JPH0635216A - Production of aluminum tubular substrate for electro-photographic photosensitive body - Google Patents

Production of aluminum tubular substrate for electro-photographic photosensitive body

Info

Publication number
JPH0635216A
JPH0635216A JP19415092A JP19415092A JPH0635216A JP H0635216 A JPH0635216 A JP H0635216A JP 19415092 A JP19415092 A JP 19415092A JP 19415092 A JP19415092 A JP 19415092A JP H0635216 A JPH0635216 A JP H0635216A
Authority
JP
Japan
Prior art keywords
aluminum
surface roughness
aluminum tubular
substrate
tubular substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19415092A
Other languages
Japanese (ja)
Inventor
Shigefumi Matsunaga
成史 松永
Hisao Watanabe
久雄 渡辺
Hiroaki Sawanobori
広明 沢登
Hajime Yamada
一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd, Yamanashi Electronics Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP19415092A priority Critical patent/JPH0635216A/en
Publication of JPH0635216A publication Critical patent/JPH0635216A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an aluminum substrate being excellent in an interference fringe preventive effect with respect to a photosensitive body to which a coherent light of a laser light, etc., is an exposure light source by performing centerless grinding and its moderate honing processing as the subsequent surface treatment to the aluminum substrate for an electrophotographic photosensitive body. CONSTITUTION:With respect to an aluminum tubular base body having prescribed surface roughness, manufactured by extrusion and drawing, the surface roughness of the aluminum tubular substrate is finished to 0.3-3.0mum by centerless grinding or roller burnishing, and thereafter, moreover, by liquid honing, with respect to the surface of the aluminum tubular base body, a processing of 0.5-3.0mum surface roughness, and 5-50% surface area increase percentage is performed. For instance, in the case of working by a centerless grinding device, an object 3 to be ground is fed between a rotary grindstone 1 and a feed roller 2 for rotating in the same direction, and the object 3 to be ground is ground, while transferring it in the rotary shaft direction of the rotary grindstone 1 and the feed roller 2. In such a way, since a compression residual stress can be left on the tube outside surface by rolled working, a bend and roundness are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真感光体用アル
ミニウム管状基板に関するものである。
FIELD OF THE INVENTION The present invention relates to an aluminum tubular substrate for an electrophotographic photoreceptor.

【0002】[0002]

【従来の技術】電子写真感光体は、アルミ基板上に光導
電層を形成させたものが広く使用されている。特に有機
系感光体では、電荷発生層及び電荷輸送層を積層した、
いわゆる積層型感光体が高感度且つ高寿命ということで
実用に供せられている。一般にこのような光導電層は導
電性のアルミ基板上に設けられているが、その表面に異
物の付着、汚れ、微細な穴等の欠陥が存在すると、それ
らに起因する画像欠陥がコピー画像上に現れてくる場合
がある。ところで、通常アルミニウムをドラム状の基板
として用いる場合は、押出し管に加工し、続いて所定の
肉厚、外型寸法のドラムとするため、引抜き加工、イン
パクト加工、しごき加工等を行うことにより作ることが
できる。
2. Description of the Related Art Electrophotographic photoreceptors having a photoconductive layer formed on an aluminum substrate are widely used. Particularly in the organic photoreceptor, a charge generation layer and a charge transport layer are laminated,
The so-called laminated type photoreceptor is put to practical use because of its high sensitivity and long life. Generally, such a photoconductive layer is provided on a conductive aluminum substrate, but if there are defects such as adhesion of foreign matter, dirt, and fine holes on the surface of the photoconductive layer, image defects caused by them will appear on the copy image. May appear in. By the way, when aluminum is usually used as a drum-shaped substrate, it is formed by processing it into an extruded tube, and then performing drawing, impact processing, ironing, etc., to obtain a drum with a predetermined wall thickness and outer mold size. be able to.

【0003】しかし、このような非研削加工のみのアル
ミニウムドラムでは、その表面が荒れており、電子写真
感光体用基板として用いるには不充分である。そのた
め、通常その後の工程としてアルミ基板の表面を鏡面化
研削加工等により表面を仕上げる。例えば、図5及び図
6のように砥石による表面研磨やダイヤモンドバイト切
削等の方法がある。ところが、この様な切削、研磨方法
は、アルミニウム管状基板を一本づつ切削装置にチャッ
キング固定し、表面処理を施さなくてはならなく、操作
に手間がかかり、セッテイングに時間を要する等の欠点
がある。従って、製造コストが高くなり、大量生産には
不向きな方法である。
However, the surface of such an aluminum drum which is only non-grinded is rough and is not sufficient for use as a substrate for an electrophotographic photosensitive member. Therefore, the surface of the aluminum substrate is usually finished by mirror-finishing or the like as a subsequent process. For example, as shown in FIGS. 5 and 6, there are methods such as surface polishing with a grindstone and diamond bite cutting. However, such a cutting and polishing method requires chucking and fixing aluminum tubular substrates one by one to a cutting device and performing a surface treatment, which is troublesome in operation and requires time for setting. There is. Therefore, the manufacturing cost becomes high and it is not suitable for mass production.

【0004】又、切削研磨により所定範囲内の平面度或
は凹凸表面に仕上げようとすると、切削により発生する
アルミニウム金属の金属粉やバイトかす(砥石かす)等
の微細な介在物が切削物と被切削物の間に混入し、これ
により切削の加工性が低下し、それらに起因する表面欠
陥が生じ、それが画像欠陥としてスジとなって現れてし
まい、安定した電子写真用感光体の提供ができない欠点
を有している。特に従来のダイヤモンドバイト切削によ
る表面研磨等の方法では、ある一定間隔に規則的周期で
粗した溝が原因で、露光の際これらアルミ基板上表面及
び感光層表面での反射光に位相差が生じ、それによって
干渉縞模様が出てしまう。この様な現象は、レーザ光等
の可干渉性の単色光を光源とした電子写真方式の場合、
顕著に画像不良として現れる。特に反転現像時に黒点或
はスジを生じて画像欠陥となる。
Further, when it is attempted to finish the flatness or uneven surface within a predetermined range by cutting and polishing, fine inclusions such as metal powder of aluminum metal and bite residue (grinding residue) generated by cutting are cut objects. Providing a stable electrophotographic photosensitive member by being mixed between the objects to be cut, which reduces the workability of cutting and causes surface defects caused by them, which appear as streaks as image defects. It has the drawback that it cannot. Especially in the conventional method such as surface polishing by diamond bite cutting, due to the grooves roughened at regular intervals at regular intervals, a phase difference occurs in the reflected light on the aluminum substrate upper surface and the photosensitive layer surface during exposure. , That causes an interference fringe pattern. Such a phenomenon is caused by an electrophotographic method using coherent monochromatic light such as laser light as a light source.
Remarkably appears as an image defect. Especially during reversal development, black spots or streaks are generated, resulting in image defects.

【0005】[0005]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、電子写真感光体用アルミ基板をセンタレス
研削加工及びその後の表面処理として、適度なホーニン
グ加工処理を施すことにより、レーザー光等の可干渉光
を露光光源とした感光体に対して、干渉縞防止効果に優
れた電子写真感光体用アルミ基板を提供することにあ
る。
The problem to be solved by the present invention is to provide an aluminum substrate for an electrophotographic photosensitive member with a centering grinding process and then a suitable honing process as a surface treatment to obtain a laser beam or the like. It is an object of the present invention to provide an aluminum substrate for an electrophotographic photosensitive member which is excellent in the effect of preventing interference fringes for the photosensitive member using the coherent light as an exposure light source.

【0006】[0006]

【課題を解決するための手段】本発明者らは、電子写真
感光体用アルミ基板について、従来の表面形状及び加工
方式により生ずる前述の問題点をなくし、本発明の目的
を達成させるため鋭意研究を重ねた結果、押出し、引抜
きにより製造した所定の表面粗さを有するアルミニウム
管状基板をセンタレス研削加工或はローラーバニシング
加工により、アルミニウム管状基板の表面粗さRzを
0.3〜3.0μmに仕上げた後、更に液体ホーニング
加工により前記アルミニウム管状基板の表面を表面粗さ
Rz0.5〜3.0μm、表面積増加率5〜50%の処
理を施すことを特徴とする電子写真感光体用アルミニウ
ム管状基板の製造方法を提供するものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have diligently studied in order to eliminate the above-mentioned problems caused by the conventional surface shape and processing method for an aluminum substrate for an electrophotographic photoreceptor and achieve the object of the present invention. As a result, the aluminum tubular substrate having a predetermined surface roughness manufactured by extrusion and drawing is subjected to centerless grinding or roller burnishing to finish the surface roughness Rz of the aluminum tubular substrate to 0.3 to 3.0 μm. And then further subjecting the surface of the aluminum tubular substrate to a surface roughness Rz of 0.5 to 3.0 μm and a surface area increase rate of 5 to 50% by liquid honing. The present invention provides a method for manufacturing the same.

【0007】即ち本発明は、熱間押出後引抜により所定
の寸法形状に仕上げた表面粗さ10μm以下のアルミニ
ウム管状基板をセンタレス研削加工或はローラーバニシ
ング加工により、アルミ基板の円周方向に溝を形成し、
該溝の凹凸部綾形状及び溝間隔に規則性を持たさない表
面研削で行われ、表面粗さRz0.3〜3.0μmの範
囲に仕上げた後、液体ホーニング加工により前記センタ
レス研削で形成された不規則な溝が消えない程度に表面
粗さRz0.5〜3.0μm、且つ表面積増加率5〜5
0%の範囲内で表面処理を施すことにより、本発明の目
的・課題が達成される。
That is, according to the present invention, an aluminum tubular substrate having a surface roughness of 10 μm or less finished to a predetermined size by hot extrusion and then drawing is formed by a centerless grinding process or a roller burnishing process to form a groove in the circumferential direction of the aluminum substrate. Formed,
The groove was formed by surface grinding that does not have regularity in the twill shape of the concave and convex portions of the groove and the groove spacing, and after finishing to a surface roughness Rz of 0.3 to 3.0 μm, it was formed by the centerless grinding by liquid honing. Surface roughness Rz 0.5 to 3.0 μm and surface area increase rate 5 to 5 to the extent that irregular grooves do not disappear
By carrying out the surface treatment within the range of 0%, the object and problems of the present invention can be achieved.

【0008】以下に、本発明の内容を図面を用いて詳細
に説明する。本発明は、上記のごとく所定の表面粗さの
アルミニウム管状基板を用い、これを例えばセンタレス
研削装置により加工した場合を説明すると、回転砥石と
同じ方向に回転するフィードローラとの間に送り、被切
削物を回転砥石とフィードローラの回転軸方向に移送さ
せながら研削するものである。
The contents of the present invention will be described in detail below with reference to the drawings. The present invention uses an aluminum tubular substrate having a predetermined surface roughness as described above, and describes a case where the aluminum tubular substrate is processed by, for example, a centerless grinding device. It is sent between a rotary grindstone and a feed roller which rotates in the same direction, The cutting object is ground while being transferred in the rotation axis direction of the rotary grindstone and the feed roller.

【0009】センタレス研磨装置は、図1のように、回
転砥石1とこの回転砥石1と同方向に回転するフィード
ローラ2との間に被研削物3を送り、被研削物3はブレ
ード4により支持され、ガイド5、6、7、8にガイド
され、回転砥石1とフィードローラ2の回転軸方向に研
削されながら移送する。矢印は回転方向を示す。
As shown in FIG. 1, the centerless polishing apparatus sends an object 3 to be ground between a rotary grindstone 1 and a feed roller 2 which rotates in the same direction as the rotary grindstone 1, and the grindstone 3 is fed by a blade 4. It is supported and guided by guides 5, 6, 7, and 8, and is transferred while being ground in the rotational axis direction of the rotary grindstone 1 and the feed roller 2. The arrow indicates the direction of rotation.

【0010】図2は、本研削装置の上面図であり、図1
と同符号を示す。図のAの方向から順次Bの方向へ被研
削物のアルミニウム管状基板3が回転砥石1とフィード
ローラ2との間に挟まれながら被切削物3自身もランダ
ムに回転且つ、軸方向Bの方向へ移動しながら研削され
る。
FIG. 2 is a top view of the present grinding machine.
The same sign is shown. While the aluminum tubular substrate 3 of the object to be ground is sequentially sandwiched between the rotary grindstone 1 and the feed roller 2 from the direction A in the figure to the direction B, the object 3 itself is also rotated at random and in the direction of the axial direction B. To be ground while moving to.

【0011】この方法だと、引抜加工等の非研削加工に
より作成された非研削アルミニウム管状基板を次工程の
センタレス切削工程に自動化ラインで流すことが可能と
なり、時間当りの研削本数は、従来の方法に比べ、極め
て高能率で表面処理が可能になる。更に、転圧加工によ
り管外面に圧縮残留応力を残すことが出来るため、曲が
りや真円度も向上する。これにより、押出し引抜きアル
ミニウム管状基板表面の表面状態の悪さを本発明の方法
を用いることによって修正し、所望の表面状態に仕上げ
ることができる。
According to this method, an unground aluminum tubular substrate prepared by non-grinding such as drawing can be flowed to the centerless cutting process of the next process on an automated line, and the number of grindings per hour can be reduced to the conventional one. Compared with the method, surface treatment can be performed with extremely high efficiency. Further, since the compressive residual stress can be left on the outer surface of the pipe by rolling, the bending and roundness are improved. Thus, the poor surface condition of the extruded aluminum tubular substrate surface can be corrected by using the method of the present invention to finish the desired surface condition.

【0012】特に、前述の従来例に比べ、被研削物自身
の動作がランダムに回転、移送されるので、それによる
切削痕は被研削物の円周方向或は軸方向に非周期的に切
削されたり、または交差する場合もある。従って、これ
らの加工溝は従来問題となっている感光体の干渉縞によ
る画像不良の欠点を無くす重要な因子である。
Particularly, compared with the above-mentioned conventional example, since the operation of the object to be ground is rotated and transferred at random, the cutting marks caused thereby are aperiodically cut in the circumferential direction or the axial direction of the object to be ground. They may be crossed or crossed. Therefore, these processed grooves are important factors for eliminating the defect of image defect due to the interference fringes of the photoconductor, which has been a problem in the past.

【0013】また、ローラーバニシング加工装置でも本
発明の特徴とする前述と同様の加工溝が形成される。図
3はローラーバニシング加工装置9の説明図であり、図
のAの方向から順次Bの方向へ被研削物のアルミニウム
管状基板3が多数本のバニシングローラー10によりセ
ンタレスバニシング加工(転圧加工)され、アルミニウ
ム管状基板3の表面にランダムな溝状痕が形成される。
図中の矢印は回転方向を示す。
Further, also in the roller burnishing machine, the same machining groove as the above-mentioned feature of the present invention is formed. FIG. 3 is an explanatory view of the roller burnishing device 9, in which the aluminum tubular substrate 3 to be ground is sequentially centered burnished (rolled) by a number of burnishing rollers 10 in a direction B from a direction A in FIG. Random groove marks are formed on the surface of the aluminum tubular substrate 3.
The arrow in the figure indicates the direction of rotation.

【0014】これら被研削物に施される溝形状について
は、加工条件、砥石粒径、粗さ、回転数、送り速度等を
適宜調整して所望のものにする。以上の表面に不規則且
つ非周期的な溝形状を有してなるアルミ基板いわゆるセ
ンタレス管をそのまま電子写真用感光体のアルミ基板と
して使用するには画像品質上、黒点等の欠陥をもたら
し、安定した電子写真用感光体の提供は出来ない。
With regard to the shape of the groove to be applied to these objects to be ground, the processing conditions, the particle size of the grindstone, the roughness, the number of revolutions, the feed rate, etc. are appropriately adjusted to obtain the desired shape. To use a so-called centerless tube having an irregular and aperiodic groove shape on the surface as it is as an aluminum substrate of an electrophotographic photoconductor as it is, it causes defects such as black spots in terms of image quality and is stable. It is not possible to provide the electrophotographic photoconductor.

【0015】その理由として、図1で示した回転砥石1
で研削されたアルミニウム管状基板は、それ自体が軟質
金属のため、表面に微細な凹凸が形成され、図4(a)
に示すようなアルミニウム金属のバリ11が発生してし
まう。図4(b)に示すように3はアルミ基板、11は
センタレス研磨時に発生したアルミバリ、12は感光層
である。該アルミニウム基板上に感光層を形成した場
合、アルミバリ11が感光層表面方向に生じていると、
その部分から感光層表面に向かって電荷の注入が起こ
り、結果として感光体の表面電位が打ち消され、反転現
像方式の場合、画像上に黒点として現れ画像不良にな
る。表−1に示すようにセンタレス研削されたアルミニ
ウム管状基板上に厚さ20μmの有機感光層を設けた感
光体を試作し、この感光体の画像品質評価を一成分現像
クリーニング方式のレーザープリンターにて行った。又
同時にバイト研削されたアルミニウム管状基板も同様に
評価を行った。
The reason is that the rotary grindstone 1 shown in FIG.
Since the aluminum tubular substrate ground in step 4 itself is a soft metal, fine irregularities are formed on the surface, as shown in FIG.
The aluminum metal burr 11 as shown in FIG. As shown in FIG. 4B, 3 is an aluminum substrate, 11 is an aluminum burr generated during centerless polishing, and 12 is a photosensitive layer. When a photosensitive layer is formed on the aluminum substrate, if aluminum burrs 11 are generated in the surface direction of the photosensitive layer,
Charges are injected from that portion toward the surface of the photosensitive layer, and as a result, the surface potential of the photosensitive member is canceled, and in the case of the reversal development method, black spots appear on the image, resulting in an image defect. As shown in Table-1, a photoconductor having an organic photoconductive layer having a thickness of 20 μm provided on a centerless-ground aluminum tubular substrate was prototyped, and the image quality of the photoconductor was evaluated by a laser printer of a one-component development cleaning system. went. At the same time, the aluminum tubular substrate bit-ground was also evaluated in the same manner.

【0016】[0016]

【表1】 [Table 1]

【0017】表−1に示すように、センタレス研削され
たアルミニウム管状基板サンプルA〜Eのうち、表面粗
さ0.3以下では干渉縞が発生し、3.0μm以上では
黒点がみられた。サンプルFはセンタレス研削加工を施
さない無切削管で、押出し引抜きにより得られた素地の
アルミニウム管であるが、この場合は黒点干渉縞の両方
が顕著にみられた。サンプルGは通常のダイヤモンドバ
イト切削により表面粗さ0.5μmに均一粗されたアル
ミニウム管状基板で、黒点は発生しないものの、アルミ
表面が均一且つ規則的に粗されていることが原因による
干渉縞がみられる。従って、本発明を構成する溝形状の
好適な表面粗さは、Rz0.5〜3.0μmの範囲が有
効である。
As shown in Table 1, among the aluminum tubular substrate samples A to E subjected to centerless grinding, interference fringes occurred when the surface roughness was 0.3 or less, and black spots were observed when the surface roughness was 3.0 μm or more. Sample F is a non-cutting tube that is not subjected to centerless grinding, and is an aluminum tube that is a base material obtained by extrusion drawing. In this case, both black spot interference fringes were prominently seen. Sample G is an aluminum tubular substrate that has been uniformly roughened to a surface roughness of 0.5 μm by ordinary diamond cutting, and although black spots do not occur, interference fringes due to the aluminum surface being uniformly and regularly roughened. Seen. Therefore, the preferable surface roughness of the groove shape that constitutes the present invention is effective in the range of Rz 0.5 to 3.0 μm.

【0018】こられの点について、従来のアルミ管状基
板の表面粗さと、本発明のそれとの比較をしたものが図
7と図8である。すなわち、図7は、従来のバイト切削
により表面粗さRz0.5μmに均一に粗面化されたア
ルミニウム管状基板の表面粗さを表面粗さ計で軸方向に
測定して示したものである。図のa−b間がドラムの軸
方向2.5mm分の長さである(倍率60倍)。図8
は、本発明のセンタレス研削加工により形成されたアル
ミニウム管状基板の表面粗さを上記と同様の方法で測定
して示したもので表面粗さRz0.5μmである(倍率
60倍)。
With respect to these points, FIGS. 7 and 8 compare the surface roughness of the conventional aluminum tubular substrate with that of the present invention. That is, FIG. 7 shows the surface roughness of an aluminum tubular substrate uniformly roughened to a surface roughness Rz of 0.5 μm by a conventional bite cutting, measured axially with a surface roughness meter. The length between a and b in the figure is 2.5 mm in the axial direction of the drum (magnification: 60 times). Figure 8
Shows the surface roughness of the aluminum tubular substrate formed by the centerless grinding process of the present invention measured by the same method as described above, and the surface roughness Rz is 0.5 μm (magnification: 60 times).

【0019】比較してわかるように図7の従来方法によ
る溝粗さが非常にフラットで均一且つ規則的な粗さを有
している。つまり、溝間隔、ピッチ等が規則的であるゆ
え、粗さも一定且つ規則的である。これとは反対に、図
8の本発明の方法による溝粗さは、山谷のうねりがあ
り、一定の粗さを有していない。つまり、センタレス切
削により溝状痕が円周上で途切れていたり、隣の溝と重
なりあっていたり、転圧により部分部分の溝粗さが異な
っていたりして非常に不規則な性質を有していることか
ら、前述の干渉縞模様の防止効果に効を奏していると考
えられる。
As can be seen by comparison, the groove roughness obtained by the conventional method shown in FIG. 7 is very flat and has a uniform and regular roughness. That is, since the groove spacing, pitch, etc. are regular, the roughness is also constant and regular. On the contrary, the groove roughness according to the method of the present invention in FIG. 8 has waviness of ridges and valleys and does not have a constant roughness. In other words, it has a very irregular property because the groove-like marks are discontinuous on the circumference due to centerless cutting, overlap with the adjacent groove, and the groove roughness of the partial part differs due to rolling pressure. Therefore, it is considered that the effect of preventing the interference fringe pattern is effective.

【0020】これらの結果から解るように、従来のバイ
ト切削等による加工方法では、その出来上り凹凸形が規
則的な為、干渉縞を起こす原因となっていたのである
が、本発明の溝形状では特に干渉縞に対して有効な手法
であることが証明されたわけである。しかし、前述の様
にレーザー光等の可干渉光の露光光源に対して高品位の
光階調性の画像を望む場合、即ち本発明の目的を達成す
るには十分でない。しかるに、以上のように加工された
アルミ表面に、更に特定の液体ホーニング加工により表
面を粗すことで本発明の目的が達成される。
As can be seen from these results, in the conventional machining method such as cutting with a cutting tool, since the finished unevenness is regular, it causes interference fringes, but in the groove shape of the present invention, In particular, it has been proved to be an effective method for interference fringes. However, as described above, this is not sufficient when an image with high-quality light gradation is desired for an exposure light source of coherent light such as laser light, that is, to achieve the object of the present invention. However, the object of the present invention is achieved by roughening the aluminum surface processed as described above by a specific liquid honing process.

【0021】ホーニング加工処理は、図9に示すように
水等の液体に粉末状の研磨材を懸濁させ、高速度でアル
ミ基板表面に吹き付けて表面を凹状に粗面化する方法で
あるが、その場合、表面粗度は吹き付け圧力、速度、比
重及び懸濁濃度等により制御することが出来る。研磨材
としては、ガラスビーズを使用することが望ましい。装
置の基本構成としては、ポンプ13、噴射ガン14、研
磨材15、空気導入管16、処理容器17、被研磨物1
8から成る。
The honing process is a method of suspending a powdery abrasive in a liquid such as water and spraying it on the surface of an aluminum substrate at a high speed to roughen the surface into a concave shape as shown in FIG. In that case, the surface roughness can be controlled by the spraying pressure, speed, specific gravity and suspension concentration. It is desirable to use glass beads as the abrasive. The basic configuration of the apparatus includes a pump 13, an injection gun 14, an abrasive material 15, an air introduction pipe 16, a processing container 17, and an object to be polished 1.
It consists of eight.

【0022】ホーニング加工の好ましい形状は、前記セ
ンタレス研削で形成された円周上に溝が消えてしまわな
い程度に粗すことが本発明のホーニング加工処理の目安
である。従って、ホーニング処理の表面粗さとしてRz
0.5〜3.0μmが適当である。好ましくは、1μm
〜2μmの範囲が好適である。更に溝状に粗したアルミ
ニウム管状基板の表面を前述の通り、アルミニウム管状
基板円周上の溝が完全に消えてしまう程度にホーニング
処理を施すこと本発明の目的とする効果は期待できな
い。従って、面積増加率で比較した場合、5〜50%の
範囲が円周状の溝状痕とホーニング加工との相乗効果に
よりその効果が最大となる。
A preferred shape of the honing process is roughening to such an extent that the groove does not disappear on the circumference formed by the centerless grinding, which is a standard of the honing process of the present invention. Therefore, the surface roughness of the honing treatment is Rz.
0.5 to 3.0 μm is suitable. Preferably 1 μm
The range of ˜2 μm is preferable. Further, as described above, the honing treatment is not performed on the surface of the aluminum tubular substrate roughened in the groove shape to such an extent that the grooves on the circumference of the aluminum tubular substrate are completely disappeared, and the effect of the present invention cannot be expected. Therefore, when compared in terms of area increase rate, the effect is maximized in the range of 5 to 50% due to the synergistic effect of the circumferential groove marks and honing.

【0023】[0023]

【実施例】以下に実施例を挙げて本発明の方法を更に詳
細に説明するが、本発明はこれにより限定されるもので
ない。サンプルのアルミニウム管状基板は、センタレス
研削加工により所望の条件で形成したもので、表面粗さ
Rz0.3〜3.0μmの範囲にあるアルミニウム管状
基板である。このアルミ基板の表面に種々の条件を変え
た液体ホーニング法により加工を施し、そのアルミ基板
上に厚さ20μmを有する有機感光層を設けた。こうし
て、得られた感光体の画像品質評価を一成分現像ブレー
ドクリーニング方式をとるレーザービームプリンタにて
評価を行った。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention. The sample aluminum tubular substrate was formed by a centerless grinding process under desired conditions, and is an aluminum tubular substrate having a surface roughness Rz of 0.3 to 3.0 μm. The surface of this aluminum substrate was processed by a liquid honing method under various conditions, and an organic photosensitive layer having a thickness of 20 μm was provided on the aluminum substrate. In this way, the image quality of the obtained photoreceptor was evaluated by a laser beam printer using a one-component developing blade cleaning system.

【0024】[0024]

【実施例1】液体ホーニング装置は、球型の研磨材(ガ
ラスビーズ)5リットルを水29リットルに懸濁させ、
それをポンプで0.25kg/cm2 の圧搾空気圧で被
研磨物のアルミニウム管状基板に吹き付けることにより
行った。その際、噴射ガンは30cm/秒で上下に移動
させ、一方、アルミニウム管状基板は8rpmで回転さ
せた。加工時間を15sec、30sec、45se
c、60secと変化させることにより、加工前の不規
則な溝状凹凸痕を有するアルミニウム管状基板を加工
し、これにより単位面積当りの表面積が増加する。この
表面積の増加率を表−2に示す。又、表−3にホーニン
グ処理したアルミニウム管状基板に感光層を設けた感光
体の画像品質の評価結果を表−2の条件に対応した形で
示す。
Example 1 A liquid honing apparatus was prepared by suspending 5 liters of a spherical abrasive (glass beads) in 29 liters of water.
This was carried out by spraying the aluminum tubular substrate to be polished with a compressed air pressure of 0.25 kg / cm 2 by a pump. At that time, the spray gun was moved up and down at 30 cm / sec, while the aluminum tubular substrate was rotated at 8 rpm. Processing time 15sec, 30sec, 45se
By changing the time from c to 60 seconds, an aluminum tubular substrate having irregular groove-shaped irregularities before processing is processed, and thereby the surface area per unit area is increased. The increase rate of this surface area is shown in Table-2. Further, Table 3 shows the evaluation results of the image quality of the photoconductor in which the photosensitive layer is provided on the honed aluminum tubular substrate, in the form corresponding to the conditions of Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【実施例2】実施例1において圧搾空気圧を0.5kg
/cm2 とし、加工時間を15sec、30sec、4
5sec、60secと変えて処理することにより、表
面積の増加率を得た。又、表−3に画像評価結果を示し
た。
Example 2 The compressed air pressure in Example 1 was 0.5 kg.
/ Cm 2 , and the processing time is 15 sec, 30 sec, 4
By changing the treatment time from 5 sec to 60 sec, the surface area increase rate was obtained. In addition, Table 3 shows the image evaluation results.

【0028】[0028]

【実施例3】実施例1において圧搾空気圧を1.0kg
/cm2 とし、加工時間を15sec、30sec、4
5secと変えて処理することにより、表面積の増加率
を得た。又、表−3に画像評価結果を示した。
[Embodiment 3] The compressed air pressure in Embodiment 1 is 1.0 kg.
/ Cm 2 , and the processing time is 15 sec, 30 sec, 4
The rate of increase in the surface area was obtained by changing the treatment time to 5 seconds. In addition, Table 3 shows the image evaluation results.

【0029】[0029]

【実施例4】実施例1において圧搾空気圧を2.0kg
/cm2 とし、加工時間を15sec、30sec、4
5sec、60secと変えて処理することにより、表
面積の増加率を得た。又、表−3に画像評価結果を示し
た。
[Embodiment 4] The compressed air pressure in Embodiment 1 is 2.0 kg.
/ Cm 2 , and the processing time is 15 sec, 30 sec, 4
By changing the treatment time from 5 sec to 60 sec, the surface area increase rate was obtained. In addition, Table 3 shows the image evaluation results.

【0030】[0030]

【実施例5】実施例1において圧搾空気圧を3.0kg
/cm2 とし、加工時間を15sec、30sec、4
5secと変えて処理することにより、表面積の増加率
を得た。又、表−3に画像評価結果を示した。
[Embodiment 5] The compressed air pressure in Embodiment 1 is 3.0 kg.
/ Cm 2 , and the processing time is 15 sec, 30 sec, 4
The rate of increase in the surface area was obtained by changing the treatment time to 5 seconds. In addition, Table 3 shows the image evaluation results.

【0031】[0031]

【比較例1】実施例と同様に研磨材であるガラスビーズ
の粒径を50μmに変え、圧搾空気圧を2.0kg/c
2 とし、加工時間を15sec、30sec、45s
ec、60secと変えて処理することにより、表面積
の増加率を得た。又、表−3に画像評価結果の示した。
[Comparative Example 1] Similar to the example, the particle diameter of the glass beads as the abrasive was changed to 50 μm and the compressed air pressure was 2.0 kg / c.
m 2 , processing time is 15 sec, 30 sec, 45 s
By changing the ec to 60 sec, the surface area increase rate was obtained. In addition, Table 3 shows the image evaluation results.

【0032】[0032]

【比較例2】実施例と同様に研磨材であるガラスビーズ
の粒径を100μmに変え、圧搾空気圧を2.0kg/
cm2 とし、加工時間を15sec、30sec、45
sec、60secと変えて処理することにより、表面
積の増加率を得た。又、表−3に画像評価結果を示す。
[Comparative Example 2] As in the example, the particle diameter of the glass beads as the abrasive was changed to 100 μm, and the compressed air pressure was 2.0 kg /.
cm 2 , processing time is 15 sec, 30 sec, 45
The rate of increase in the surface area was obtained by changing the treatment time between sec and 60 sec. In addition, Table 3 shows the image evaluation results.

【0033】[0033]

【比較例3】センタレス研削を施していない押出し引抜
き管に(実施例4と同様の条件)で表面積の増加率を得
た。又、表−3に画像評価結果を示した。
[Comparative Example 3] The increase rate of the surface area was obtained in the extruded drawn tube which was not subjected to the centerless grinding (the same condition as in Example 4). In addition, Table 3 shows the image evaluation results.

【0034】[0034]

【比較例4】従来のバイト切削加工により、表面粗さ
2.0μmに粗したアルミニウム管状基板に実施例4と
同様の条件で表面積の増加率を得た。又、表−3に画像
評価結果を得た。表−2、表−3より研磨材のガラスビ
ーズの粒径が20μmの場合、圧搾空気圧0.25kg
/cm2 及び0.5kg/cm2 の加工時間45sec
まではバリに起因する黒点や干渉縞が発生した。しか
し、圧搾空気圧0.5kg/cm2の加工時間60se
c及び1kg/cm2 、2kg/cm2 では黒点の発生
はなく良好であった。
Comparative Example 4 The surface area increase rate was obtained under the same conditions as in Example 4 on an aluminum tubular substrate roughened to a surface roughness of 2.0 μm by the conventional cutting tool cutting. In addition, Table 3 shows the image evaluation results. From Table-2 and Table-3, when the particle size of the glass beads of the abrasive is 20 μm, the compressed air pressure is 0.25 kg.
/ Sec 2 and 0.5kg / cm 2 processing time 45sec
Until then, black spots and interference fringes caused by burrs were generated. However, the processing time for compressed air pressure 0.5 kg / cm 2 is 60 sec.
c and 1 kg / cm 2 , 2 kg / cm 2 were good with no black spots.

【0035】但し圧搾空気圧3.0kg/cm2 では画
像上カブリが発生する。また圧搾空気圧2.0kg/c
2 でもガラスビーズの粒径が50μmになると加工時
間45sec以上はカブリが発生する。カブリが発生し
始めたものは表−2に示すように液体ホーニング加工後
の単位面積当りの表面積が54.3%であることがわか
る。圧搾空気圧2.0kg/cm2 、加工時間60se
cで加工したときの表面積の増加率は50%であり、圧
搾空気圧3.0kg/cm2 、加工時間15secで加
工した時の表面積の増加率は54.3%である。画像品
質は前者が良好であり後者は画像上カブリが発生する。
従って、表面積の増加率が4.8%以下のものはバリが
完全に対策されず黒点が発生するため液体ホーニングを
する場合の有効範囲は、表面積の増加率5%以上50%
以下に処理することにより、画像品質が安定した電子写
真感光体を得ることができる。
However, fog occurs on the image when the compressed air pressure is 3.0 kg / cm 2 . Also compressed air pressure 2.0 kg / c
Even with m 2, if the particle size of the glass beads becomes 50 μm, fogging occurs for a processing time of 45 seconds or more. As shown in Table 2, it can be seen that the surface area per unit area after liquid honing is 54.3% in the case where fog starts to occur. Compressed air pressure 2.0kg / cm 2 , processing time 60se
The surface area increase rate when processed with c is 50%, and the surface area increase rate when processed with compressed air pressure of 3.0 kg / cm 2 and processing time of 15 sec is 54.3%. The image quality of the former is good and that of the latter causes fog on the image.
Therefore, if the surface area increase rate is 4.8% or less, burr is not completely taken care of and black spots occur, so the effective range when liquid honing is 5% or more and 50% or more.
By the following treatment, an electrophotographic photosensitive member having stable image quality can be obtained.

【0036】さらにまた、ホーニング加工処理により表
面積の増加に伴って表面粗さにも顕著な差が見られた。
特に表面積増加率5%の境界値の付近では、圧搾空気圧
0.5kg/cm2 、加工時間45secでは表面粗さ
が0.43μmであり、10secでは0.5μmであ
った。さらに表面積増加率50%の境界値の付近では、
圧搾空気圧2.0kg/cm2 、加工時間60secで
は表面粗さが2.8μmであり、圧搾空気圧3.0kg
/cm2 、加工時間15secでは表面粗さが3.1μ
mであった。
Furthermore, a significant difference was observed in the surface roughness as the surface area was increased by the honing process.
Particularly, in the vicinity of the boundary value of the surface area increase rate of 5%, the compressed air pressure was 0.5 kg / cm 2 , and the surface roughness was 0.43 μm at the processing time of 45 sec and 0.5 μm at the time of 10 sec. Furthermore, near the boundary value of the surface area increase rate of 50%,
When the compressed air pressure is 2.0 kg / cm 2 and the processing time is 60 sec, the surface roughness is 2.8 μm, and the compressed air pressure is 3.0 kg.
/ Cm 2 and processing time 15 sec, surface roughness is 3.1μ
It was m.

【0037】上記のようにホーニング加工処理後の表面
粗さは、表面積の増加に伴い増加率が少なければ表面粗
さも小さく、増加率が多ければ表面粗さも大きいことが
わかる。前述の結果から、本発明のセンタレス管状基板
のホーニング加工処理における表面粗さは、0.5μm
〜3.0μmの範囲が有効である。
As described above, it can be seen that the surface roughness after the honing process is small as the surface area increases with a small increase rate, and the surface roughness is large with a large increase rate. From the above results, the surface roughness of the centerless tubular substrate of the present invention in the honing process is 0.5 μm.
The range of up to 3.0 μm is effective.

【0038】[0038]

【発明の効果】以上の如く得られる本発明による電子写
真感光体用アルミニウム基板は、そのままでは表面に汚
れや突起、傷、へこみ等が数多く存在し使用できないよ
うな非切削アルミニウム管状基板をセンタレス研削処理
及び液体ホーニング処理によってそれらの欠点を除去
し、しかも高能率で表面処理することができるもので工
業化に最適である。本発明は、特にレーザー光等の可干
渉光を用いた場合は干渉縞のない優れた画像品質を得る
ことができる。
The aluminum substrate for an electrophotographic photoreceptor according to the present invention obtained as described above is centerless ground on a non-cutting aluminum tubular substrate which cannot be used as it is because of many stains, protrusions, scratches, dents and the like on its surface. These defects can be removed by the treatment and liquid honing treatment, and the surface treatment can be performed with high efficiency, which is most suitable for industrialization. The present invention can obtain excellent image quality without interference fringes, especially when coherent light such as laser light is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセンタレス研削装置の正面図。FIG. 1 is a front view of a centerless grinding apparatus of the present invention.

【図2】本発明のセンタレス研装置の上面図。FIG. 2 is a top view of the centerless polishing apparatus of the present invention.

【図3】本発明のローラーバニシング加工装置の説明
図。
FIG. 3 is an explanatory view of a roller burnishing processing device of the present invention.

【図4】(a)はアルミ表面のバリを示す断面図。
(b)は黒点の発生メカニズムを説明した図。
FIG. 4A is a sectional view showing a burr on the aluminum surface.
FIG. 7B is a diagram illustrating the mechanism of black spot generation.

【図5】従来の砥石研磨装置の一例を示す正面図。FIG. 5 is a front view showing an example of a conventional grindstone polishing apparatus.

【図6】従来のダイヤモンドバイト切削装置の一例を示
す正面図。
FIG. 6 is a front view showing an example of a conventional diamond bite cutting device.

【図7】従来のバイト切削により表面粗さRz0.5μ
mに均一に粗面化されたアルミニウム管の表面粗さを表
面粗さ計で軸方向に測定して示した図(倍率20,00
0倍)。
FIG. 7: Surface roughness Rz 0.5 μ obtained by conventional bite cutting
The surface roughness of the aluminum tube uniformly roughened to m was measured in the axial direction by a surface roughness meter (magnification: 20,000).
0 times).

【図8】本発明のセンタレス研削加工により形成された
アルミニウム管状基板の表面粗さを上記と同様の方法で
測定して示した図(倍率20,000倍)。
FIG. 8 is a diagram showing the surface roughness of an aluminum tubular substrate formed by the centerless grinding process of the present invention as measured by the same method as described above (magnification: 20,000 times).

【図9】本発明の液体ホーニング加工装置の正面図。FIG. 9 is a front view of the liquid honing processing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 回転砥石 2 フイードローラー 3 被研削物(アルミニウム管状基板) 4 ブレード 5〜8 ガイド 9 ローラーバニシング加工装置 10 バニシングローラー 11 アルミバリ 12 感光層 13 ポンプ 14 噴射ガン 15 研磨材 16 空気導入管 17 処理容器 18 被研削物(アルミニウム管状基板) DESCRIPTION OF REFERENCE NUMERALS 1 rotating grindstone 2 feed roller 3 object to be ground (aluminum tubular substrate) 4 blade 5-8 guide 9 roller burnishing machine 10 burnishing roller 11 aluminum burr 12 photosensitive layer 13 pump 14 injection gun 15 abrasive material 16 air introduction pipe 17 processing container 18 Object to be ground (aluminum tubular substrate)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 一 山梨県甲府市東光寺2の19の27 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazu Yamada 19-27, Tokoji Temple, Kofu City, Yamanashi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 センタレス研削加工或はローラーバニシ
ング加工により、アルミニウム管状基板の表面粗さRz
を0.3〜3.0μmに仕上げた後、更に液体ホーニン
グ加工により、前記アルミニウム管状基板の表面を前記
センタレス研削加工或はローラーバニシング加工の加工
溝が消えない程度に表面粗さRzを0.5〜3.0μ
m、表面積増加率5〜50%に処理を施すことを特徴と
する電子写真感光体用アルミニウム管状基板の製造方
法。
1. A surface roughness Rz of an aluminum tubular substrate by centerless grinding or roller burnishing.
Of 0.3 to 3.0 μm, and further subjected to liquid honing so that the surface roughness Rz of the surface of the aluminum tubular substrate is as large as the centerless grinding or roller burnishing groove does not disappear. 5-3.0μ
m, and a surface area increasing rate of 5 to 50% are applied to the aluminum tubular substrate for an electrophotographic photosensitive member.
JP19415092A 1992-07-21 1992-07-21 Production of aluminum tubular substrate for electro-photographic photosensitive body Pending JPH0635216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19415092A JPH0635216A (en) 1992-07-21 1992-07-21 Production of aluminum tubular substrate for electro-photographic photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19415092A JPH0635216A (en) 1992-07-21 1992-07-21 Production of aluminum tubular substrate for electro-photographic photosensitive body

Publications (1)

Publication Number Publication Date
JPH0635216A true JPH0635216A (en) 1994-02-10

Family

ID=16319754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19415092A Pending JPH0635216A (en) 1992-07-21 1992-07-21 Production of aluminum tubular substrate for electro-photographic photosensitive body

Country Status (1)

Country Link
JP (1) JPH0635216A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141172A (en) * 1996-11-11 1998-05-26 Usui Internatl Ind Co Ltd Manufacture of common rail
US6432603B1 (en) 1998-11-27 2002-08-13 Canon Kabushiki Kaisha Process for producing electrophotographic photosensitive member
JP2019211619A (en) * 2018-06-05 2019-12-12 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141172A (en) * 1996-11-11 1998-05-26 Usui Internatl Ind Co Ltd Manufacture of common rail
US6432603B1 (en) 1998-11-27 2002-08-13 Canon Kabushiki Kaisha Process for producing electrophotographic photosensitive member
JP2019211619A (en) * 2018-06-05 2019-12-12 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Similar Documents

Publication Publication Date Title
KR0164013B1 (en) Photosensitive body drum, method for driving thereof and photosensitive drum unit
JPH02110570A (en) Production of base body for photosensitive drum
JPH0743922A (en) Production of aluminum pipe for electrophotographic photoreceptor
JPH0635216A (en) Production of aluminum tubular substrate for electro-photographic photosensitive body
JPH08328376A (en) Cylindrical member for image forming device and its production
JP2000122310A (en) Production of mirror surface pipe for photorecertive drum of copying machine or the like
CN107179656B (en) Metal cylinder, substrate, method for manufacturing electrophotographic photoreceptor, and metal block
JP3039907B2 (en) Developing sleeve having uniform fine uneven surface shape and manufacturing method thereof
JP2000141225A (en) Working method for surface of work piece
JPH09185291A (en) Supporting method and driving method for electrophotographic photoreceptor, and image forming device
JPH07299710A (en) Cylindrical member and its manufacture
JPH10104988A (en) Method of working metal circumferential surface, and its workpiece
JP4198612B2 (en) Cylindrical member manufacturing method, cylindrical member, various parts for electrophotography, centerless grinding apparatus, and electrophotographic image forming apparatus
GB2077154A (en) A method of polishing a peripheral surface of a cylindrical drum for electrophotography
JPH08197393A (en) Manufacturing method for aluminium specular surface pipe
JP2004009227A (en) Method for manufacturing aluminum pipe, and electrophotographic photosensitive drum
JPH1048863A (en) Electrophotographic photoreceptor and its production
JPH10123737A (en) Production of electrophotographic photoreceptor, electrophotographic photoreceptor, apparatus for production of electrophotographic photoreceptor and image forming method
JPH0145630B2 (en)
JPH081510A (en) Manufacture of aluminum pipe and electrophotographic photosensitive drum manufactured by this manufacturing method
JP2831577B2 (en) Method of manufacturing aluminum tube for photosensitive drum
JP3136210B2 (en) Photosensitive drum manufacturing method
US5483326A (en) Developer carrying roller having a surface layer with contoured finish
JPH071397B2 (en) Surface processing method for electrophotographic photoreceptor substrate
JPH09239649A (en) Cylindrical member grinding device for electrophotography