、本発明によれば、曲線や
曲線からなる図形から部分的な線情報とそれに対応する
線端情報を検出することにより、曲線や曲線図形の意味
情報を線端情報の集合で表現できるようになり、従来の
ホロビジョン構成を活かしたまま記憶情報として接線に
対応するような線端情報を用いたり、従来のホロビジョ
ンの意味記憶部と重み関数を[π/N](Nは検出方位
の数で自然数)だけ回転させて正2N角形の頂点に対応
するような線端情報を用いれば、円や楕円などの曲線図
形やその一部の曲線の認識が可能になり、図形認識装置
として本発明がもたらす実用的な効果は極めて大きい。
As described above, according to the present invention, by detecting partial line information and corresponding line edge information from a curve or a figure composed of the curve, the semantic information of the curve or the curved figure is drawn. It becomes possible to express by a set of edge information, and line edge information corresponding to a tangent line can be used as memory information while making use of the conventional holographic structure, or the meaning memory part and weight function of conventional holographic vision can be [π / N] (N is a natural number of the detection direction) and using line edge information corresponding to the vertices of a regular 2N polygon, it is possible to recognize a curved figure such as a circle or an ellipse or a part of the curve. It becomes possible, and the practical effect of the present invention as a figure recognition device is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例におけるホロビジョン視
覚認識装置の基本構成図
FIG. 1 is a basic configuration diagram of a holographic visual recognition device according to a first embodiment of the present invention.

【図2】本発明の第二の実施例におけるホロビジョン視
覚認識装置の基本構成図
FIG. 2 is a basic configuration diagram of a holographic visual recognition device according to a second embodiment of the present invention.

【図3】 (c−1)は円に対する線情報の生成の様子を示す図 (c−2)は円に対する線情報の生成の様子を示す図 (c−3)は円に対する線情報の生成の様子を示す図 (a−1)は頂点が検出方位と一致する倒立正八角錐の
稜線の勾配がリレー部の重み関数となることを示す図 (a−2)は(a−1)の重み関数を用いた第1のホロ
ビジョン視覚認識装置のVSリレーで意味記憶部に送ら
れる円で生成する線端情報の様子を示す図 (b−1)は頂点が検出方位の中間にある倒立正八角錐
の稜線の勾配がリレー部の重み関数となることを示す図 (b−2)は(b−1)の重み関数を用いた第2のホロ
ビジョン視覚認識装置のVSリレーで意味記憶部に送ら
れる円で生成される線端情報の様子を示す図
FIG. 3 (c-1) is a diagram showing how line information is generated for a circle (c-2) is a diagram showing how line information is generated for a circle (c-3) is generated line information for a circle Figure (a-1) shows that the gradient of the ridgeline of the inverted regular octagonal pyramid whose apex coincides with the detected azimuth becomes the weight function of the relay part. (A-2) shows the weight of (a-1). The figure (b-1) showing the state of the line edge information generated by the circle sent to the meaning storage unit by the VS relay of the first holographic visual recognition device using a function is an inverted inverted Masahachi with the vertex in the middle of the detection direction. The figure which shows that the gradient of the ridgeline of a pyramid becomes a weighting function of a relay part. (B-2) is a VS relay of the second holographic visual recognition device using the weighting function of (b-1) Diagram showing the state of line end information generated by the circle sent

【図4】 (d−1)は楕円に対する線情報の生成の様子を示す図 (d−2)は楕円に対する線情報の生成の様子を示す図 (d−3)は楕円に対する線情報の生成の様子を示す図 (a−3)は頂点が検出方位と一致する倒立正八角錐の
稜線の勾配がリレー部の重み関数となることを示す図 (a−4)は(a−3)の重み関数を用いた第1のホロ
ビジョン視覚認識装置のVSリレーで意味記憶部に送ら
れる楕円で生成される線端情報の様子を示す図 (b−3)は頂点が検出方位の中間にある倒立正八角錐
の稜線の勾配がリレー部の重み関数となることを示す図 (b−4)は(b−3)の重み関数を用いた第2のホロ
ビジョン視覚認識装置のVSリレーで意味記憶部に送ら
れる楕円で生成される線端情報の様子を示す図
FIG. 4 (d-1) is a diagram showing how line information is generated for an ellipse (d-2) is a diagram showing how line information is generated for an ellipse (d-3) is a diagram showing how line information is generated for an ellipse (A-3) shows that the gradient of the ridgeline of the inverted regular octagonal pyramid whose apex coincides with the detected azimuth becomes the weight function of the relay part. (A-4) shows the weight of (a-3). The figure (b-3) showing the state of the line edge information generated by the ellipse sent to the meaning storage unit in the VS relay of the first holographic visual recognition device using a function is an inverted position with the vertex in the middle of the detection direction. The figure which shows that the gradient of the ridgeline of a regular octagonal pyramid becomes a weighting function of a relay part. (B-4) is a VS relay of the second holographic visual recognition device using the weighting function of (b-3). Diagram showing the state of line end information generated by an ellipse sent to

【図5】従来例におけるホロビジョンの基本構成図[Fig. 5] Basic configuration diagram of holography in a conventional example

【図6】同従来例における要部を示す図FIG. 6 is a diagram showing a main part of the conventional example.

【図7】同従来例において用いられる重み関数を示す図FIG. 7 is a diagram showing a weighting function used in the conventional example.

【図8】同従来例において用いられる重み関数を示す図FIG. 8 is a diagram showing a weighting function used in the conventional example.

【図9】同従来例のホロビジョンが四角形を認識する様
子を示す図
FIG. 9 is a diagram showing how the conventional holographic vision recognizes a rectangle.

【図10】同従来例のホロビジョンが水平方向の線情報
に対して線端情報を生成する仕組みを示す図
FIG. 10 is a diagram showing a mechanism in which the conventional holography generates line end information for horizontal line information.

【符号の説明】[Explanation of symbols]

101 情報入力部 102 情報生成部 103、133 意味記憶部 104、134 VSリレーの重み関数 105、135 SVリレーの重み関数 101 information input unit 102 information generation unit 103, 133 meaning storage unit 104, 134 VS relay weighting function 105, 135 SV relay weighting function

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】単純正方格子に配置された画素で受像面を
構成する情報入力部と、N(Nは自然数)個の検出方位
を有し前記情報入力部の画像情報から部分的な線情報に
対応した線端情報を生成する情報生成部と、前記検出方
位に相対位置を配置し同一方位で反対向きの一対の線端
情報を複数組有する意味記憶部とからなり、前記検出方
位に頂点が配置された倒立正2N角錐の稜線の勾配を前
記情報生成部と前記意味記憶部との情報交換で用いる重
み関数とすることを特徴とするホロニック視覚認識装
置。
1. An information input section that constitutes an image receiving surface with pixels arranged in a simple square lattice, and N (N is a natural number) detection directions, and partial line information from the image information of the information input section. And a meaning storage unit having a plurality of pairs of line end information in the same azimuth and opposite directions arranged relative positions in the detection azimuth, and an apex in the detection azimuth. The holonic visual recognition device, wherein the gradient of the ridgeline of the inverted regular 2N pyramid in which is arranged is used as a weighting function used in information exchange between the information generation unit and the meaning storage unit.
【請求項2】単純正方格子に配置された画素で受像面を
構成する情報入力部と、N(Nは自然数)個の検出方位
を有し前記情報入力部の画像情報から部分的な線情報に
対応した線端情報を生成する情報生成部と、前記検出方
位に相対位置を配置し同一方位で反対向きの一対の線端
情報を各方位毎に2組有する意味記憶部とからなり、前
記検出方位に頂点が配置された倒立正2N角錐の稜線の
勾配を前記情報生成部と前記意味記憶部との情報交換で
用いる重み関数とすることを特徴とするホロニック視覚
認識装置。
2. An information input section which constitutes an image receiving surface with pixels arranged in a simple square lattice, and N (N is a natural number) detection directions, and partial line information from the image information of the information input section. An information generation unit that generates line edge information corresponding to the above, and a meaning storage unit that has two pairs of line edge information in the same azimuth and opposite directions in the same azimuth for each azimuth. A holonic visual recognition device characterized in that the gradient of the ridgeline of an inverted regular 2N pyramid having vertices arranged in the detection direction is used as a weighting function used in information exchange between the information generation unit and the meaning storage unit.
【請求項3】単純正方格子に配置された画素で受像面を
構成する情報入力部と、N(Nは自然数)個の検出方位
を有し前記情報入力部の画像情報から部分的な線情報に
対応した線端情報を生成する情報生成部と、前記検出方
位に相対位置を配置し同一方位で大きさが等しく反対向
きの一対の線端情報を各方位毎に2組有する意味記憶部
とからなり、前記検出方位に頂点が配置された倒立正2
N角錐の稜線の勾配を前記情報生成部と前記意味記憶部
との情報交換で用いる重み関数とすることを特徴とする
ホロニック視覚認識装置。
3. An information input section forming an image receiving surface with pixels arranged in a simple square lattice, and N (N is a natural number) detection directions, and partial line information from the image information of the information input section. An information generation unit that generates line edge information corresponding to the above, and a meaning storage unit that has a pair of line edge information in the same azimuth having opposite positions and having relative positions arranged in the same azimuth and opposite directions. Inverted 2 with apex placed in the detection direction
A holonic visual recognition device, characterized in that the slope of the ridge of an N-pyramid is used as a weighting function used in information exchange between the information generation unit and the meaning storage unit.
【請求項4】単純正方格子に配置された画素で受像面を
構成する情報入力部と、N(Nは自然数)個の検出方位
を有し前記情報入力部の画像情報から部分的な線情報に
対応した線端情報を生成する情報生成部と、前記検出方
位の中間に相対位置を配置し180度より小さい角度を
表す2個一組の線端情報を複数組有する意味記憶部とか
らなり、前記検出方位の中間に頂点が配置された倒立正
2N角錐の稜線の勾配を前記情報生成部と前記意味記憶
部との情報交換で用いる重み関数とすることを特徴とす
るホロニック視覚認識装置。
4. An information input section that constitutes an image receiving surface with pixels arranged in a simple square lattice, and N (N is a natural number) detection directions, and partial line information from the image information of the information input section. And a meaning storage unit having a plurality of pairs of line end information each having a relative position arranged in the middle of the detection azimuth and representing an angle smaller than 180 degrees. The holonic visual recognition device is characterized in that the gradient of the ridgeline of an inverted regular 2N pyramid having a vertex arranged in the middle of the detection direction is used as a weighting function used in information exchange between the information generation unit and the meaning storage unit.
【請求項5】単純正方格子に配置された画素で受像面を
構成する情報入力部と、N(Nは自然数)個の検出方位
を有し前記情報入力部の画像情報から部分的な線情報に
対応した線端情報を生成する情報生成部と、前記検出方
位の中間に相対位置を配置し外側に凸で180度より小
さくしかも180度に最も近い角度を表す2個一組の線
端情報を前記相対位置毎に(180/N)度づつ回転し
た2N組の線端情報を有する意味記憶部とからなり、前
記検出方位に頂点が配置された倒立正2N角錐の稜線の
勾配を前記情報生成部と前記意味記憶部との情報交換で
用いる重み関数とすることを特徴とするホロニック視覚
認識装置。
5. An information input section forming an image receiving surface with pixels arranged in a simple square lattice, and N (N is a natural number) detection directions, and partial line information from the image information of the information input section. And an information generation unit that generates line end information corresponding to the above, and a pair of line end information that has a relative position arranged in the middle of the detection azimuth, is convex outward, is smaller than 180 degrees, and represents the angle closest to 180 degrees. And a meaning storage unit having 2N sets of line end information rotated by (180 / N) degrees for each of the relative positions, and the information about the slope of the ridgeline of the inverted regular 2N pyramid having the apex in the detection direction. A holonic visual recognition device, which is a weighting function used in information exchange between a generation unit and the meaning storage unit.
【請求項6】単純正方格子に配置された画素で受像面を
構成する情報入力部と、N(Nは自然数)個の検出方位
を有し前記情報入力部の画像情報から部分的な線情報に
対応した線端情報を生成する情報生成部と、前記検出方
位の中間に相対位置を配置し外側に凸で180度より小
さくしかも180度に最も近い角度で大きさが等しい2
個一組の線端情報を外側に凸を維持しながら前記相対位
置毎に(180/N)度づつ回転した2N組の線端情報
を有する意味記憶部とからなり、前記検出方位の中間に
頂点が配置された倒立正2N角錐の稜線の勾配を前記情
報生成部と前記意味記憶部との情報交換で用いる重み関
数とすることを特徴とするホロニック視覚認識装置。
6. An information input section forming an image receiving surface with pixels arranged in a simple square lattice, and N (N is a natural number) detection directions, and partial line information from the image information of the information input section. And an information generating unit that generates line edge information corresponding to the above, and a relative position is arranged in the middle of the detection azimuth, is convex outward, is smaller than 180 degrees, and is equal in size at an angle closest to 180 degrees.
It consists of a set of 2N sets of line end information rotated by (180 / N) degrees at each of the relative positions while maintaining the convexity of the individual line end information to the outside. A holonic visual recognition device, wherein the gradient of the ridgeline of an inverted regular 2N pyramid having vertices is used as a weighting function used in information exchange between the information generation unit and the meaning storage unit.
JP4189132A 1992-07-16 1992-07-16 Holonic visual recognizing device Pending JPH0636036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4189132A JPH0636036A (en) 1992-07-16 1992-07-16 Holonic visual recognizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4189132A JPH0636036A (en) 1992-07-16 1992-07-16 Holonic visual recognizing device

Publications (1)

Publication Number Publication Date
JPH0636036A true JPH0636036A (en) 1994-02-10

Family

ID=16235946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4189132A Pending JPH0636036A (en) 1992-07-16 1992-07-16 Holonic visual recognizing device

Country Status (1)

Country Link
JP (1) JPH0636036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409356B1 (en) 1998-07-01 2002-06-25 Nec Corporation Liquid crystal display having light-transmitting member in front of light-generating section

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409356B1 (en) 1998-07-01 2002-06-25 Nec Corporation Liquid crystal display having light-transmitting member in front of light-generating section

Similar Documents

Publication Publication Date Title
Yu et al. Super-resolving very low-resolution face images with supplementary attributes
US11842484B2 (en) Teeth segmentation using neural networks
WO2017150204A1 (en) Computer system and method for upsampling image
WO2019008519A1 (en) Systems and methods for providing non-parametric texture synthesis of arbitrary shape and/or material data in a unified framework
JP2023512083A (en) Segmentation of tooth group using neural network
FR2638264A1 (en) METHOD FOR MINIMIZING THE VISUAL DEGRADATION OF DIGITAL CHARACTERS, IN PARTICULAR WHEN DISPLAYED ON A SCREEN
JP2008259244A (en) Image sensor
WO2019065703A1 (en) Information processing device
TWI587244B (en) Image processing digital filter, image generating device, super hybrid image generating device, image generating method, digital filter making method, super hybrid image generating method, print medium manufacturing method, electronic medium manufacturin
CN108334876A (en) Tired expression recognition method based on image pyramid local binary pattern
CN114648724B (en) Lightweight efficient target segmentation and counting method based on generation countermeasure network
US7956861B2 (en) Method for checkerboard-based vector to raster conversion
Shen et al. Deep-learning-based super-resolution of video satellite imagery by the coupling of multiframe and single-frame models
CN101923801B (en) Generation method of regular dodecahedron map projection
WO2019065702A1 (en) Information processing device
JPH0636036A (en) Holonic visual recognizing device
JP2747706B2 (en) Picture film distortion correction method
JPH0636037A (en) Holonic visual recognizing device
JPH0644378A (en) Holonic visual recognition device
Wang et al. Real-Time 3d Face Reconstruction From Single Image Using End-To-End Cnn Regression
Tulsiani et al. Shape and symmetry induction for 3D objects
Tyler Cartography as Spatial Representation: A new assessment of the competing advantages and drawbacks across fields of science
Feng Fractional fractal geometry for image processing
JPH0676066A (en) Holonic visual recognition device
US6717697B1 (en) Image-component rendering method and recording medium in which image-component rendering program is recorded