JPH063593A - Optical reflecting element - Google Patents

Optical reflecting element

Info

Publication number
JPH063593A
JPH063593A JP4180610A JP18061092A JPH063593A JP H063593 A JPH063593 A JP H063593A JP 4180610 A JP4180610 A JP 4180610A JP 18061092 A JP18061092 A JP 18061092A JP H063593 A JPH063593 A JP H063593A
Authority
JP
Japan
Prior art keywords
optical
light
mirror
concave mirror
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4180610A
Other languages
Japanese (ja)
Other versions
JP2668615B2 (en
Inventor
Hirokazu Tanaka
宏和 田中
Hiroshi Nakajima
中島  宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP4180610A priority Critical patent/JP2668615B2/en
Publication of JPH063593A publication Critical patent/JPH063593A/en
Application granted granted Critical
Publication of JP2668615B2 publication Critical patent/JP2668615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To reflect all incident light beams by forming an optical reflecting element of a transparent material having a reflecting surface obtained by rotating a curved line having a focus around an axis and an incidence surface obtained by rotating an arc drawn around the focus as a center around an axis. CONSTITUTION:A 1st bowl-shaped reflecting full-length mirror 50 which has a light transmission hole 50a in its center inner bottom part is sectioned in a parabolic surface shape and a concave mirror whose internal surface is a mirror surface. When an optical transmitter is placed at a distance, this concave mirror 50 reflects and converges incident lights L1, L2... which are nearly parallel to the axis Z on the focus P1. An optical reflecting element 51 formed of transparent glass or synthetic resin as a 2nd reflecting mirror consists of a circular external surface part 52, a curved surface part 53, and a body part 54. Then the circular external surface part 52 is in the shape obtained by rotating the arc which contains the focus P1 of the concave mirror 50 in its center around the axis Z. Light beams traveling to the focus P1 from the outside of the circular external surface part 52 are made to travel straight at the incidence point on the circular external surface part 52.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学反射素子に関し、
例えば、光を利用した空中電送装置、POS(ポジショ
ンオペレ−ションシステム)、パソコンとプリンタ間の
光通信などに利用される光電変換装置に備える光学反射
素子に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical reflecting element,
For example, the present invention relates to an optical reflection element included in a photoelectric conversion device used for an airborne transmission device using light, a POS (position operation system), an optical communication between a personal computer and a printer, and the like.

【0002】[0002]

【従来の技術】光による空中電送に利用される光電変換
装置には様々な構成のものがあるが、その一例を図6に
示す。1は断面形状がy2=4P1xで定義される放物線
断面からなる凹面鏡で、内面が反射面となっている。こ
の凹面鏡1は、光発信器が遠方の場合に、入射光L1
2・・・・・は軸線Zに対してほぼ平行となり焦点で
あるP1点に集光する。また、この凹面鏡1の中央奥底
部には透光孔1aが形成されている。
2. Description of the Related Art There are various types of photoelectric conversion devices used for optical transmission by air, and one example is shown in FIG. Reference numeral 1 is a concave mirror having a parabolic cross section defined by a cross section of y 2 = 4P 1 x, and its inner surface is a reflecting surface. This concave mirror 1 has an incident light L 1 when the optical transmitter is distant,
L 2 ··· is substantially parallel to the axis Z and is focused on the focal point P 1 . Further, a transparent hole 1a is formed in the central bottom portion of the concave mirror 1.

【0003】2は断面形状がy2=4P2xで定義される
放物線断面からなる小径の凸面鏡で、外面を反射面とし
てある。この凸面鏡2は、鏡面側を上記した凹面鏡1の
透光孔1aに対向させ、焦点P 2が凹面鏡1の焦点P1
同一位置となるように配置されている。
2 has a cross section of y2= 4P2defined by x
A small-diameter convex mirror with a parabolic cross section, with the outer surface as the reflecting surface.
There is. This convex mirror 2 is the same as the concave mirror 1 whose mirror surface side is described above.
Focus P on the transparent hole 1a 2Is the focus P of the concave mirror 11When
They are arranged so that they are at the same position.

【0004】上記した凹面鏡1に入射した光発信器から
の光L1、L2・・・・・は、この凹面鏡1で反射されて
集光し、その後、凸面鏡2で反射され、その反射光が軸
線Zに対して平行な光となる。
Lights L 1 , L 2, ... From the optical transmitter that have entered the concave mirror 1 are reflected by the concave mirror 1 and condensed, and then reflected by the convex mirror 2 and reflected light thereof. Becomes light parallel to the axis Z.

【0005】すなわち、図7上において、軸線Z上にあ
る焦点P2より光Laが出たと仮定すると、凸面鏡2の
T点で軸線Zに平行に反射されてLbの光となる。凸面
鏡2のT点における接線をSとすれば、Q1=Q2とな
る。また、Lcの光がP2に向かうと仮定すると、Q1
3であるから光Lcの反射光をLdとすると、Q3=Q
4である。
That is, in FIG. 7, assuming that the light La is emitted from the focus P 2 on the axis Z, it is reflected at the point T of the convex mirror 2 in parallel with the axis Z and becomes the light of Lb. If the tangent line at the point T of the convex mirror 2 is S, then Q 1 = Q 2 . Assuming that the light of Lc goes to P 2 , Q 1 =
Since it is Q 3 , if the reflected light of the light Lc is Ld, then Q 3 = Q
Is 4 .

【0006】これより、Q2=Q4となりLdは軸線Zに
平行な光となる。したがって、凸面鏡2で反射された光
は軸線Zと平行となり凹面鏡1の透光孔1aより凹面鏡
1の外方に出る。
From this, Q 2 = Q 4 and Ld becomes light parallel to the axis Z. Therefore, the light reflected by the convex mirror 2 becomes parallel to the axis Z and goes out of the concave mirror 1 through the light transmitting hole 1 a of the concave mirror 1.

【0007】また、凹面鏡1の外方には受光素子3が設
けられている。この受光素子3は、凸面鏡2の反射光路
上に備え、軸線Zを中心位置とするように設けられてい
る。
A light receiving element 3 is provided outside the concave mirror 1. The light receiving element 3 is provided on the reflection optical path of the convex mirror 2 and is provided with the axis Z as the center position.

【0008】これより、凸面鏡2で反射され、透光孔1
aより凹面鏡1の外方に出た光は受光素子3の受光面に
入射して光電変換される。上記した受光素子3はインピ
−ダンス変換する電子回路部品4や他の電子回路部品5
と共に回路基板6に設けられている。
As a result, the light is reflected by the convex mirror 2 and the transparent hole 1
Light emitted from a to the outside of the concave mirror 1 is incident on the light receiving surface of the light receiving element 3 and photoelectrically converted. The above-mentioned light receiving element 3 is an electronic circuit component 4 for impedance conversion or another electronic circuit component 5
It is also provided on the circuit board 6.

【0009】上記した光電変換装置は、光発信器が比較
的遠方にある場合に、発信された光が軸線Zに対して略
平行な光となって凹面鏡1に入射する。この入射光
1、L2・・・・は凹面鏡1の内面で反射して焦点P1
に向かう。焦点P1に向かった反射光L1、L2・・・・
・・は凸面鏡2の外面で反射し軸線Zに平行な光となっ
て透光孔1aより凹面鏡1の外方に出る。そして、上記
の如く集光した光L1、L2・・・・・を受光素子3によ
って受光し、光信号を電気信号に変換して信号出力回路
に送る。
In the photoelectric conversion device described above, when the optical transmitter is located relatively far away, the emitted light becomes substantially parallel to the axis Z and enters the concave mirror 1. The incident lights L 1 , L 2, ... Are reflected on the inner surface of the concave mirror 1 to form a focal point P 1.
Head to. Reflected lights L 1 and L 2 which are directed to the focal point P 1 ...
.. is reflected by the outer surface of the convex mirror 2 and becomes light parallel to the axis Z and goes out of the concave mirror 1 through the light transmitting hole 1a. Then, the light L 1 , L 2, ... Collected as described above is received by the light receiving element 3, and the optical signal is converted into an electric signal and sent to the signal output circuit.

【0010】また、光発信器が近距離にある場合は、図
8に示すように光発信器の位置を第1の焦点F1とし、
第2の焦点をF2とする楕円曲線断面の凹面鏡7を用い
て光L1、L2・・・・・を反射させる。この凹面鏡7も
中央奥底部に透光孔7aが設けられている。
When the optical transmitter is located at a short distance, the position of the optical transmitter is set to the first focus F 1 as shown in FIG.
The light L 1 , L 2, ... Is reflected by using the concave mirror 7 having an elliptic curve cross section with the second focus being F 2 . The concave mirror 7 is also provided with a light transmitting hole 7a in the central bottom portion.

【0011】凹面鏡7で反射した反射光L1、L2・・・
・・は凹面鏡7の焦点F2と同一位置に設けられた焦点
2の凸面鏡2によって反射させ、軸線Zに平行な反射
光として透光孔7aから射出させ、凸面鏡2の反射光路
上に備えた受光素子3に入射させて光電変換する。
Reflected lights L 1 , L 2 ... Reflected by the concave mirror 7
.. is reflected by the convex mirror 2 having the focal point P 2 provided at the same position as the focal point F 2 of the concave mirror 7, emitted from the light transmitting hole 7 a as reflected light parallel to the axis Z, and provided on the reflected optical path of the convex mirror 2. It is incident on the light receiving element 3 and photoelectrically converted.

【0012】[0012]

【発明が解決しようとする課題】上記した光電変換装置
は、凹面鏡1内に凸面鏡2を配置する構成であることか
ら、凸面鏡2の支持手段が必要となるが、この支持手段
は光発光器からの光L1、L2・・・・・・を遮らないよ
うに構成しなければならない。
Since the photoelectric conversion device described above has a configuration in which the convex mirror 2 is arranged in the concave mirror 1, a supporting means for the convex mirror 2 is required. Must be constructed so as not to block the light L 1 , L 2 ,.

【0013】したがって、図9(A)に示したような光
学反射素子が凸面鏡2として使用される。この光学反射
素子8は、透明の合成樹脂で形成されており、円形断面
の胴部8aの前端に湾曲凹面8bが形成され、その後部
に受光素子9が埋設されている。
Therefore, the optical reflecting element as shown in FIG. 9A is used as the convex mirror 2. The optical reflection element 8 is made of a transparent synthetic resin, and a curved concave surface 8b is formed at the front end of a body portion 8a having a circular cross section, and a light receiving element 9 is embedded in the rear portion thereof.

【0014】湾曲凹面8bは、焦点P2を持つ放物線を
軸線Zの回りに回転して得られる湾曲反射面となってお
り、この反射面で反射される光の光路に受光素子9が位
置している。
The curved concave surface 8b is a curved reflecting surface obtained by rotating a parabola having a focal point P 2 around the axis Z, and the light receiving element 9 is located in the optical path of the light reflected by this reflecting surface. ing.

【0015】上記した光学反射素子8は、凹面鏡1の透
光孔1aより差し入れ、受光素子9の端子ピン9a、9
bを回路基板6に固着させるようにして取付ける。この
場合、湾曲凹面8bの焦点P2を凹面鏡1の焦点P1に一
致させるようにする。
The above-mentioned optical reflecting element 8 is inserted through the light transmitting hole 1a of the concave mirror 1 and the terminal pins 9a, 9 of the light receiving element 9 are inserted.
It is attached so that b is fixed to the circuit board 6. In this case, the focal point P 2 of the curved concave surface 8b is made to coincide with the focal point P 1 of the concave mirror 1.

【0016】このように構成した光電変換装置は、凹面
鏡1で反射された光が光学反射素子8の胴部8aより入
射し、湾曲凹面8bで反射されて受光素子9により受光
される。
In the photoelectric conversion device configured as described above, the light reflected by the concave mirror 1 enters from the barrel portion 8a of the optical reflection element 8, is reflected by the curved concave surface 8b, and is received by the light receiving element 9.

【0017】ところが、上記した光学反射素子8は入射
面を形成している胴部8aが円形断面となっている関係
で、凹面鏡1の反射光が各々異なった入射角で光学反射
素子8に入射し、各々の入射角にしたがって屈折した光
となる。
However, in the above-described optical reflection element 8, the reflected light from the concave mirror 1 is incident on the optical reflection element 8 at different incident angles because the body portion 8a forming the incident surface has a circular cross section. Then, the light is refracted according to each incident angle.

【0018】つまり、凹面鏡1の反射光が焦点P2に向
かわないために湾曲凹面8bによって反射された光が軸
線Zと平行とならず、受光素子9の受光量が減少すると
いう問題がある。
That is, since the light reflected by the concave mirror 1 does not go to the focal point P 2 , the light reflected by the curved concave surface 8b does not become parallel to the axis Z, and the amount of light received by the light receiving element 9 decreases.

【0019】本発明は上記した実情にかんがみ、上記し
たような光電変換装置などに用いて、入射する全ての光
を反射させるようにした光学反射素子を開発することを
目的とする。
In view of the above situation, it is an object of the present invention to develop an optical reflection element which is used in the above photoelectric conversion device or the like to reflect all incident light.

【0020】[0020]

【課題を解決するための手段】上記した目的を達成する
ため、本発明では、第1の発明として、焦点を持つ曲線
を軸回転して得られる反射面と、上記焦点に向かう光の
光路上に当該焦点を中心にして描いた円弧を軸回転して
得られる入射面とを有する透明材からなることを特徴と
する光学反射素子を提案する。
In order to achieve the above object, in the present invention, as a first invention, a reflecting surface obtained by axially rotating a curve having a focal point and an optical path of light directed to the focal point. Then, an optical reflection element is proposed which is made of a transparent material having an incident surface obtained by rotating an arc drawn around the focal point.

【0021】また、第2の発明として、第1の発明の光
学反射素子において、反射面の反射光路に位置させた受
光素子を埋設し、また、一体的に固着したことを特徴と
する光学反射素子を提案する。
As a second invention, in the optical reflection element of the first invention, an optical reflection element characterized in that a light receiving element located in the reflection optical path of the reflection surface is embedded and integrally fixed. Suggest a device.

【0022】さらに、第3の発明として、第1の発明の
光学反射素子において、反射面を鏡面として形成したこ
とを特徴とする光学反射素子を提案する。
Further, as a third invention, an optical reflecting element of the first invention is characterized in that the reflecting surface is formed as a mirror surface.

【0023】[0023]

【作用】第1の発明の光学反射素子は、入射する全ての
光が同じ入射角で入射面より入射するため、光の屈折が
なく全ての入射光が焦点に向かうようになる。この結
果、入射した全ての光が反射面で一定方向に反射され
る。
In the optical reflection element of the first invention, all the incident light is incident from the incident surface at the same incident angle, so that there is no refraction of the light and all the incident light goes to the focal point. As a result, all the incident light is reflected by the reflecting surface in a certain direction.

【0024】受光素子を埋設し、また、一体的に固着し
た光学反射素子では、反射面で上記のように反射された
光が受光素子によって受光され、光電変換される。ま
た、反射面を鏡面形成すれば、光学反射素子の反射面形
状が特定されず、反射面形成の自由度が広くなる。
In the optical reflecting element in which the light receiving element is embedded and integrally fixed, the light reflected by the reflecting surface as described above is received by the light receiving element and photoelectrically converted. Further, if the reflecting surface is formed as a mirror surface, the shape of the reflecting surface of the optical reflecting element is not specified and the degree of freedom in forming the reflecting surface is widened.

【0025】[0025]

【実施例】次に、本発明を光電変換装置の光学反射素子
として用いた実施例について図面に沿って説明する。図
1は本発明の第1実施例を示す光電変換装置の原理構成
図である。
EXAMPLES Next, examples in which the present invention is used as an optical reflection element of a photoelectric conversion device will be described with reference to the drawings. FIG. 1 is a principle block diagram of a photoelectric conversion device showing a first embodiment of the present invention.

【0026】50は中央奥底部に透光孔50aを有する
椀状の第1の反射鏡で、この反射鏡50は断面形状がy
2=4P1xで定義される放物面断面で、内面が鏡面形成
された凹面鏡となっている。この凹面鏡50は、光発信
器が遠方の場合、軸線Zとほぼ平行となる入射光L1
2・・・・・を反射し、焦点P1に集光させる。
Reference numeral 50 denotes a bowl-shaped first reflecting mirror having a light transmitting hole 50a in the center bottom thereof. The reflecting mirror 50 has a cross-sectional shape of y.
In the parabolic cross section defined by 2 = 4P 1 x, the inner surface is a concave mirror with a mirror surface. This concave mirror 50 has an incident light L 1 that is substantially parallel to the axis Z when the optical transmitter is distant,
L 2 is reflected and focused on the focal point P 1 .

【0027】51は、透明のガラスまたは合成樹脂材な
どで形成した光学反射素子で、第2の反射鏡となってい
る。この光学反射素子51は、円形外面部52と湾曲面
部53及び胴部54とから構成され、円形外面部52
は、凹面鏡50の焦点P1を中心とする円弧を軸線Zの
回りに回転して得られる形状をなし、この円形外面部5
2の外側から焦点P1に向かう光を円形外面部52の入
射点において直進させるようになっている。
Reference numeral 51 denotes an optical reflecting element formed of transparent glass or synthetic resin material, which serves as a second reflecting mirror. The optical reflection element 51 includes a circular outer surface portion 52, a curved surface portion 53, and a body portion 54.
Has a shape obtained by rotating an arc around the focal point P 1 of the concave mirror 50 around the axis Z, and the circular outer surface portion 5
Light traveling from the outside of 2 to the focal point P 1 travels straight at the incident point of the circular outer surface portion 52.

【0028】また、湾曲面部53は、光学反射素子51
の前面をy2=4P2xで定義される放物線にしたがって
湾曲させた形状となっている。また、胴部54は、円形
断面として凹面鏡50の透光孔50aに挿通可能に形成
されている。
The curved surface portion 53 has an optical reflection element 51.
Is curved according to a parabola defined by y 2 = 4P 2 x. Further, the body portion 54 has a circular cross section so that it can be inserted into the light transmitting hole 50 a of the concave mirror 50.

【0029】この光学反射素子51は、図1に示すよう
に、受光素子55が予め埋設されており、光学反射素子
51の背面から突出した上記受光素子55の端子ピン5
6を回路基板57に固着して保持されている。
As shown in FIG. 1, the optical reflecting element 51 has a light receiving element 55 embedded therein in advance, and the terminal pin 5 of the light receiving element 55 protruding from the back surface of the optical reflecting element 51.
6 is fixedly held on the circuit board 57.

【0030】なお、光学反射素子51は、湾曲面部53
の焦点P2を凹面鏡50の焦点P1に一致させるように位
置決めされている。また、受光素子55は、光学反射素
子51内において、湾曲面部53の反射光路上に軸線Z
を中心位置とするようにして埋設される。さらに、端子
ピン56は、回路基板57に設けた信号回路に接続され
ている。
The optical reflecting element 51 has a curved surface portion 53.
The focal point P 2 of the concave mirror 50 is aligned with the focal point P 1 of the concave mirror 50. Further, the light receiving element 55 is provided with the axis Z on the reflection optical path of the curved surface portion 53 in the optical reflecting element 51.
Is buried so that the center position is. Further, the terminal pin 56 is connected to a signal circuit provided on the circuit board 57.

【0031】上記の如く構成した光電変換装置は、光発
信器が比較的遠方にある場合、発信された光が軸線Zに
対してほぼ平行な光となって凹面鏡50に入射する。こ
の入射光L1、L2・・・・・は凹面鏡50の内面で反射
して焦点P1に向かう。
In the photoelectric conversion device constructed as described above, when the optical transmitter is located relatively far, the transmitted light is incident on the concave mirror 50 as light substantially parallel to the axis Z. The incident lights L 1 , L 2, ... Are reflected on the inner surface of the concave mirror 50 and travel toward the focal point P 1 .

【0032】焦点P1に向かった反射光L1、L2・・・
・・は光学反射素子51の円形外面部52より入射し、
この円形外面部52を直進して湾曲面部53に入射す
る。そして、湾曲面部53で再び反射し軸線Zに対して
平行な光となって光学反射素子51に備えた受光素子5
5に入射し、この受光素子55によって光信号が電気信
号に返還され回路基板57に備えた信号出力回路に送ら
れる。
The reflected light L 1 towards the focal point P 1, L 2 ···
.. is incident from the circular outer surface portion 52 of the optical reflection element 51,
The circular outer surface portion 52 goes straight and enters the curved surface portion 53. Then, the light is reflected again by the curved surface portion 53 to become light parallel to the axis Z and the light receiving element 5 provided in the optical reflecting element 51.
The light signal is returned to an electric signal by the light receiving element 55 and is sent to a signal output circuit provided on the circuit board 57.

【0033】上記した光電変換装置は、凹面鏡50で反
射された全ての光L1、L2・・・・・・が、光学反射素
子51の円形外面部52より同じ入射角で入射するた
め、この光が屈折せず、湾曲面部53によって同方向に
反射されて受光素子55に送られる。
In the photoelectric conversion device described above, all the lights L 1 , L 2, ... Reflected by the concave mirror 50 are incident from the circular outer surface portion 52 of the optical reflection element 51 at the same incident angle. This light is not refracted, is reflected in the same direction by the curved surface portion 53, and is sent to the light receiving element 55.

【0034】また、光電変換装置は、光学反射素子51
に設けた受光素子55の端子ピン56を回路基板57の
所定位置に固着することによって保持するようにしてい
るので、光学反射素子51の保持構成が簡単となる。
The photoelectric conversion device has an optical reflection element 51.
Since the terminal pin 56 of the light receiving element 55 provided in the above is fixed to a predetermined position of the circuit board 57 to be held, the holding structure of the optical reflecting element 51 is simplified.

【0035】図2は本発明の第2実施例を示す光電変換
装置の原理構成図である。この実施例は、光発信器が比
較的近距離にある場合を示し、光発信器からの光L1
2・・・・・・・を反射させる第1の反射鏡を楕円曲
線断面の凹面鏡59とし、光学反射素子60の湾曲面部
62を楕円曲線断面の凸面鏡として構成したものであ
る。凹面鏡59は、中央奥底部に透光孔59aが設けら
れている。
FIG. 2 is a principle block diagram of a photoelectric conversion device showing a second embodiment of the present invention. This embodiment shows the case where the optical transmitter is at a relatively short distance, and the light L 1 from the optical transmitter is
The first reflecting mirror that reflects L 2 ... Is a concave mirror 59 having an elliptic curve section, and the curved surface portion 62 of the optical reflecting element 60 is a convex mirror having an elliptic curve section. The concave mirror 59 is provided with a light transmitting hole 59a at the center bottom.

【0036】第2の反射鏡となる光学反射素子60は、
円形外面部61が凹面鏡59の焦点F3を中心とする円
弧を軸線Zの回りに回転して得られる形状をなし、ま
た、湾曲させて設けた湾曲面部62は楕円曲線を軸線Z
の回りに回転して得られる形状となっている。そして、
凹面鏡59の焦点F3と同位置を第1焦点F4、受光素子
63の受光面中心位置を第2の焦点F5としてある。ま
た、胴部64は、第1実施例に示した光学反射素子51
の胴部54に比べて小径のものとなっている。
The optical reflecting element 60 which serves as the second reflecting mirror is
The circular outer surface portion 61 has a shape obtained by rotating an arc around the focal point F 3 of the concave mirror 59 around the axis Z, and the curved surface portion 62 provided by being curved has an elliptic curve along the axis Z.
The shape is obtained by rotating around. And
The same position as the focus F 3 of the concave mirror 59 is the first focus F 4 , and the center position of the light receiving surface of the light receiving element 63 is the second focus F 5 . Further, the body portion 64 is the optical reflection element 51 shown in the first embodiment.
The diameter is smaller than that of the body portion 54.

【0037】この光学反射素子60は、湾曲面部62の
反射光路に受光素子63が埋設され、この受光素子63
の端子ピン65を回路基板66に固着して保持されてい
る。
In this optical reflecting element 60, a light receiving element 63 is embedded in the reflected light path of the curved surface portion 62, and this light receiving element 63 is provided.
The terminal pins 65 are fixedly held on the circuit board 66.

【0038】光発信器が焦点F6のように近距離にある
場合、焦点F6、F3とする凹面鏡59で光L1、L2・・
・・・・を反射させる。凹面鏡59の反射光は光学反射
素子60の円形外面部61に入射し、この円形外面部6
1を直進して湾曲面部62に入射する。そして、湾曲面
部62で再度反射して受光素子63に入射し、この受光
素子63によって光電変換される。この実施例の場合、
湾曲面部62で反射する光は軸線Zに平行光とならず、
焦点F5に集光する。
[0038] If the optical transmitter is a short distance as the focal point F 6, the light L 1 by the concave mirror 59 to focus F 6, F 3, L 2 ··
.. is reflected. The light reflected by the concave mirror 59 enters the circular outer surface portion 61 of the optical reflection element 60, and the circular outer surface portion 6
1 goes straight on and enters the curved surface portion 62. Then, the light is reflected again by the curved surface portion 62, enters the light receiving element 63, and is photoelectrically converted by the light receiving element 63. In this example,
The light reflected by the curved surface portion 62 is not parallel to the axis Z,
Focus on the focal point F 5 .

【0039】このように構成すれば、前述した第1実施
例と同様の効果が得られる他、受光素子63の受光面を
縮小させることができる。
With this structure, the same effect as that of the first embodiment described above can be obtained, and the light receiving surface of the light receiving element 63 can be reduced.

【0040】上記した第1、第2実施例において、光学
反射素子51、60の湾曲面部53、62を銀メッキ蒸
着したり、また、この湾曲面部53、62に鏡面形成し
た金属板を張り合わせて鏡面形成すれば、必ずしも湾曲
面部53、62を放物線断面、楕円曲線断面としなくと
も全反射させて反射光を受光素子55、63に導くこと
ができる。
In the above-described first and second embodiments, the curved surface portions 53 and 62 of the optical reflection elements 51 and 60 are silver-plated, and the curved surface portions 53 and 62 are bonded with a mirror-finished metal plate. By forming a mirror surface, it is possible to guide the reflected light to the light receiving elements 55 and 63 by totally reflecting the curved surface portions 53 and 62 without necessarily having a parabolic cross section or an elliptic curve cross section.

【0041】また、上記第1、第2実施例においては、
受光素子55、63を光学反射素子51、60に埋設し
てあるが、図3に一例をもって示す如く、受光素子5
5、63を光学反射素子51、60の外方に配置した
り、光学反射素子51、60の外面に固着する構成とす
ることもできる。
Further, in the first and second embodiments,
Although the light receiving elements 55 and 63 are embedded in the optical reflecting elements 51 and 60, as shown in FIG.
It is also possible to dispose 5, 63 outside the optical reflecting elements 51, 60 or to fix them to the outer surfaces of the optical reflecting elements 51, 60.

【0042】なお、図3に示すように構成する場合は、
光学反射素子51の胴部54と凹面鏡50の透光孔50
aとをほぼ同径に形成して胴部54を透光孔50aに挿
着させ、光学反射素子51を凹面鏡50で保持するよう
に構成することができる。
When the structure shown in FIG. 3 is used,
The body 54 of the optical reflecting element 51 and the light transmitting hole 50 of the concave mirror 50.
It is also possible to form a body having substantially the same diameter as a and inserting the body portion 54 into the light transmitting hole 50a so that the optical reflection element 51 is held by the concave mirror 50.

【0043】図4は本発明の第3実施例を示す光電変換
装置の原理構成図である。67は中央奥底部に透光孔6
7aを有する椀状の第1の凹面鏡で、この凹面鏡67は
断面形状がy2=4P3xで定義される放物面鏡で、内面
が鏡面形成されている。
FIG. 4 is a principle block diagram of a photoelectric conversion device showing a third embodiment of the present invention. 67 is a light-transmitting hole 6 at the center bottom
7a is a bowl-shaped first concave mirror, and the concave mirror 67 is a parabolic mirror whose cross-sectional shape is defined by y 2 = 4P 3 x, and the inner surface of which is mirror-formed.

【0044】この凹面鏡67は、軸線Zより一定距離は
なれた点を焦点P3とする放物線断面で、軸線Zを中心
にこの焦点P3を回転させて得た円環状の集光部をも
ち、光発信器が遠方の場合に軸線Zに対して平行となる
入射光L1、L2・・・・・を凹面鏡67で反射して集光
部に集光する。
The concave mirror 67 has a parabolic cross section whose focal point P 3 is a point distant from the axis Z by a certain distance, and has an annular condensing portion obtained by rotating the focal point P 3 about the axis Z. Incident lights L 1 , L 2, ... Which are parallel to the axis Z when the optical transmitter is distant are reflected by the concave mirror 67 and condensed on the condensing portion.

【0045】68は第2の反射鏡として備えた光学反射
素子で、この光学反射素子68は、凹面鏡67の焦点P
3を中心とする円弧を軸線Zを中心に回転して得られる
トロイダル状の円形外面部69と、上記した凹面鏡67
の焦点P3と同じ位置を焦点F7とする放物線を軸線Zの
回りに回転して得られる形状の湾曲面部70と、凹面鏡
67の透光孔67aに挿入させるように形成した胴部7
1とから構成されている。なお、この光学反射素子68
はガラス、合成樹脂材などの透明材で形成してある。
Reference numeral 68 denotes an optical reflecting element provided as a second reflecting mirror. The optical reflecting element 68 is a focal point P of the concave mirror 67.
A toroidal circular outer surface portion 69 obtained by rotating an arc centered at 3 about the axis Z, and the concave mirror 67 described above.
The curved surface portion 70 having a shape obtained by rotating a parabola having the focal point F 7 at the same position as the focal point P 3 of the optical axis around the axis Z, and the body portion 7 formed to be inserted into the light transmitting hole 67 a of the concave mirror 67.
1 and 1. Incidentally, this optical reflection element 68
Is made of a transparent material such as glass or a synthetic resin material.

【0046】光学反射素子68には受光素子72を埋設
し、受光素子72の端子ピン73を回路基板74に固着
するようにして、光学反射素子68を回路基板74に保
持させてある。この光学反射素子68は、焦点F7を凹
面鏡67の焦点P3と一致させるように位置決めして凹
面鏡67内に設けてある。さらに、受光素子72は、湾
曲面部70の反射光路上に軸線Zを中心位置とするよう
にして光学反射素子68に埋設されている。
The light receiving element 72 is embedded in the optical reflecting element 68, and the terminal pin 73 of the light receiving element 72 is fixed to the circuit board 74 so that the optical reflecting element 68 is held on the circuit board 74. The optical reflecting element 68 is positioned in the concave mirror 67 so that the focal point F 7 is aligned with the focal point P 3 of the concave mirror 67. Further, the light receiving element 72 is embedded in the optical reflecting element 68 with the axis Z as the center position on the reflected light path of the curved surface portion 70.

【0047】上記した光電変換装置は、光発信器が比較
的遠方にある場合、発信された光は軸線Zに対してほぼ
平行な光L1、L2・・・・・となって凹面鏡67に入射
する。この入射光L1、L2・・・・・は凹面鏡67の内
面で反射して焦点P3に向かう。
In the photoelectric conversion device described above, when the optical transmitter is located relatively far away, the transmitted light becomes the light L 1 , L 2 ... Which is substantially parallel to the axis Z and the concave mirror 67. Incident on. The incident lights L 1 , L 2, ... Are reflected on the inner surface of the concave mirror 67 and travel toward the focal point P 3 .

【0048】焦点P3に向かった反射光L1、L2・・・
・・は光学反射素子68の円形外面部69に入射し、こ
の円形外面部69を直進して湾曲面部70に入射する。
そして、湾曲面部70で再び反射し、軸線Zに対して平
行な光となって受光素子72に入射し光電変換される。
この光電変換装置も、前述した第1実施例と同様の効果
が得られる。
The reflected light L 1 towards the focal point P 3, L 2 ···
.. is incident on the circular outer surface portion 69 of the optical reflection element 68, goes straight on the circular outer surface portion 69, and is incident on the curved surface portion 70.
Then, the light is reflected again by the curved surface portion 70, becomes light parallel to the axis Z, enters the light receiving element 72, and is photoelectrically converted.
This photoelectric conversion device also has the same effects as those of the first embodiment described above.

【0049】図5は本発明の第4実施例を示す光電変換
装置の原理構成図である。この実施例は、光発信器が比
較的に近距離にある場合を示し、第1の反射鏡を楕円曲
線断面の凹面鏡75とし、光学反射素子76の湾曲面部
78を楕円曲面で構成したものである。
FIG. 5 is a principle block diagram of a photoelectric conversion device showing a fourth embodiment of the present invention. This embodiment shows a case where the optical transmitter is at a relatively short distance. The first reflecting mirror is a concave mirror 75 having an elliptic curve cross section, and the curved surface portion 78 of the optical reflecting element 76 is an elliptic curved surface. is there.

【0050】凹面鏡75は、焦点F8、F9をもつ楕円曲
線を軸線Zの回りを回転させて得られた断面形状となっ
ている。この凹面鏡75の中央奥底部には透光孔75a
が設けられている。
The concave mirror 75 has a sectional shape obtained by rotating an elliptic curve having the focal points F 8 and F 9 around the axis Z. A transparent hole 75a is formed in the central bottom of the concave mirror 75.
Is provided.

【0051】第2の反射鏡となる光学反射素子76は、
円形外面部77が、軸線Zより一定距離はなれた凹面鏡
75の焦点F9を中心とする円弧を軸線Zを中心に回転
して得られる形状をなし、湾曲面部78が凹面鏡75の
焦点F9と同じ位置を第1の焦点F10、後述する受光素
子79の受光面中心を第2の焦点F11とする楕円曲線を
軸線Zの回りを回転させて得られた断面形状をなしてい
る。また、胴部80は凹面鏡75の透光孔75aに挿入
可能に形成すると共に、上記透光孔75aの外方に向か
って小径となるように形成してある。
The optical reflecting element 76 which serves as the second reflecting mirror is
The circular outer surface portion 77 has a shape obtained by rotating an arc centering on the focal point F 9 of the concave mirror 75, which is separated from the axis Z by a certain distance, about the axis Z, and the curved surface portion 78 forms a focal point F 9 of the concave mirror 75. An elliptic curve having the same position as the first focal point F 10 and the light receiving surface center of the light receiving element 79 described later as the second focal point F 11 has a sectional shape obtained by rotating around the axis Z. Further, the body portion 80 is formed so that it can be inserted into the light transmitting hole 75a of the concave mirror 75, and is formed so as to have a smaller diameter toward the outside of the light transmitting hole 75a.

【0052】この光学反射素子76も第2実施例と同様
にガラス、合成樹脂材などの透明材で形成し、受光面を
小形にした受光素子79を埋設し、受光素子79の端子
ピン81を回路基板82に固着してある。
Similar to the second embodiment, the optical reflecting element 76 is also made of a transparent material such as glass or synthetic resin, and a light receiving element 79 having a small light receiving surface is embedded and the terminal pin 81 of the light receiving element 79 is embedded. It is fixed to the circuit board 82.

【0053】また、光学反射素子76は、湾曲面部78
が凹面鏡75の内方において、その焦点F10を凹面鏡7
5の焦点F9に一致させるように位置決めして固定し、
さらに、受光素子79は、湾曲面部78の反射光路上に
軸線Zを中心位置とするようにして光学反射素子76に
埋設してある。
The optical reflecting element 76 has a curved surface portion 78.
Inside the concave mirror 75, its focal point F 10 is
Position and fix so as to match the focal point F 9 of 5,
Further, the light receiving element 79 is embedded in the optical reflecting element 76 with the axis Z as the center position on the reflected light path of the curved surface portion 78.

【0054】光発信器が焦点F8のように近距離にある
場合、焦点F8、F9とする凹面鏡75で光L1、L2・・
・・・・を反射させる。凹面鏡75の反射光L1、L2
・・・・・は光学反射素子76の円形外面部77に入射
し、この円形外面部77を直進して湾曲面部78に入射
する。そして、湾曲面部78が再び反射して受光素子7
9に入射し、この受光素子79によって光電変換され
る。
[0054] If the optical transmitter is a short distance as the focal point F 8, the light L 1 by the concave mirror 75 to focus F 8, F 9, L 2 ··
.. is reflected. Reflected light L 1 and L 2 from the concave mirror 75
Is incident on the circular outer surface portion 77 of the optical reflection element 76, goes straight on the circular outer surface portion 77, and is incident on the curved surface portion 78. Then, the curved surface portion 78 is reflected again to receive the light receiving element 7.
It is incident on 9 and is photoelectrically converted by the light receiving element 79.

【0055】この場合、湾曲面部78で反射する光は軸
線Zに平行光とならず、焦点F11に集光する。この実施
例の場合も、前述した第2実施例と同様の効果が得られ
る。
In this case, the light reflected by the curved surface portion 78 is not parallel to the axis Z and is focused on the focal point F 11 . Also in the case of this embodiment, the same effect as that of the above-described second embodiment can be obtained.

【0056】上記した第3、第4実施例において、光学
反射素子68、76の湾曲面部70、78を銀メッキ蒸
着したり、また、この湾曲面部70、78に鏡面形成し
た金属板を張り合わせて鏡面形成すれば、必ずしも湾曲
面部70、78を放物線断面、楕円曲線断面としなくと
も全反射させて反射光を受光素子72、79に導くこと
ができる。
In the third and fourth embodiments described above, the curved surface portions 70 and 78 of the optical reflecting elements 68 and 76 are vapor-deposited with silver, or the curved surface portions 70 and 78 are attached with mirror-finished metal plates. When the mirror surface is formed, the reflected light can be guided to the light receiving elements 72 and 79 by totally reflecting the curved surface portions 70 and 78 without necessarily having a parabolic cross section or an elliptic curve cross section.

【0057】また、上記第3、第4実施例は、受光素子
72、79を光学反射素子68、76に埋設して構成し
てあるが、受光素子72、79を光学反射素子68、7
6の外方に配置したり、光学反射素子68、76の外面
に固着する構成とすることも可能である。
In the third and fourth embodiments, the light receiving elements 72 and 79 are embedded in the optical reflecting elements 68 and 76. However, the light receiving elements 72 and 79 are included in the optical reflecting elements 68 and 7.
It is also possible to dispose it on the outer side of 6, or to fix it to the outer surfaces of the optical reflection elements 68 and 76.

【0058】この場合は、光学反射素子68、76の胴
部71、80と凹面鏡67、75の透光孔67a、75
aとをほぼ同径に形成して、胴部71、80を透光孔6
7a、75aに挿着させて保持することができる。
In this case, the body portions 71 and 80 of the optical reflecting elements 68 and 76 and the light transmitting holes 67a and 75 of the concave mirrors 67 and 75, respectively.
a is formed to have substantially the same diameter, and the body portions 71 and 80 are formed in the light transmitting hole 6
It can be held by being attached to 7a and 75a.

【0059】以上、本発明の実施例について説明した
が、第1の反射鏡及び第2の反射鏡として備えた光学反
射素子における湾曲面部については、放物線断面や楕円
曲線断面に限らず、断面をこのような二次曲線に近似し
た他の曲線としても同様の効果を得ることができる。
Although the embodiments of the present invention have been described above, the curved surface portion of the optical reflecting element provided as the first reflecting mirror and the second reflecting mirror is not limited to a parabolic cross section or an elliptic curve cross section, but a cross section may be changed. Similar effects can be obtained by using other curves that are similar to such a quadratic curve.

【0060】また、各実施例で示した光学反射素子5
1、60、68、76は一体構造のものとなっている
が、図1の鎖線Aで示すように二体構造に分離したもの
とすることもできる。
Further, the optical reflecting element 5 shown in each embodiment
Although 1, 60, 68, and 76 have a one-piece structure, they may be separated into a two-body structure as shown by a chain line A in FIG.

【0061】[0061]

【発明の効果】上記した通り、本発明に係る光学反射素
子によれば、入射する全ての光が入射面より同じ入射角
で入射するため、反射面によって全ての光が所定方向に
反射される。この結果、入射する光を集光して反射させ
る光学手段として極めて有効なものとなると共に、取付
けに便利な光学反射素子となる。また、受光素子と一体
的に構成できるため、光電変換用の光学反射素子として
有効となり、さらに、反射面を鏡面形成することによっ
て、この反射面の形状を任意に形成できる光学反射素子
となる。
As described above, according to the optical reflecting element of the present invention, since all the incident light is incident from the incident surface at the same incident angle, the reflective surface reflects all the light in a predetermined direction. . As a result, it becomes an extremely effective optical means for condensing and reflecting the incident light, and it becomes an optical reflecting element convenient for mounting. Further, since it can be integrally formed with the light receiving element, it is effective as an optical reflection element for photoelectric conversion, and further, by forming the reflection surface as a mirror surface, the shape of the reflection surface can be arbitrarily formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す光電変換装置の原理
構成図である。
FIG. 1 is a principle configuration diagram of a photoelectric conversion device showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示す光電変換装置の原理
構成図である。
FIG. 2 is a principle configuration diagram of a photoelectric conversion device showing a second embodiment of the present invention.

【図3】第1実施例の変形例を示す光電変換装置の原理
構成図である。
FIG. 3 is a principle configuration diagram of a photoelectric conversion device showing a modification of the first embodiment.

【図4】本発明の第3実施例を示す光電変換装置の原理
構成図である。
FIG. 4 is a principle configuration diagram of a photoelectric conversion device showing a third embodiment of the present invention.

【図5】本発明の第4実施例を示す光電変換装置の原理
構成図である。
FIG. 5 is a principle block diagram of a photoelectric conversion device showing a fourth embodiment of the present invention.

【図6】従来の光電変換装置の原理構成図である。FIG. 6 is a principle configuration diagram of a conventional photoelectric conversion device.

【図7】従来の光電変換装置に用いた凸面鏡の性質を説
明するための光学系図である。
FIG. 7 is an optical system diagram for explaining properties of a convex mirror used in a conventional photoelectric conversion device.

【図8】従来の光電変換装置の他の原理説明図である。FIG. 8 is a diagram illustrating another principle of the conventional photoelectric conversion device.

【図9】図9(A)は従来の光電変換装置に備えられた
光学反射素子の断面図、図9(B)は当該光学反射素子
の一部拡大断面図である。
9A is a cross-sectional view of an optical reflecting element provided in a conventional photoelectric conversion device, and FIG. 9B is a partially enlarged cross-sectional view of the optical reflecting element.

【符号の説明】[Explanation of symbols]

50、59、67、75 凹面鏡 51、60、68、76 光学反射素子 52、61、69、77 円形外面部 53、62、70、78 湾曲面部 55、63、72、79 受光素子 50, 59, 67, 75 Concave mirror 51, 60, 68, 76 Optical reflection element 52, 61, 69, 77 Circular outer surface portion 53, 62, 70, 78 Curved surface portion 55, 63, 72, 79 Light receiving element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焦点を持つ曲線を軸回転して得られる反
射面と、上記焦点に向かう光の光路上に当該焦点を中心
にして描いた円弧を軸回転して得られる入射面とを有す
る透明材からなることを特徴とする光学反射素子。
1. A reflection surface obtained by axially rotating a curve having a focal point, and an incident surface obtained by axially rotating an arc drawn around the focal point on the optical path of light directed to the focal point. An optical reflection element comprising a transparent material.
【請求項2】 反射面の反射光路に位置させた受光素子
を埋設し、また、一体的に固着したことを特徴とする請
求項(1)記載の光学反射素子。
2. The optical reflection element according to claim 1, wherein the light receiving element located in the reflection optical path of the reflection surface is embedded and integrally fixed.
【請求項3】 反射面を鏡面として形成したことを特徴
とする請求項(1)記載の光学反射素子。
3. The optical reflection element according to claim 1, wherein the reflection surface is formed as a mirror surface.
JP4180610A 1992-06-16 1992-06-16 Optical reflective element Expired - Fee Related JP2668615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4180610A JP2668615B2 (en) 1992-06-16 1992-06-16 Optical reflective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180610A JP2668615B2 (en) 1992-06-16 1992-06-16 Optical reflective element

Publications (2)

Publication Number Publication Date
JPH063593A true JPH063593A (en) 1994-01-14
JP2668615B2 JP2668615B2 (en) 1997-10-27

Family

ID=16086252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180610A Expired - Fee Related JP2668615B2 (en) 1992-06-16 1992-06-16 Optical reflective element

Country Status (1)

Country Link
JP (1) JP2668615B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002841A1 (en) * 1993-07-16 1995-01-26 National Research Council Of Canada Panoramic lens
KR100406834B1 (en) * 2000-04-06 2003-11-21 황우성 radiant energy collector
KR100454225B1 (en) * 2000-05-12 2004-10-26 황우성 Ultra-thin, High Concentration Light Energy Concentrator
JP2009087595A (en) * 2007-09-28 2009-04-23 Puratekku:Kk Lighting module, light source unit, and lighting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002841A1 (en) * 1993-07-16 1995-01-26 National Research Council Of Canada Panoramic lens
US5473474A (en) * 1993-07-16 1995-12-05 National Research Council Of Canada Panoramic lens
KR100406834B1 (en) * 2000-04-06 2003-11-21 황우성 radiant energy collector
KR100454225B1 (en) * 2000-05-12 2004-10-26 황우성 Ultra-thin, High Concentration Light Energy Concentrator
JP2009087595A (en) * 2007-09-28 2009-04-23 Puratekku:Kk Lighting module, light source unit, and lighting device

Also Published As

Publication number Publication date
JP2668615B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US5436806A (en) Illumination device
US5382810A (en) Optoelectronic component
US4042821A (en) Remote control light receiver
JPH1168164A (en) Module for two-way light communication
JP2002124687A (en) Bidirectional optical communication device, apparatus therefor, and method for assembling it
JP2003207695A (en) Optical communication module and single-core two-way optical modulation module
KR100553877B1 (en) Optical module
JP3916668B2 (en) Window glass wetness detection device
JPH02280105A (en) Optical assembly
JP2668615B2 (en) Optical reflective element
KR100677086B1 (en) Optical connector module
JPS59180515A (en) Light emitting element for optical fiber connection
JPH07270642A (en) Optical fiber end with reflecting type lens integrated in one body
JP2002296363A (en) Raindrop sensor
JPH0862039A (en) Light receiving device for optical space transmission
JP3828755B2 (en) Displacement light quantity converter
JPH0854541A (en) Bidirectional transmission optical module
JPH01183606A (en) Photodetecting device
JP3096558B2 (en) Receiver / transmitter module for optical communication
JP3571255B2 (en) Transceiver for bidirectional optical transmission equipment
JP3377069B2 (en) Optical communication device
JPH0629928A (en) Photoelectric converter
JPH023188Y2 (en)
JPH0818107A (en) Light emitting diode
JPH03171019A (en) Light emitting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees