JPH06349432A - Rf discharge type ion source - Google Patents

Rf discharge type ion source

Info

Publication number
JPH06349432A
JPH06349432A JP5134823A JP13482393A JPH06349432A JP H06349432 A JPH06349432 A JP H06349432A JP 5134823 A JP5134823 A JP 5134823A JP 13482393 A JP13482393 A JP 13482393A JP H06349432 A JPH06349432 A JP H06349432A
Authority
JP
Japan
Prior art keywords
discharge
cathode
discharge tube
anode
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5134823A
Other languages
Japanese (ja)
Other versions
JP3409881B2 (en
Inventor
Kazuhiko Hamashima
一彦 浜島
Osamu Takahashi
理 高橋
Tatsushi Ishigami
達士 石上
Yoshio Kojima
芳男 小島
Takayasu Yamashiro
隆泰 山城
Toru Ii
亨 伊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shinku Co Ltd
Original Assignee
Showa Shinku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co Ltd filed Critical Showa Shinku Co Ltd
Priority to JP13482393A priority Critical patent/JP3409881B2/en
Publication of JPH06349432A publication Critical patent/JPH06349432A/en
Application granted granted Critical
Publication of JP3409881B2 publication Critical patent/JP3409881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To obtain an RF discharge type ion source, which can perform the discharge in the high vacuum condition and which can be used for a long time continuously. CONSTITUTION:A negative electrode 5, which is connected to an RF power source 8, is provided inside of a discharge cylinder 3 provided with a discharge gas lead-in port 2, and the ion of the discharge gas, which is generated by the RF discharge of the negative electrode and the discharge cylinder as a positive electrode, is lead out from an ion beam lead-out port 9 provided in one side of the discharge cylinder by a leading electrode 10. The negative electrode is made of the rod material of LaB6, and direct current power sources 12, 14 are connected to the negative electrode and the discharge cylinder as a positive electrode to form a direct current electric field, and a magnet 14 is provided in the periphery of the discharge cylinder as a positive electrode. Stabilized plasma of a high density can be thereby generated in the vacuum condition, and the ion beam can be taken out for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオンプレーティング
やイオンアシスト蒸着等に使用されるRF放電型イオン
源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an RF discharge type ion source used for ion plating, ion assisted vapor deposition and the like.

【0002】[0002]

【従来の技術】従来、イオン源はその用途、目的により
多種多様のものがあり、そのうち気体イオンを取出すに
適したRF放電型イオン源は、図1に示すように、放電
ガス導入口aを備えた放電筒bの内部にRF電源cに接
続されたタングステンフィラメントの陰極dを設け、該
陰極dと陽極を構成する放電筒bとのRF放電により発
生した放電ガスのイオンを該放電筒bの一側のイオンビ
ーム引出口fから引出電極gにより引出すように構成す
るを一般とする。同図のhは絶縁物、iはコレクター、
jはフランジである。
2. Description of the Related Art Conventionally, there are various kinds of ion sources depending on their uses and purposes. Among them, an RF discharge type ion source suitable for extracting gas ions has a discharge gas inlet a as shown in FIG. A cathode d of a tungsten filament connected to an RF power source c is provided inside the provided discharge tube b, and ions of discharge gas generated by the RF discharge between the cathode d and the discharge tube b constituting the anode are supplied to the discharge tube b. In general, the extraction electrode g is used to extract from the ion beam extraction port f on one side. In the figure, h is an insulator, i is a collector,
j is a flange.

【0003】図1のイオン源は、フランジjを介して真
空槽につながるように取付けられ、該真空槽に接続され
ている排気系で該イオン源内を10- 5〜10- 7Torrま
で排気したのち、放電ガス導入口aから放電筒b内へア
ルゴンガス等の不活性ガスを導入して該放電筒b内を1
- 2〜10- 3Torrの圧力に保持する。この状態で陰極
dにRF電源cから電力を供給すると、放電筒b内で不
活性ガスのプラズマが発生する。発生したプラズマ中の
イオンは陰極dをスパッタし、該陰極dから電子及び中
性子を放出させ、該プラズマの密度を増加させる。放電
筒b内のプラズマ中のイオンは、引出電極gを介してコ
レクターiに集まり、イオンビームとなって真空槽内に
用意した基板を照射する。一方、放電筒b内では、イオ
ンは連続的に陰極dをスパッタしてこれより電子を放出
させ、不活性ガスに衝突してこれを電離し、放電筒b内
のプラズマ密度を高める作用を行なう。
[0003] The ion source of Figure 1 is mounted so as to be connected to the vacuum chamber via a flange j, within the ion source 10 in an exhaust system connected to the vacuum tank - was evacuated to 7 Torr - 5 to 10 After that, an inert gas such as argon gas is introduced from the discharge gas introduction port a into the discharge cylinder b to move the inside of the discharge cylinder b to 1
0 - 2-10 - held to 3 Torr pressure. When electric power is supplied to the cathode d from the RF power source c in this state, plasma of an inert gas is generated in the discharge tube b. Ions in the generated plasma sputter the cathode d to emit electrons and neutrons from the cathode d, thereby increasing the density of the plasma. Ions in the plasma in the discharge tube b are collected in the collector i via the extraction electrode g and become an ion beam to irradiate the substrate prepared in the vacuum chamber. On the other hand, in the discharge tube b, the ions continuously sputter the cathode d to emit electrons from the cathode d, collide with an inert gas and ionize the same, thereby increasing the plasma density in the discharge tube b. .

【0004】[0004]

【発明が解決しようとする課題】上記した従来のRF放
電型イオン源では、発生した電子が陽極に捕捉されてし
まい、電子密度が低下する不都合があった。また、高周
波自体の電界が低いため、プラズマの放電維持が10-
4Torr以下の圧力では困難であり、しかもプラズマ密度
も108 〜1010/cm3 と低かった。更に、陰極dの材
料としてタングステンが使用されているので、陰極dの
寿命が短く、O2 雰囲気では数時間しか持たなかった。
In the above-mentioned conventional RF discharge type ion source, the generated electrons are trapped by the anode, and the electron density is lowered. Moreover, since the electric field of the high frequency itself is low, the plasma discharge can be maintained at 10 −.
It was difficult at a pressure of 4 Torr or less, and the plasma density was as low as 10 8 to 10 10 / cm 3 . Further, since tungsten is used as the material of the cathode d, the life of the cathode d is short and the cathode d has only a few hours in the O 2 atmosphere.

【0005】本発明は、こうした不都合等を解決し、高
真空中での放電を行なえしかも長時間に亘って連続使用
可能なRF放電型イオン源を提供することを目的とする
ものである。
An object of the present invention is to solve the above problems and to provide an RF discharge ion source capable of discharging in a high vacuum and continuously usable for a long time.

【0006】[0006]

【課題を解決するための手段】本発明では、放電ガス導
入口を備えた放電筒の内部にRF電源に接続された陰極
を設け、該陰極と陽極の放電筒とのRF放電により発生
した放電ガスのイオンを該放電筒の一側のイオンビーム
引出口から引出電極により引出すようにしたイオン源に
於いて、該陰極をLaB6 のロッド材で構成し、該陰極
及び陽極の放電筒に直流電界を形成するために直流電源
を接続し、該陽極の放電筒の周囲に磁石を設けることに
より、上記の目的を達成するようにした。
DISCLOSURE OF THE INVENTION In the present invention, a discharge connected to an RF power source is provided inside a discharge tube having a discharge gas inlet, and a discharge generated by RF discharge between the cathode and the discharge tube of the anode. In an ion source in which gas ions are extracted by an extraction electrode from an ion beam extraction port on one side of the discharge tube, the cathode is composed of a LaB 6 rod material, and a direct current is supplied to the discharge tube of the cathode and the anode. A DC power supply was connected to form a field, and a magnet was provided around the discharge tube of the anode to achieve the above object.

【0007】[0007]

【作用】放電筒内を真空に排気したのち高周波電源を陰
極に接続すると、該陰極と陽極の間でプラズマ放電が発
生するが、該陰極には高周波電界に加えて直流電源によ
る直流電界が印加されるので、放電筒の電界が高まると
共に、陽極の放電筒が直流電源による直流電界とその周
囲に設けた磁石による磁界を有するため、放電筒内で発
生した電子が陽極に捕捉されることなくトロコイド軌道
をとりながら陽極に沿って運動し、そのため電子密度が
高まり、10- 5Torr以下の高真空領域でも安定して放
電を維持し、イオンビームを取出すことができる。ま
た、プラズマ密度が高くなるので、引出電極を制御して
イオンビームと中性ビームとを選択して取出すことがで
き、陰極をLaB6 で構成したので、タングステンより
も数10倍の長時間に亘り使用できる。
When the inside of the discharge tube is evacuated to a vacuum and a high frequency power source is connected to the cathode, plasma discharge is generated between the cathode and the anode. In addition to the high frequency electric field, a DC electric field from the DC power source is applied to the cathode. Since the electric field of the discharge tube is increased and the discharge tube of the anode has a DC electric field by the DC power source and a magnetic field by the magnets provided around it, electrons generated in the discharge tube are not captured by the anode. while maintaining a trochoid orbital to motion along the anode, therefore the electron density is increased, 10 - 5 Torr at a high vacuum of regions to maintain a stable discharge can be extracted ion beam. Further, since the plasma density becomes high, the extraction electrode can be controlled to selectively extract the ion beam and the neutral beam. Since the cathode is made of LaB 6 , the time is several ten times longer than that of tungsten. Can be used over

【0008】[0008]

【実施例】本発明の実施例を図2に基づき説明すると、
同図の符号1はRF放電型イオン源を示し、該イオン源
1は、放電ガス導入口2を有するSUS製の放電筒3
と、その内部にMo製の陰極ホルダー4で取付けた陰極
5とを備え、該陰極5をフランジ6に設けた絶縁物7を
介してRF電源8に接続した。該放電筒3の一側にイオ
ンビーム引出口9を設け、その外方に設けた引出電極1
0により放電筒3内で発生した放電ガスのイオンを引出
すようにした。該イオン源1はフランジ6により真空槽
11内に設けられ、これより引出されたイオンを利用し
て真空槽1内に用意した図示しない基板に成膜等を施
す。
EXAMPLE An example of the present invention will be described with reference to FIG.
Reference numeral 1 in the figure shows an RF discharge type ion source, and the ion source 1 is a discharge cylinder 3 made of SUS having a discharge gas introduction port 2.
And a cathode 5 mounted inside with a cathode holder 4 made of Mo, and the cathode 5 was connected to an RF power source 8 via an insulator 7 provided on a flange 6. An ion beam outlet 9 is provided on one side of the discharge tube 3, and an extraction electrode 1 is provided outside thereof.
By setting 0, the ions of the discharge gas generated in the discharge tube 3 are extracted. The ion source 1 is provided in a vacuum chamber 11 by a flange 6, and the ions extracted from the ion source 1 are used to deposit a film on a substrate (not shown) prepared in the vacuum chamber 1.

【0009】こうした構成は従来のRF放電型イオン源
も備える構成であるが、本発明では高真空で放電を維持
して長時間安定したイオンビームを取出すために、該陰
極5をLaB6 のロッド材で構成し、該陰極5に直流電
源12を接続して該陰極5に高周波電界に直流電界を重
畳させると共に、該陽極の放電筒3にも直流電界を形成
するために直流電源13を接続し、該放電筒3の周囲に
永久磁石或いは電磁石の磁石14を設けるようにした。
該磁石14の内部には配管15から冷却水を循環させる
ようにした。
Although such a structure is also equipped with a conventional RF discharge type ion source, in the present invention, the cathode 5 is a rod of LaB 6 in order to maintain a discharge in a high vacuum and extract a stable ion beam for a long time. And a DC power supply 12 is connected to the cathode 5 to superimpose a DC electric field on a high frequency electric field at the cathode 5, and a DC power supply 13 is also connected to the discharge tube 3 of the anode to form a DC electric field. Then, a permanent magnet or electromagnet 14 is provided around the discharge tube 3.
Cooling water was circulated through the pipe 15 inside the magnet 14.

【0010】この実施例では、RF電源8として1kw
13.65MHz の電源を使用し、直流電源12に0〜1
5kv、直流電源13には0〜200 vの電源を使用し
た。また、磁石14としてフェライト系の永久磁石を使
用した。この実施例のイオン源の作動は次の通りであ
る。
In this embodiment, the RF power source 8 is 1 kw.
Use a 13.65MHz power supply and set the DC power supply 12 to 0 to 1
A power source of 5 kv and a DC power source 13 of 0 to 200 v was used. Further, a ferrite-based permanent magnet was used as the magnet 14. The operation of the ion source of this embodiment is as follows.

【0011】真空槽1に設けた排気系により放電筒3内
を10- 6Torr以下の圧力にまで排気したのち、放電ガ
ス導入口2から放電筒3内へアルゴンガス等の不活性ガ
スを導入し、該放電筒3内を10- 4〜10- 5Torrの圧
力に調整する。この状態で、陰極5にRF電源8および
直流電源12から1kwの高周波電力と最大15kvの直流
電力を供給し、陽極の放電筒3に直流電源13から最大
200v の直流電力を供給すると、該放電筒3内で不活
性ガスプラズマが発生する。このプラズマ中に生成した
電子は陽極の放電筒3の直流電界とその周囲の磁石14
による磁界のため、放電筒に捕捉されることなくトロコ
イド軌道をとりながらその内面に沿って運動し、そのた
め電子密度が高まり、電子密度の高いプラズマ中の多く
のイオンが陰極5をスパッタするために陰極5から電子
および中性粒子が放出され、より一層プラズマ密度が高
まる。該プラズマ中のイオンは引出電極10により放電
筒3内から真空槽1内へビーム状に引出され、基板を照
射する。この場合、引出電極10の電位を制御すること
により、中性粒子のビームを引出せる。
[0011] The exhaust system provided in the vacuum chamber 1 to discharge cylinder 3 10 - After evacuated to 6 Torr or less pressure, introducing an inert gas such as argon gas from the discharge gas inlet port 2 to the discharge tube 3 and, the electric discharge tube 3 10 - adjusted to 5 Torr pressure - 4 -10. In this state, when high frequency power of 1 kw and maximum DC power of 15 kv are supplied to the cathode 5 from the RF power source 8 and DC power source 12, and maximum 200 v of DC power is supplied to the discharge tube 3 of the anode, the discharge is performed. Inert gas plasma is generated in the cylinder 3. The electrons generated in this plasma are the DC electric field of the discharge tube 3 of the anode and the magnet 14 around it.
Due to the magnetic field due to the magnetic field, the electrons move along the inner surface while taking a trochoid orbit without being trapped by the discharge tube, so that the electron density increases and many ions in the plasma with high electron density sputter the cathode 5. Electrons and neutral particles are emitted from the cathode 5, and the plasma density is further increased. Ions in the plasma are extracted in a beam shape from the discharge cylinder 3 into the vacuum chamber 1 by the extraction electrode 10 to irradiate the substrate. In this case, the beam of neutral particles can be extracted by controlling the potential of the extraction electrode 10.

【0012】[0012]

【発明の効果】以上のように本発明によれば、RF放電
型イオン源のRF電源に接続される陰極をLaB6 のロ
ッド材で構成し、該陰極及び陽極の放電筒に直流電源を
接続してこれらに直流電界を形成させ、該陽極の放電筒
の周囲に磁石を設けたので、高真空中で安定した高密度
のプラズマを生成させ得ると共に長時間に亘りイオンビ
ームを取出すことができる等の効果がある。
As described above, according to the present invention, the cathode connected to the RF power source of the RF discharge type ion source is made of the LaB 6 rod material, and the DC power source is connected to the discharge cylinders of the cathode and the anode. Then, a DC electric field is formed in these, and a magnet is provided around the discharge tube of the anode, so that stable and high-density plasma can be generated in a high vacuum and an ion beam can be taken out for a long time. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来のRF放電型イオン源の断面図FIG. 1 is a cross-sectional view of a conventional RF discharge type ion source.

【図2】 本発明の実施例の切断側面図FIG. 2 is a cutaway side view of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 RF放電型イオン源 2 放電ガス導入口 3
放電筒 5 陰極 8 RF電源 9
イオンビーム引出口 10 引出電極 12、13 直流電源 14
磁石
1 RF discharge type ion source 2 Discharge gas inlet 3
Discharge cylinder 5 Cathode 8 RF power supply 9
Ion beam extraction port 10 Extraction electrode 12, 13 DC power supply 14
magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 芳男 神奈川県相模原市大野台2−27−2 株式 会社昭和真空内 (72)発明者 山城 隆泰 神奈川県相模原市大野台2−27−2 株式 会社昭和真空内 (72)発明者 伊井 亨 神奈川県相模原市大野台2−27−2 株式 会社昭和真空内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Kojima 2-27-2 Onodai, Sagamihara City, Kanagawa Prefecture Showa Vacuum Co., Ltd. (72) Inventor Takayasu Yamashiro 2-27-2 Onodai, Sagamihara City, Kanagawa Prefecture Showa Vacuum Company, Ltd. (72) Inventor Toru Ii 2-27-2 Onodai, Sagamihara City, Kanagawa Prefecture Showa Vacuum Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 放電ガス導入口を備えた放電筒の内部に
RF電源に接続された陰極を設け、該陰極と陽極の放電
筒とのRF放電により発生した放電ガスのイオンを該放
電筒の一側のイオンビーム引出口から引出電極により引
出すようにしたイオン源に於いて、該陰極をLaB6
ロッド材で構成し、該陰極及び陽極の放電筒に直流電界
を形成するために直流電源を接続し、該陽極の放電筒の
周囲に磁石を設けたことを特徴とするRF放電型イオン
源。
1. A cathode connected to an RF power source is provided inside a discharge tube having a discharge gas introduction port, and ions of the discharge gas generated by RF discharge between the cathode and the discharge tube of the anode are provided in the discharge tube. In an ion source adapted to be extracted from an ion beam extraction port on one side by an extraction electrode, the cathode is composed of a LaB 6 rod material, and a DC power source is used to form a DC electric field in the discharge tube of the cathode and the anode. And a magnet is provided around the discharge tube of the anode.
【請求項2】 上記陰極及び陽極の放電筒には負電圧を
与え、その絶対値を放電筒よりも陰極の方を大きくした
ことを特徴とする請求項1に記載のRF放電型イオン
源。
2. The RF discharge type ion source according to claim 1, wherein a negative voltage is applied to the cathode and anode discharge cylinders and the absolute value of the negative voltage is larger in the cathode than in the discharge cylinder.
JP13482393A 1993-06-04 1993-06-04 RF discharge ion source Expired - Lifetime JP3409881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13482393A JP3409881B2 (en) 1993-06-04 1993-06-04 RF discharge ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13482393A JP3409881B2 (en) 1993-06-04 1993-06-04 RF discharge ion source

Publications (2)

Publication Number Publication Date
JPH06349432A true JPH06349432A (en) 1994-12-22
JP3409881B2 JP3409881B2 (en) 2003-05-26

Family

ID=15137312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13482393A Expired - Lifetime JP3409881B2 (en) 1993-06-04 1993-06-04 RF discharge ion source

Country Status (1)

Country Link
JP (1) JP3409881B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418317B1 (en) * 1994-12-22 2004-05-24 더 세크러터리 오브 스테이트 포 디펜스 Radio frequency source
JP2007165107A (en) * 2005-12-14 2007-06-28 Jeol Ltd Ion source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418317B1 (en) * 1994-12-22 2004-05-24 더 세크러터리 오브 스테이트 포 디펜스 Radio frequency source
JP2007165107A (en) * 2005-12-14 2007-06-28 Jeol Ltd Ion source

Also Published As

Publication number Publication date
JP3409881B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
US4710283A (en) Cold cathode ion beam source
US4525262A (en) Magnetron reactive bias sputtering method and apparatus
US20040075060A1 (en) Method of cleaning ion source, and corresponding apparatus/system
US5288386A (en) Sputtering apparatus and an ion source
EP0084971B2 (en) A method for reactive bias sputtering
JP3409881B2 (en) RF discharge ion source
Inoue et al. Effect of filament material and area on the extracted current from a volume H-ion source
JP2849771B2 (en) Sputter type ion source
JPS60130039A (en) Ion source
US3601503A (en) Thin membrane ionization pump apparatus
Rogov et al. A discharge cell that combines a magnetron and a hollow cathode for cleaning substrates and subsequent deposition of coatings
Smith Jr et al. A sputter PIG source (SPIGS) for negative ions
JPH06310065A (en) Ion source device
JP2001164360A (en) Dc sputtering system
JPS594045Y2 (en) Ionization device for thin film production
GB1398167A (en) High pressure ion sources
Jacquot et al. Negative ion production in large volume source with small deposition of cesium
JPH043056B2 (en)
JP2848590B1 (en) Electron beam excited plasma generator
JPH0228597Y2 (en)
JP2586836B2 (en) Ion source device
Miyake et al. Improved ion beam deposition system with RF sputter-type ion source
JPH024979B2 (en)
JP2566602B2 (en) Ion source
JPH0334178B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10