JPH06350332A - Small sized transmission/reception stack antenna - Google Patents

Small sized transmission/reception stack antenna

Info

Publication number
JPH06350332A
JPH06350332A JP5131994A JP13199493A JPH06350332A JP H06350332 A JPH06350332 A JP H06350332A JP 5131994 A JP5131994 A JP 5131994A JP 13199493 A JP13199493 A JP 13199493A JP H06350332 A JPH06350332 A JP H06350332A
Authority
JP
Japan
Prior art keywords
antenna
conductor
conductor plate
antennas
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5131994A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konishi
良弘 小西
Koichi Ito
伊藤  公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uniden Corp
Original Assignee
Uniden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uniden Corp filed Critical Uniden Corp
Priority to JP5131994A priority Critical patent/JPH06350332A/en
Publication of JPH06350332A publication Critical patent/JPH06350332A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To simply form a transmission/reception isolation filter by stacking disk antennas coaxially, mounting a ferroelectric material onto the upper side antenna to decrease the radius of the antenna thereby increasing the isolation between upper and lower antennas. CONSTITUTION:A radius r1 of an upper disk antenna A1 is selected to be smaller than a radius r2 of a lower disk antenna A2, its dielectric base S1 is made of a ferroelectric material and a radiation impedance is reduced by selecting the material with a higher dielectric constant epsilon1 no dielectric base S2 is provided, if possible. Furthermore, the radius r1 is selected as small as possible to part the circumferential parts of the antennas A1, A2 thereby securing at least isolation of 10dB. The reduction in the radiation impedance of the antenna A1 caused resulting therefrom, and then the reduction in the antenna gain is easily compensated by increasing a power amplification gain at an input and an output terminal of a communication equipment connected to the antenna.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車、航空機などの
移動体に装備するに好適な小型送受スタックアンテナに
関し、特に、近接した2周波数による送受信に個別に用
いる2個のアンテナを、相互間に良好なアイソレーショ
ンを保って、低姿勢の一体構造にしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small transmission / reception stack antenna suitable for mounting on a moving body such as an automobile or an aircraft, and in particular, two antennas individually used for transmission / reception by two frequencies adjacent to each other are provided. It is a low-profile integrated structure that maintains good isolation.

【0002】[0002]

【従来の技術】個別の周波数により送受信して同時交信
を行ない得るようにするために2個のアンテアを一体に
組合わせた送受スタックアンテナは、高速移動体の外壁
面などにも装着し得るように、小型でしかも低姿勢にす
るのが好適である。
2. Description of the Related Art A transmission / reception stack antenna in which two antennas are integrally combined so as to be able to perform simultaneous communication by transmitting / receiving at individual frequencies, can be mounted on the outer wall surface of a high-speed moving body. In addition, it is suitable to be small and have a low posture.

【0003】しかして、移動体外壁面などの接地導体面
に低姿勢で装着し得るアンテナとしては、図1に示すよ
うに、接地導体面からわずかに離して半波長以下の大き
さの導体平板を平行に配置したコンデンサアンテナある
いはパッチアンテナ、および、図2に示すように、平行
導体平板の一部を垂直に折り曲げて接地導体に短絡し、
平行部分の中間位置に給電した逆Fアンテナがあり、さ
らに、図3に示すように、航空機など移動体の外壁導体
面に沿って彎曲させた導体円板と外壁導体面との間に誘
電体を装荷した移動体用アンテナが知られている。
However, as an antenna that can be mounted on a ground conductor surface such as an outer wall surface of a moving body in a low posture, as shown in FIG. 1, a conductor flat plate having a size of a half wavelength or less, which is slightly separated from the ground conductor surface, is used. Capacitor antennas or patch antennas arranged in parallel, and, as shown in FIG. 2, a part of a parallel conductor plate is bent vertically and short-circuited to a ground conductor,
There is an inverted F antenna fed at an intermediate position of the parallel portion, and further, as shown in FIG. 3, a dielectric material is provided between the conductor disk curved along the outer wall conductor surface of the moving body such as an aircraft and the outer wall conductor surface. An antenna for a mobile body loaded with is known.

【0004】このような板状導体からなるアンテナは、
図4に示すように、接地導体側の背面から同軸線を介し
て給電するのが一般的であり、図5に示すように、接地
導体面を鏡面にして対称に配置した一対の板状導体間に
発生する電磁界による水平面内の全方位放射を行なうも
のとして取扱うことができる。
An antenna made of such a plate conductor is
As shown in FIG. 4, power is generally fed from the rear surface on the ground conductor side through a coaxial line, and as shown in FIG. 5, a pair of plate-shaped conductors symmetrically arranged with the ground conductor surface as a mirror surface. It can be treated as an omnidirectional radiation in a horizontal plane due to an electromagnetic field generated between them.

【0005】[0005]

【発明が解決しようとする課題】上述したような低姿勢
のアンテナを、個別の周波数により送受信して同時交信
を行ない得るようにするために、図6(a) および(b) に
示すように、上下に2個スタックして一体に組合わせる
場合には、近接配置した2個のアンテナの放射電磁界が
相互に干渉するので、送受信アンテナ相互のアイソレー
ションが取れず、使用する通信機に送受信分離のための
尖鋭な周波数分離特性をもった複雑なフィルタを設ける
必要がある。殊に、送受信周波数が、例えば 200MHz と
201 MHzとなど、極めて近接している場合には、フィル
タのみによって送受信相互間に必要なアイソレーション
を得ることは実用上不可能に近い。
As shown in FIGS. 6 (a) and 6 (b), in order to enable simultaneous transmission and reception by transmitting and receiving at a low frequency using the low profile antenna as described above. When stacking two antennas on the top and bottom and combining them together, the radiated electromagnetic fields of the two antennas that are placed close to each other interfere with each other, so the transmission and reception antennas cannot be isolated from each other, and the transmission and reception to and from the communication device used. It is necessary to provide a complex filter having a sharp frequency separation characteristic for separation. Especially, the transmission / reception frequency is, for example, 200 MHz.
In the case of very close proximity such as 201 MHz, it is practically impossible to obtain the required isolation between the transmitter and the receiver only by the filter.

【0006】本発明の目的は、送受信周波数が極めて近
接している場合にも、送受信分離のための複雑高価なフ
ィルタを通信機に備える必要がなく、比較的簡易なフィ
ルタによっても総合して十分な送受信分離が行なえるよ
うに、送受信アンテナ相互間に必要なアイソレーション
が得られるように構成した、移動体に装着するにも好適
な小型送受スタックアンテナを提供することにある。
The object of the present invention is that even if the transmission and reception frequencies are extremely close to each other, it is not necessary to equip the communication device with a complicated and expensive filter for separating the transmission and reception, and a relatively simple filter is sufficient in total. It is an object of the present invention to provide a small-sized transmission / reception stack antenna suitable for mounting on a moving body, which is configured to obtain necessary isolation between transmission / reception antennas so that transmission / reception can be separated.

【0007】すなわち、本発明小型送受スタックアンテ
ナは、接地導体面上に平行に順次に離隔して上下ほぼ同
軸に近接配置した2枚の導体板をそれぞれ放射器として
個別に給電し、上下の前記導体板の相互間のほぼ全面に
強誘電体もしくは強磁性体を装荷して当該導体板を縮小
することにより、下側の前記導体板の周縁に発生した電
磁界が指数関数的に少なくとも10dB減衰した領域に
上側の前記導体円板もしくは導体円環の周縁が位置する
ように構成したことを特徴とするものである。
That is, in the small-sized transmitting / receiving stack antenna of the present invention, two conductor plates, which are sequentially spaced parallel to each other on the ground conductor plane and are arranged adjacent to each other substantially coaxially in the vertical direction, are individually fed as radiators. By loading a ferroelectric material or a ferromagnetic material on almost the entire surface between the conductor plates to reduce the conductor plate, the electromagnetic field generated at the peripheral edge of the lower conductor plate is attenuated exponentially by at least 10 dB. It is characterized in that the peripheral edge of the conductor disc or the conductor ring on the upper side is located in the region.

【0008】[0008]

【作用】したがって、本発明小型送受スタックアンテナ
においては、ともに平板状の送受信アンテナをほぼ同軸
にスタックして低姿勢に近接配置しても相互間に必要な
アイソレーションが得られ、通信機に比較的簡易なフィ
ルタを使用しても十分な送受信分離を達成することがで
きる。
Therefore, in the small transmission / reception stack antenna according to the present invention, even if both flat plate-shaped transmission / reception antennas are stacked substantially coaxially and are arranged close to each other in a low position, the required isolation can be obtained between them, and it is compared with a communication device. Sufficient transmission / reception separation can be achieved even by using a simple filter.

【0009】[0009]

【実施例】以下に図面を参照して実施例につき本発明を
詳細に説明する。本発明小型送受スタックアンテナは、
基本的には、図6(a) および(b) に示したように、接地
導体G上の共通の誘電体基板Sもしくは個別の誘電体基
板S1 およびS2 上あるいは中空に近接してスタックし
た平板状アンテナA1 およびA2に同軸フイーダF1
よびF2 を個別に接続した従来の小型送受スタックアン
テナとほぼ同様に構成する。なお、下側の円板状アンテ
ナA2 は、図7(a) に示すように、円環状アンテナA3
とすることもでき、また、上下の円板状アンテナA 1
よびA2 の中心部に、図7(b) に示すように、円環状突
起A4 およびA5 をそれぞれ設けて、円板部分の半径を
縮小することもできる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
The details will be described. The small transmission / reception stack antenna of the present invention is
Basically, as shown in Fig. 6 (a) and (b), grounding
Common dielectric substrate S on conductor G or individual dielectric substrate
Board S1And S2Stack up close to the top or hollow
Flat plate antenna A1And A2Coaxial feeder F1Oh
And F2Conventional small stacker
The configuration is similar to Tena. In addition, the lower disk-shaped antenna
Na A2Is an annular antenna A, as shown in FIG.3
It is also possible to use the upper and lower disc-shaped antennas A 1Oh
And A2At the center of the, as shown in Figure 7 (b),
Ki AFourAnd AFiveAnd set the radius of the disc part
It can also be reduced.

【0010】図6(b) に示したように上下にスタックし
た円板状アンテナA1 , A2 について、図8(a) に示す
ように、半径をr1 , 2 、誘電体基板S1 , 2 の高
さをh1 ,h2 、誘電率をε1 , ε2 とし、図8(b) に
示すように円板状アンテナの周縁に生ずる垂直方向の電
界をE1 , 2 とすると、磁界は電界に直交して円周方
向に生ずる。かかる状態における円板状アンテナA1 ,
2 の放射インピーダンスR1 , 2 は、Aを比例定数
としてつぎの(1)式のように表わされる。
Regarding the disk-shaped antennas A 1 and A 2 which are vertically stacked as shown in FIG. 6B, the radii are r 1 and r 2 and the dielectric substrate S is as shown in FIG. 8A. Assuming that the heights of 1 and S 2 are h 1 and h 2 and the permittivities are ε 1 and ε 2 , the vertical electric field generated at the peripheral edge of the disk-shaped antenna is E 1 and E 2 as shown in FIG. 8 (b). If 2 , the magnetic field is generated in the circumferential direction orthogonal to the electric field. In this state, the disk-shaped antenna A 1,
Radiation impedance R 1, R 2 of A 2 is represented by the following formula (1) A as proportional constant.

【数1】 したがって、[Equation 1] Therefore,

【数2】 一方、円板状アンテナA1 , 2 相互間および接地導体
Gとの間の順次の容量C1 ,C2 は、つぎの(3) 式によ
って表わされる。
[Equation 2] On the other hand, the sequential capacitances C 1 and C 2 between the disk-shaped antennas A 1 and A 2 and the ground conductor G are expressed by the following equation (3).

【数3】 したがって、[Equation 3] Therefore,

【数4】 この(4) 式の関係を(3) 式に代入すると、つぎの(5) 式
の関係が得られる。
[Equation 4] By substituting the relationship of equation (4) into equation (3), the following relationship of equation (5) is obtained.

【数5】 [Equation 5]

【0011】かかる関係の放射インピーダンスを呈する
円板状アンテナの放射電界は、図9(a) に示すように、
導体円板の周縁から対向導体に向って垂直方向に発生
し、その内方に向う電界強度は、図9(b) に示すよう
に、指数関数的に減衰する。したがって、上下にスタッ
クして近接配置した2個の円板状アンテナA1 , 2
相互間に十分なアイソレーションを得るためには、大き
い方の下側円板状アンテナA2 の周縁に発生した放射電
界の電界強度が十分に減衰した領域に小さい方の上側円
板状アンテナA1 の周縁が位置し、下側円板状アンテナ
2 の影響をなるべく受けないようにする必要がある。
The radiated electric field of the disk-shaped antenna exhibiting the radiation impedance of the above relation is as shown in FIG. 9 (a).
The electric field strength generated in the vertical direction from the peripheral edge of the conductor disk toward the opposing conductor and inwardly decays exponentially as shown in FIG. 9 (b). Therefore, in order to obtain a sufficient isolation between the two disk-shaped antennas A 1 and A 2 that are stacked vertically and arranged close to each other, in order to obtain a sufficient isolation between the disk-shaped antennas A 2 and A 2 , the peripheral area of the larger lower disk-shaped antenna A 2 is The peripheral edge of the smaller upper disk-shaped antenna A 1 is located in a region where the electric field strength of the generated radiated electric field is sufficiently attenuated, and it is necessary to avoid the influence of the lower disk-shaped antenna A 2 as much as possible. .

【0012】そのためには、上側円板状アンテナA1
ついて、下側円板状アンテナA2 に比し、半径r1 を小
さくするとともに、式(5) において誘電体基板S1 の誘
電率ε1 を相対的にできるだけ増大させ、放射インピー
ダンスを小さくするのが好適である。すなわち、上側円
板状アンテナA1 に接する誘電体基板S1 を、例えばチ
タン酸バリウム系などの強誘電体材料もしくは強磁性材
料により構成するとともに、下側円板状アンテナA2
はできれば誘電体基板S2 を設けず、また、上側円板状
アンテナA1 の半径r1 をできるだけ小さく選定して、
上下アンテアA1 , 2 の周縁部をできるだけ離隔して
少なくとも10dBのアイソレーションを確保するよう
にする。なお、その結果として生ずる上側アンテナA1
の放射インピーダンスの低下、したがって、アンテナ利
得の低下は、接続する通信機の入出力端における電力増
幅利得の増大によって容易に補償することができる。
[0012] To that end, the upper disc-shaped antenna A 1, relative to the lower disc-shaped antenna A 2, together with the smaller radius r 1, the dielectric constant of the dielectric substrate S 1 in the formula (5) epsilon It is preferable to increase 1 relatively as much as possible and reduce the radiation impedance. That is, the dielectric substrate S 1 in contact with the upper disc-shaped antenna A 1, for example as to constitute a ferroelectric material or a ferromagnetic material such as barium titanate, if the lower disc-shaped antenna A 2 dielectric The body substrate S 2 is not provided, and the radius r 1 of the upper disc-shaped antenna A 1 is selected to be as small as possible.
The peripheral portions of the upper and lower anteers A 1 and A 2 are separated as much as possible to ensure at least 10 dB of isolation. The resulting upper antenna A 1
The decrease in the radiation impedance of the antenna, and therefore the decrease in the antenna gain, can be easily compensated by the increase in the power amplification gain at the input / output end of the connected communication device.

【0013】また、図8(a),(b) に示したような導体円
板からなるコンデンサアンテナにおける放射電界は水平
面内において無方位の指向性を呈するが、図5に示した
対称配置の仮想アンテナ対における対称鏡面となる接地
導体面Gが移動体の外壁面などのように有限の大きさで
ある場合には、垂直面内における指向性パターンの中心
軸が水平方向から上方に外れるために、実際に通信に必
要とする水平方向のアンテナ利得が相当程度低下するこ
とになる。
Further, although the radiated electric field in the capacitor antenna composed of the conductor disk as shown in FIGS. 8 (a) and 8 (b) exhibits a non-directional directivity in the horizontal plane, it has the symmetrical arrangement shown in FIG. When the ground conductor surface G, which is a symmetrical mirror surface in the virtual antenna pair, has a finite size, such as the outer wall surface of the moving body, the central axis of the directivity pattern in the vertical plane deviates upward from the horizontal direction. In addition, the antenna gain in the horizontal direction actually required for communication is considerably reduced.

【0014】本発明小型送受スタックアンテナにおいて
は、上述したような接地導体Gの大きさが実際の装備状
態では有限であることに起因するアンテナ利得の低下を
補償するために、図10(a) および(b) に示すように、上
側円板状アンテナA1 および下側円板状アンテナA2
周縁部をそれぞれ下側内方に折り曲げることによって垂
直面内における指向性パターンの中心軸をほぼ水平方向
に修正し、実際に通信を行なう水平方向で最大のアンテ
ナ利得が得られるようにする。
In the small-sized transmitting / receiving stack antenna of the present invention, in order to compensate for the decrease in antenna gain due to the fact that the size of the ground conductor G is finite in the actual equipment state as described above, FIG. As shown in (b) and (b), the central axis of the directivity pattern in the vertical plane is made almost equal by bending the peripheral portions of the upper disc-shaped antenna A 1 and the lower disc-shaped antenna A 2 inward inward, respectively. It is corrected in the horizontal direction so that the maximum antenna gain is obtained in the horizontal direction in which communication is actually performed.

【0015】つぎに、本発明により、図6(a), (b)に示
したように、導体円板からなる放射器を同軸にスタック
して強誘電体を装荷した送受アンテナを試作し、送受相
互間のアイソレーションを測定した結果について説明す
る。
Next, according to the present invention, as shown in FIGS. 6 (a) and 6 (b), a transmitter / receiver antenna in which a radiator made of a conductor disk is coaxially stacked and a ferroelectric substance is loaded is manufactured, The result of measuring the isolation between transmission and reception will be described.

【0016】試作した小型送受スタックアンテナは、図
11に示すように、接地導体面Gから12〜13mm離し
て平行に直径150mmの導体円板からなる下側アンテナ
2を配置し、さらに、10mm離して平行に直径100m
mの導体円板からなる上側アンテナA1 を同軸配置し、
上下のアンテナA1,A2 間に厚さ6mmのエポキシガラス
板を強誘電体として装荷し、別途試作した二重同軸給電
線Fを介し、上下のアンテナA1,A2 にそれぞれ同軸給
電するように構成したものである。
As shown in FIG. 11, the prototype small transmitting and receiving stack antenna has a lower antenna A 2 composed of a conductor disk having a diameter of 150 mm arranged parallel to and separated from the ground conductor surface G by 12 to 13 mm, and further 10 mm. 100m apart in parallel
The upper antenna A 1 made of a conductor disk of m is coaxially arranged,
Upper and lower antennas A 1, loaded with epoxy glass plate having a thickness of 6mm between A 2 as ferroelectric, separately via a double coaxial feeder F the prototype, is coaxial feed respectively above and below the antenna A 1, A 2 It is configured as follows.

【0017】かかる試作送受スタックアンテナについて
上下のアンテナA1,A2 相互間のアイソレーションを測
定した結果を図12(a) および(b) に示す。図12(a)
および(b) は、それぞれ上側アンテナA1 および下側ア
ンテナA2 に給電した場合について、特性曲線1は、給
電アンテナから見たアイソレーションの周波数特性を示
したものであり、また、特性曲線2は、給電アンテナか
らみた他方のアンテナの結合に基づく反射減衰量、すな
わち、リターンロスの周波数特性を示したものであり、
垂直の点線で示す中心周波数における給電アンテナ側の
整合状態を示すものである。
The results of measuring the isolation between the upper and lower antennas A 1 and A 2 of the prototype transmission / reception stack antenna are shown in FIGS. 12 (a) and 12 (b). Figure 12 (a)
In (b) and (b), when the upper antenna A 1 and the lower antenna A 2 are fed, respectively, the characteristic curve 1 shows the frequency characteristic of the isolation viewed from the feeding antenna, and the characteristic curve 2 Is the return loss based on the coupling of the other antenna viewed from the feeding antenna, that is, the frequency characteristic of the return loss,
It shows the matching state on the side of the feeding antenna at the center frequency shown by the vertical dotted line.

【0018】図12(a), (b)に示したかかる測定結果に
よれば、上下のアンテナA1,A2 のいずれの側から見て
も、同一周波数に対する良好な整合状態においても、ア
ンテナ系のみで約15dBのアイソレーションが得られ
ている。したがって、実際に送受信周波数が離隔してい
る状態においては、送受信機の入出力端に通常使用する
程度の分離特性を有する比較的簡単な送受分離用フィル
タを備えるだけで、送受信周波数が近接している場合で
も、十分な送受分離を行なって良好な交信状態を確保す
ることができる。
According to the measurement results shown in FIGS. 12 (a) and 12 (b), the antenna can be seen from both sides of the upper and lower antennas A 1 and A 2 even in a good matching state with respect to the same frequency. Isolation of about 15 dB is obtained only in the system. Therefore, when the transmission / reception frequencies are actually separated from each other, the transmission / reception frequencies are close to each other only by providing a relatively simple transmission / reception separation filter having a separation characteristic that is normally used at the input / output ends of the transceiver. Even if there is, it is possible to ensure a good communication state by performing sufficient transmission / reception separation.

【0019】なお、図11に示した大きさの試作アンテ
ナについて図12(a), (b)に示した測定結果は周波数2
000MHz 用に設計して測定したものであるが、冒頭に
述べたように周波数200MH近傍で使用するものとして
は、送受スタックアンテナ全体の大きさを縮少して例え
ば図11に示したのと同程度の大きさの小型に設計し、
図12(a), (b)に示したのと同程度の測定結果が得られ
るようにするのが好適である。
Incidentally, the measurement results shown in FIGS. 12 (a) and 12 (b) for the prototype antenna of the size shown in FIG.
It was designed and measured for 000MHz, but as mentioned at the beginning, when it is used near a frequency of 200MH, the size of the whole stack antenna for transmitting and receiving is reduced to the same level as shown in Fig. 11, for example. Designed to be as small as
It is preferable that the same measurement result as that shown in FIGS. 12 (a) and 12 (b) is obtained.

【0020】そのためには、本発明小型送受スタックア
ンテナを構成する導体円板の代わりに図7に示したよう
に円環状導体板を取付けるなどして容量形成素子を装荷
し、あるいは、導体円板に装荷する強誘電体材料を誘電
率が特に大きいフェライトによって構成するなどによ
り、導体円板もしくは導体円環の半径を大幅に縮小させ
るのが好適である。
To this end, a capacitance forming element is loaded by mounting an annular conductor plate as shown in FIG. 7 in place of the conductor disc which constitutes the small-sized transmitting / receiving stack antenna of the present invention, or a conductor disc. It is preferable to greatly reduce the radius of the conductor disc or the conductor ring by, for example, configuring the ferroelectric material loaded on the substrate with ferrite having a particularly large dielectric constant.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
によれば、小型の導体円板からなる送受信アンテナを上
下にスタックして同軸に近接配置し、移動体外壁面への
装着に適するように低姿勢に構成するとともに、同時交
信を行なうために個別に選定する送受信周波数が極めて
近接している場合にも、通信機には比較的簡易な送受信
分離用フィルタを用いるだけで十分な送受信分離を行な
い得るように送受アンテナ相互間に十分なアイソレーシ
ョンを確保し得る、という格別顕著な効果を挙げること
ができる。
As is clear from the above description, according to the present invention, the transmitting and receiving antennas composed of small conductor disks are vertically stacked and coaxially arranged close to each other, so that they are suitable for mounting on the outer wall surface of the moving body. Even if the transmission / reception frequencies individually selected for simultaneous communication are extremely close to each other, it is sufficient to use a relatively simple transmission / reception separation filter for the communication device to achieve sufficient transmission / reception separation. As a result, it is possible to secure a sufficient isolation between the transmitting and receiving antennas so that a particularly remarkable effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンデンサ(パッチ)アンテナの概略構成を示
す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of a capacitor (patch) antenna.

【図2】逆Fアンナテの概略構成を示す斜視図である。FIG. 2 is a perspective view showing a schematic configuration of an inverted F Annate.

【図3】移動体用アンテナの概略構成を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing a schematic configuration of a mobile unit antenna.

【図4】コンデンサアンテナの背面給電の態様を示す線
図である。
FIG. 4 is a diagram showing a form of back feeding of a capacitor antenna.

【図5】コンデンサアンテナの動作原理を示す線図であ
る。
FIG. 5 is a diagram showing the operating principle of the capacitor antenna.

【図6】(a)および(b) は本発明小型送受スタックアン
テナの基本構成の例をそれぞれ示す断面図である。
6 (a) and 6 (b) are cross-sectional views each showing an example of the basic configuration of the small-sized transceiver stack antenna of the present invention.

【図7】(a) および(b) は同じくその基本構成の他の例
をそれぞれ示す断面図である。
7A and 7B are cross-sectional views each showing another example of the same basic configuration.

【図8】(a)および(b) は本発明小型送受スタックアン
テナの動作原理をそれぞれ示す断面図および斜視図であ
る。
8 (a) and 8 (b) are a cross-sectional view and a perspective view, respectively, showing the operating principle of the small-sized transceiver stack antenna of the present invention.

【図9】(a)および(b) は同じくその動作の態様をそれ
ぞれ示す断面図である。
9 (a) and 9 (b) are sectional views showing the same manner of operation.

【図10】(a)および(b) は同じくその動作の他の態様
をそれぞれ示す断面図である。
10 (a) and 10 (b) are sectional views respectively showing another mode of the operation.

【図11】試作アンテナの概略構成を示す断面図であ
る。
FIG. 11 is a cross-sectional view showing a schematic configuration of a prototype antenna.

【図12】(a)および(b) は試作アンテナの測定結果を
それぞれ示す特性曲線図である。
12A and 12B are characteristic curve diagrams showing measurement results of the prototype antenna, respectively.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 接地導体面上に平行に順次に離隔して上
下ほぼ同軸に近接配置した2枚の導体板をそれぞれ放射
器として個別に給電し、上下の前記導体板の相互間のほ
ぼ全面に強誘電体もしくは強磁性体を装荷して当該導体
板を縮小することにより、下側の前記導体板の周縁に発
生した電磁界が指数関数的に少なくとも10dB減衰し
た領域に上側の前記導体板の周縁が位置するように構成
したことを特徴とする小型送受スタックアンテナ。
1. Two conductor plates, which are spaced apart in parallel on the ground conductor surface and are arranged substantially coaxially in the vertical direction, are individually fed as radiators, and substantially the entire surface between the upper and lower conductor plates is supplied. By loading a ferroelectric material or a ferromagnetic material on the conductor plate to reduce the conductor plate, the conductor plate on the upper side is arranged in a region where the electromagnetic field generated around the periphery of the conductor plate on the lower side is exponentially attenuated by at least 10 dB. A small transceiver stack antenna, characterized in that the periphery of the antenna is located.
【請求項2】 少なくとも上側の前記導体板の中心部に
容量形成素子を装荷して当該導体板を縮小したことを特
徴とする請求項1記載の小型送受スタックアンテナ。
2. The small transmission / reception stack antenna according to claim 1, wherein a capacitance forming element is loaded on at least a central portion of the upper conductor plate to reduce the conductor plate.
【請求項3】 少なくとも上側の前記導体板のほぼ全面
にフェライトを装荷して当該導体板を縮小したことを特
徴とする請求項1記載の小型送受スタックアンテナ。
3. The small transmitting / receiving stack antenna according to claim 1, wherein ferrite is loaded on substantially the entire surface of at least the upper conductor plate to reduce the conductor plate.
【請求項4】 少なくとも上側の前記導体板の周縁部を
下側内方に折曲げたことを特徴とする請求項1記載の小
型送受スタックアンテナ。
4. The small transceiver stack antenna according to claim 1, wherein at least a peripheral portion of the upper conductor plate is bent downward inward.
JP5131994A 1993-06-02 1993-06-02 Small sized transmission/reception stack antenna Withdrawn JPH06350332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5131994A JPH06350332A (en) 1993-06-02 1993-06-02 Small sized transmission/reception stack antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5131994A JPH06350332A (en) 1993-06-02 1993-06-02 Small sized transmission/reception stack antenna

Publications (1)

Publication Number Publication Date
JPH06350332A true JPH06350332A (en) 1994-12-22

Family

ID=15071073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5131994A Withdrawn JPH06350332A (en) 1993-06-02 1993-06-02 Small sized transmission/reception stack antenna

Country Status (1)

Country Link
JP (1) JPH06350332A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292021A (en) * 2000-04-10 2001-10-19 Dx Antenna Co Ltd Patch antenna
JP2001298319A (en) * 2000-04-11 2001-10-26 Dx Antenna Co Ltd Patch antenna
JP2003249818A (en) * 2002-02-25 2003-09-05 Maspro Denkoh Corp Microstrip antenna for two frequencies
JP2004208151A (en) * 2002-12-26 2004-07-22 Dx Antenna Co Ltd Two-frequency shared antenna
JP2004529593A (en) * 2001-06-08 2004-09-24 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Omnidirectional resonant antenna
JP6041966B1 (en) * 2015-11-19 2016-12-14 原田工業株式会社 Composite patch antenna device
JP2019009543A (en) * 2017-06-22 2019-01-17 Tdk株式会社 Dual band patch antenna

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292021A (en) * 2000-04-10 2001-10-19 Dx Antenna Co Ltd Patch antenna
JP2001298319A (en) * 2000-04-11 2001-10-26 Dx Antenna Co Ltd Patch antenna
JP2004529593A (en) * 2001-06-08 2004-09-24 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Omnidirectional resonant antenna
JP2008029037A (en) * 2001-06-08 2008-02-07 Centre National De La Recherche Scientifique (Cnrs) Omnidirectional resonant antenna
JP2003249818A (en) * 2002-02-25 2003-09-05 Maspro Denkoh Corp Microstrip antenna for two frequencies
JP2004208151A (en) * 2002-12-26 2004-07-22 Dx Antenna Co Ltd Two-frequency shared antenna
JP6041966B1 (en) * 2015-11-19 2016-12-14 原田工業株式会社 Composite patch antenna device
JP2019009543A (en) * 2017-06-22 2019-01-17 Tdk株式会社 Dual band patch antenna

Similar Documents

Publication Publication Date Title
US4827266A (en) Antenna with lumped reactive matching elements between radiator and groundplate
EP0637094A1 (en) Antenna for mobile communication
US5949376A (en) Dual polarization patch antenna
US7242366B2 (en) Antenna apparatus
CN112602251A (en) Power wave transmission technique for focusing wirelessly delivered power at a receiving device
CA1310147C (en) Antenna for cordless telephone system
US20010050651A1 (en) Radiocommunications device, and a slot loop antenna
EP0655797A1 (en) Quarter-wave gap-coupled tunable strip antenna
EP1826868A2 (en) Circularly polarized dielectric resonator antenna
US4972196A (en) Broadband, unidirectional patch antenna
JPH04223705A (en) Patch antenna provided with polarization uniform control
US20070069968A1 (en) High frequency omni-directional loop antenna including three or more radiating dipoles
EP0865100A2 (en) A small helical antenna with non-directional radiation pattern
CN112615144B (en) Method of manufacturing a capacitively coupled dual band antenna
US20180123236A1 (en) Antenna System and Antenna Module With a Parasitic Element For Radiation Pattern Improvements
CN112701471B (en) All-dielectric integrated ultra-wideband low-profile polymorphic conformal phased array antenna
EP1033782B1 (en) Monopole antenna
JPS6259922B2 (en)
US5323168A (en) Dual frequency antenna
CN210272672U (en) Antenna and electronic device
JPH06350332A (en) Small sized transmission/reception stack antenna
CN113764886A (en) 4G LTE broadband omnidirectional antenna and bandwidth adjusting method thereof
GB2304463A (en) Antenna arrangement for transceiving two different signals
JP2002530909A (en) Patch antenna device
JPH0955621A (en) Array antenna

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905