JPH0636018B2 - Leakage current measuring device - Google Patents

Leakage current measuring device

Info

Publication number
JPH0636018B2
JPH0636018B2 JP63105269A JP10526988A JPH0636018B2 JP H0636018 B2 JPH0636018 B2 JP H0636018B2 JP 63105269 A JP63105269 A JP 63105269A JP 10526988 A JP10526988 A JP 10526988A JP H0636018 B2 JPH0636018 B2 JP H0636018B2
Authority
JP
Japan
Prior art keywords
leakage current
phase power
measurement
measuring device
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63105269A
Other languages
Japanese (ja)
Other versions
JPH01276075A (en
Inventor
昭夫 三浦
伸厚 寺尾
威 阿戸
智次 美納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP63105269A priority Critical patent/JPH0636018B2/en
Publication of JPH01276075A publication Critical patent/JPH01276075A/en
Publication of JPH0636018B2 publication Critical patent/JPH0636018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、三相電力ケーブルの絶縁劣化の状況を監視す
るための漏れ電流測定装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a leakage current measuring device for monitoring the condition of insulation deterioration of a three-phase power cable.

[従来の技術] 一般に、電力ケーブルは絶縁層に給水等の原因により多
数の水ボイドが形成されると、所謂水トリー劣化と呼ば
れる絶縁劣化を生じ、漏れ電流が発生するようになり、
特に貫通水トリー発生時には漏れ電流の急増が観察され
る。また、油や薬品等の化学的要因によって絶縁層が変
質し、化学トリーを生じた場合にも漏れ電流は検出さ
れ、絶縁劣化の程度を示す指標となり得る。そこで、従
来から電力供試物の絶縁劣化の状況を評価するために、
漏れ電流の有無及びその大きさの測定が行われている。
[Prior Art] Generally, in a power cable, when a large number of water voids are formed in an insulating layer due to water supply or the like, insulation deterioration called so-called water tree deterioration occurs and a leakage current is generated.
In particular, a sudden increase in leakage current is observed when a penetrating water tree occurs. In addition, even when a chemical tree is generated due to the deterioration of the insulating layer due to chemical factors such as oil and chemicals, the leakage current is detected and can be used as an index indicating the degree of insulation deterioration. Therefore, in order to evaluate the condition of insulation deterioration of power test pieces,
The presence or absence of leakage current and its magnitude are measured.

従来の漏れ電流測定は、電力ケーブルを電源から切り離
し、停電させた状態で新らたに試験用電源と漏れ電流測
定器とを接続することによって実施されている場合が通
常である。また、試験用電源には直流電源装置が用いら
れ、被測定物に直流電圧を印加することによって、漏れ
電流特性を得ている。従って、漏れ電流の測定を行う度
に被定物への送電を停止して、被測定物を電源から切り
離さねばならないので、測定作業に長時間かつ多数の人
員が必要になるばかりでなく、測定中は被測定物への送
電が停止されているため、被測定物の使用や運転ができ
ず、例えば電力ケーブルでは供給先への送電が停止して
しまうという二次的な欠点も生ずる。また、電力ケーブ
ルは通常の運転を交流電圧で行っているため、直流電圧
印加時による漏れ電流特性と交流電圧における特性との
相関関係を的確に把握する必要がある。
The conventional leakage current measurement is usually performed by disconnecting the power cable from the power supply and newly connecting the test power supply and the leakage current measuring device in the state of the power failure. A DC power supply is used as the test power supply, and a leakage current characteristic is obtained by applying a DC voltage to the DUT. Therefore, it is necessary to stop the power transmission to the object to be measured and disconnect the object to be measured from the power source each time the leakage current is measured, which requires not only a long time and a large number of personnel for the measurement work but also the measurement. Since the power transmission to the device under test is stopped, the device under test cannot be used or operated. For example, a power cable also has a secondary drawback that power transmission to the destination is stopped. Further, since the power cable normally operates with an AC voltage, it is necessary to accurately grasp the correlation between the leakage current characteristic when a DC voltage is applied and the characteristic with an AC voltage.

[発明の目的] 本発明の目的は、活線状況下で小人数、短時間で三相電
力ケーブルの漏れ電流状態を常時監視することが可能な
漏れ電流測定装置を提供することにある。
[Object of the Invention] It is an object of the present invention to provide a leakage current measuring device capable of constantly monitoring the leakage current state of a three-phase power cable in a short time in a small number of people under a live line condition.

[発明の概要] 上述の目的を達成するための本発明の要旨は、複数組の
三相電力ケーブルの絶縁層からの漏れ電流を検出する場
合において、三相電力供給源からトランスを介して三相
電力ケーブルに電力を供給し、前記トランスの二次コイ
ルの中性点を接地し、各三相電力ケーブルの遮蔽層を接
地線により接地し、各三相電力ケーブルの組及び接地線
に検知コイルを巻回し、これらの検知コイルによる誘電
電圧を測定部により選択的に受信して漏れ電流を測定
し、制御解析部により前記測定部の動作の制御及び測定
データの解析を行うことを特徴とする漏れ電流測定装置
である。
[Summary of the Invention] The gist of the present invention for achieving the above object is to detect a leakage current from an insulating layer of a plurality of sets of three-phase power cables from a three-phase power supply source through a transformer. Power is supplied to the phase power cable, the neutral point of the secondary coil of the transformer is grounded, the shield layer of each three-phase power cable is grounded by a ground wire, and the set and ground wire of each three-phase power cable are detected. It is characterized in that the coil is wound, the dielectric voltage by these detection coils is selectively received by the measurement unit to measure the leakage current, and the control analysis unit controls the operation of the measurement unit and analyzes the measurement data. This is a leakage current measuring device.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。Embodiments of the Invention The present invention will be described in detail based on the illustrated embodiments.

第1図は本発明に係る漏れ電流測定装置の全体構成図を
示し、例えば発電所や大工場では電力供給のために、多
数の電力ケーブルが布設されているが、図面では母線と
なるメイン三相電力ケーブルSから3系統の三相電力ケ
ーブルCa、Cb、Ccが分岐されている。本装置は例えばこ
のように付設された電力ケーブルの複数個所における漏
れ電流を測定するものであり、各電力ケーブルCa、Cb、
Ccのメイン電力ケーブルSからの分岐部分には、ZCT
等の検出用コイル等から成る検出部1a、1b、1cが
それぞれ取り付けられている。検出部1a、1b、1c
の各出力は切換スイッチ2を介して測定部3と接続され
ている。測定部3の出力はマイクロコンピュータ等の制
御解析部4に接続され、制御解析部4の出力は端末機で
あるプリンタ5及びディスプレイ6に接続されている。
そして、切換スイッチ2の切換え及び測定部3の動作は
制御解析部4の指令によって行われるようになってい
る。
FIG. 1 shows an overall configuration diagram of a leakage current measuring device according to the present invention. For example, in a power plant or a large factory, a large number of power cables are laid for power supply, but in the drawing, the main three main cables are provided. Three-phase three-phase power cables Ca, Cb, Cc are branched from the phase power cable S. This device is, for example, to measure the leakage current at a plurality of locations of the power cable attached in this way, each power cable Ca, Cb,
At the branch from the main power cable S of Cc, ZCT
The detectors 1a, 1b, and 1c, each of which includes a detection coil and the like, are attached. Detectors 1a, 1b, 1c
Each output of is connected to the measuring unit 3 via the changeover switch 2. The output of the measurement unit 3 is connected to a control analysis unit 4 such as a microcomputer, and the output of the control analysis unit 4 is connected to a printer 5 and a display 6 which are terminals.
The switching of the changeover switch 2 and the operation of the measuring unit 3 are performed by a command from the control analyzing unit 4.

第2図は検出部1及び測定部3の構成を示す回路構成図
であり、三相電力ケーブルWa、Wb、Wcの導体はそれぞれ
柱上トランスTa、Tb、Tcの二次コイルを介して中性点N
で接地され、柱上トランスTa、Tb18Tcの一次コイルは
それぞれ一端が接地され、他端が50Hz又は60Hzの三
相電力供給源10に接続されている。また、3本の電力
ケーブルWa、Wb、Wcの遮蔽層はそれぞれ接地線Gを介し
て接地され、検出部1としては電力ケーブルWa、Wb、Wc
と接地線Gを巻回する検知コイル11が設けられてい
る。検知コイル11の出力は測定部3に直接に接続され
ているが、実際には第1図に示すように、検知コイル1
1は各検出部1a、1b、1cに1個ずつ設置されるの
で、切換スイッチ2を介して選択的に接続されることに
なる。測定部3は雑音を除去するためのフィルタ31、
漏れ電流計32、A/D変換器33が順次に接続して構
成され、検知コイル11の出力はフィルタ31に接続さ
れ、A/D変換器33の出力は第1図に示す制御解析部
4に接続されている。
FIG. 2 is a circuit configuration diagram showing the configurations of the detection unit 1 and the measurement unit 3, and the conductors of the three-phase power cables Wa, Wb, and Wc are respectively connected through the secondary coils of the pole transformers Ta, Tb, and Tc to the middle. Sex point N
One end of each of the primary coils of the pole transformers Ta and Tb18Tc is grounded and the other end is connected to the three-phase power supply source 10 of 50 Hz or 60 Hz. In addition, the shield layers of the three power cables Wa, Wb, Wc are grounded via the ground line G, respectively, and the power cables Wa, Wb, Wc are used as the detection unit 1.
And a detection coil 11 around which the ground wire G is wound. Although the output of the detection coil 11 is directly connected to the measurement unit 3, as shown in FIG.
Since 1 is installed in each of the detection units 1a, 1b, and 1c, it is selectively connected via the changeover switch 2. The measuring unit 3 includes a filter 31 for removing noise,
A leakage current meter 32 and an A / D converter 33 are connected in sequence, the output of the detection coil 11 is connected to the filter 31, and the output of the A / D converter 33 is the control analysis unit 4 shown in FIG. It is connected to the.

この第2図において、3本の電力ケーブルWa、Wb、Wcに
三相電力供給源10から電力が供給されている活線状況
下で、電力ケーブルWa、Wb、Wcは中性点Nが接地されて
いるため、検知コイル11上での磁束変化の合計は常に
零である。このために、検知コイル11には電磁誘導に
よる誘導電圧が生ずることはないが、3ほの電力ケーブ
ルWa、Wb、Wcのうちの1本、例えば電力ケーブルWaに抵
抗Rfで示すような絶縁劣化が生ずると、漏れ電流Ifが矢
印に示すように柱上トランスTa側から、導体、抵抗Rf、
電力ケーブルWaの遮蔽層、接地線Gを順に通って流れ
る。このとき、漏れ電流Ifは検知コイル11を柱上トラ
ンスTa側から2回、逆方向から1回通過するため、検知
コイル11には電磁誘導による誘導電圧が生ずることに
なる。
In FIG. 2, the neutral point N of the power cables Wa, Wb, Wc is grounded under a live line condition in which power is being supplied from the three-phase power supply source 10 to the three power cables Wa, Wb, Wc. Therefore, the total change in magnetic flux on the detection coil 11 is always zero. For this reason, no induction voltage is generated in the detection coil 11 due to electromagnetic induction, but one of the three power cables Wa, Wb, and Wc, for example, the insulation deterioration as shown by the resistance Rf in the power cable Wa. When the leakage current If occurs, the leakage current If from the pole transformer Ta side, the conductor, the resistance Rf,
It flows through the shield layer of the power cable Wa and the ground wire G in order. At this time, since the leakage current If passes through the detection coil 11 twice from the pole transformer Ta side and once from the opposite direction, an induction voltage due to electromagnetic induction is generated in the detection coil 11.

上述の原理によって生ずる誘導電圧は、測定部3のフィ
ルタ31において雑音が除去され、漏れ電流計32によ
って絶縁劣化により生じた抵抗値Rfが計測され、A/D
変換器33によりデジタル信号に変換される。
With respect to the induced voltage generated by the above-described principle, noise is removed by the filter 31 of the measurement unit 3, the resistance value Rf caused by insulation deterioration is measured by the leakage ammeter 32, and A / D
It is converted into a digital signal by the converter 33.

例えば、制御解析部4は1日のうちの特定の例えば1時
間のみ自動測定を行うようにプログラムされ、その1時
間の間は切換スイッチ2を順次に自動的に切換えて動作
させ、電力ケーブルCa、Cb、Cc、…について継続して漏
れ電流の測定を行う。測定部3から出力される測定値の
デジタル出力は、順次に制御解析部4に取り込まれ、測
定終了後に各電力ケーブルCa、Cb、Cc、…ごとに1時間
で得られたデータの平均値が算出される。
For example, the control analysis unit 4 is programmed to perform automatic measurement only during a specific hour, for example, of one day, and during that hour, the changeover switch 2 is automatically and sequentially switched to operate and the power cable Ca , Cb, Cc, ... Continue to measure the leakage current. The digital output of the measurement value output from the measurement unit 3 is sequentially captured by the control analysis unit 4, and after the measurement is finished, the average value of the data obtained for each power cable Ca, Cb, Cc, ... It is calculated.

第3図は制御解析部4がディスプレイ6の画面上に出力
した測定データであり、各電力ケーブルCa、Cb、Cc、…
ごとに1日の平均値が1月から10月までグラフ化され
て表示されている。通常、発電所等では検出部1は20
〜30個所必要とされ、これらのデータはディスプレイ
6の画面を切換えて表示され、プリンタ5から印字出力
される。
FIG. 3 shows the measurement data output by the control analysis unit 4 on the screen of the display 6, and the power cables Ca, Cb, Cc, ...
Each day, the average value of one day is graphed and displayed from January to October. Normally, in a power plant or the like, the detection unit 1 has 20
.About.30 points are required, and these data are displayed by switching the screen of the display 6 and printed out from the printer 5.

このように、各電力ケーブルCa、Cb、Cc、…ごとに予め
検出部1を常設し、活線状況下で制御解析部4によって
切換スイッチ2を自動的に切換えて測定を行えば、能率
的となり省力化が可能である。また、各切換スイッチ2
に検出部1をそれぞれ複数個所設置すれば、差動出力に
よって各検出部1間の漏れ電流の大きさが判るので、絶
縁劣化の激しい部分を突きとめることも可能である。
In this way, if the detection unit 1 is permanently installed in advance for each of the power cables Ca, Cb, Cc, ... And the measurement is performed by automatically changing the changeover switch 2 by the control analysis unit 4 under a live line condition, it is efficient. It is possible to save labor. Also, each changeover switch 2
If a plurality of detecting portions 1 are installed in each of the above, the magnitude of the leakage current between the detecting portions 1 can be known by the differential output, and it is possible to identify the portion where the insulation deterioration is severe.

[発明の効果] 以上説明したように本発明に係る漏れ電流測定装置は、
複数組の三相電力ケーブルにそれぞれ検知コイルを設置
し、これらの出力を選択的に受信して測定部が測定を行
うように、制御解析部によって測定部等の動作を制御し
ているので、通常の運転又は使用状態のときに、自動的
に測定を実施することが可能である。従って、測定の際
の人力の省力化が実現できるばかりでなく、運転を停止
させる必要がないため極めて能率的である。
[Effects of the Invention] As described above, the leakage current measuring device according to the present invention is
The detection coil is installed in each of the multiple sets of three-phase power cables, and the control analysis unit controls the operation of the measurement unit so that the output is selectively received and the measurement unit performs the measurement. It is possible to perform measurements automatically during normal operation or use. Therefore, not only the labor saving of human power at the time of measurement can be realized, but also it is not necessary to stop the operation, which is extremely efficient.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明に係る漏れ電流測定装置の一実施例を示
し、第1図は全体構成図、第2図は回路構成図、第3図
はディスプレイ画面の表示図である。 符号1は検出部、11は検知コイル、2は切換スイッ
チ、3は測定部、31はフィルタ、32は漏れ電流計、
33はA/D変換器、4は制御解析部である。
The drawings show one embodiment of the leakage current measuring device according to the present invention. FIG. 1 is an overall configuration diagram, FIG. 2 is a circuit configuration diagram, and FIG. 3 is a display diagram of a display screen. Reference numeral 1 is a detection unit, 11 is a detection coil, 2 is a changeover switch, 3 is a measurement unit, 31 is a filter, 32 is a leakage ammeter,
Reference numeral 33 is an A / D converter, and 4 is a control analysis unit.

フロントページの続き (72)発明者 美納 智次 埼玉県熊谷市新堀1008番地 三菱電線工業 株式会社熊谷製作所内 (56)参考文献 特開 平1−234012(JP,A) 実開 昭63−4123(JP,U) 実開 昭63−2170(JP,U) 実開 昭55−9437(JP,U)Front page continuation (72) Inventor Tomoji Minoh 1008 Shinbori, Kumagaya, Saitama Mitsubishi Cable Industries, Ltd. Kumagaya Manufacturing Co., Ltd. (56) Reference JP-A 1-234012 (JP, A) (JP, U) Actually opened 63-2170 (JP, U) Actually opened 55-9437 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数組の三相電力ケーブルの絶縁層からの
漏れ電流を検出する場合において、三相電力供給源から
トランスを介して三相電力ケーブルに電力を供給し、前
記トランスの二次コイルの中性点を接地し、各三相電力
ケーブルの遮蔽層を接地線により接地し、各三相電力ケ
ーブルの組及び接地線に検知コイルを巻回し、これらの
検知コイルによる誘導電圧を測定部により選択的に受信
して漏れ電流を測定し、制御解析部により前記測定部の
動作の制御及び測定データの解析を行うことを特徴とす
る漏れ電流測定装置。
1. When detecting a leakage current from an insulating layer of a plurality of sets of three-phase power cables, power is supplied from a three-phase power supply source to the three-phase power cables through a transformer, and the secondary of the transformer. The neutral point of the coil is grounded, the shield layer of each three-phase power cable is grounded by the ground wire, the detection coil is wound around each three-phase power cable group and ground wire, and the induced voltage by these detection coils is measured. A leak current measuring device, wherein the unit selectively receives and measures the leak current, and the control analysis unit controls the operation of the measurement unit and analyzes the measurement data.
JP63105269A 1988-04-27 1988-04-27 Leakage current measuring device Expired - Lifetime JPH0636018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63105269A JPH0636018B2 (en) 1988-04-27 1988-04-27 Leakage current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63105269A JPH0636018B2 (en) 1988-04-27 1988-04-27 Leakage current measuring device

Publications (2)

Publication Number Publication Date
JPH01276075A JPH01276075A (en) 1989-11-06
JPH0636018B2 true JPH0636018B2 (en) 1994-05-11

Family

ID=14402943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63105269A Expired - Lifetime JPH0636018B2 (en) 1988-04-27 1988-04-27 Leakage current measuring device

Country Status (1)

Country Link
JP (1) JPH0636018B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676821B1 (en) * 1991-05-21 1994-09-09 Merlin Gerin ISOLATION MONITORING AND MEASURING DEVICE FOR AN INSULATED NEUTRAL ELECTRICAL NETWORK.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559437U (en) * 1978-07-03 1980-01-22
JPS632170U (en) * 1986-06-23 1988-01-08
JPS634123U (en) * 1986-06-25 1988-01-12
JPH01234012A (en) * 1988-03-15 1989-09-19 Mitsubishi Rayon Co Ltd Centralized controlling apparatus for earth leakage

Also Published As

Publication number Publication date
JPH01276075A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
US5481198A (en) Method and device for measuring corrosion on a portion of a metallic path carrying an undetermined load current
KR20070085378A (en) Leak current breaker and method
JPH0636018B2 (en) Leakage current measuring device
KR100538018B1 (en) A new measurement equipment for the shieth currents of grounding power cables
US3037161A (en) Method and apparatus for locating faults in transmission lines
Bawart et al. New approach for online detection of partial discharges in cable systems via VDS ports
JPH04220573A (en) Low-voltage system line wire insulation monitoring method
JPH0473755B2 (en)
JP3056368U (en) Clamp type wireless earth leakage ammeter
JP2019002812A (en) Insulation resistance measurement system, distribution board, insulation resistance measurement method and program
JP3622171B2 (en) Earth leakage detection device
JP2577825B2 (en) Non-power failure insulation diagnostic device
JP3351304B2 (en) System for detecting the applied voltage polarity of a cable line and the system for detecting the breakdown position of a cable line
JP3479339B2 (en) Electrical measuring method and electrical measuring device for cable
JPS62261078A (en) Detection of fault point for cable
JPS60262069A (en) Monitoring of deterioration in insulation of power cable
JP3466087B2 (en) Monitoring equipment for grounding system in electric room
CN111337750B (en) Method and device for synchronously testing direct resistance of three-phase winding of cable outgoing type transformer
JPH073346Y2 (en) Zero-phase current measuring device
JP2750713B2 (en) Simple insulation resistance measurement method for low voltage wiring etc.
JPH0631435Y2 (en) Cable diagnostic equipment
JP2681187B2 (en) Insulation fault location search method
JPH01297568A (en) Measuring method for partial electric discharge
SU1221620A1 (en) Method of inspecting inner windings of power transformers
JP3042768U (en) Instantaneous ground fault detector