JPH06349028A - Magneto-resistance effect type head and its production - Google Patents

Magneto-resistance effect type head and its production

Info

Publication number
JPH06349028A
JPH06349028A JP13450093A JP13450093A JPH06349028A JP H06349028 A JPH06349028 A JP H06349028A JP 13450093 A JP13450093 A JP 13450093A JP 13450093 A JP13450093 A JP 13450093A JP H06349028 A JPH06349028 A JP H06349028A
Authority
JP
Japan
Prior art keywords
layer
magnetoresistive
head
effect element
magnetoresistive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13450093A
Other languages
Japanese (ja)
Inventor
Toshikuni Kai
敏訓 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13450093A priority Critical patent/JPH06349028A/en
Publication of JPH06349028A publication Critical patent/JPH06349028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To provide the magneto-resistance effect type head which has high reliability and with which high output is stably obtainable and the process for production of this head. CONSTITUTION:This magneto-resistance effect type head is formed by laminating magneto-resistance effect element parts 12, a lead layer 14, a lower lead gap layer 11, an upper lead gap layer 15, a lower shielding layer 10, an upper shielding layer 16, etc., on a ceramic substrate 8. This process is for production of such head. The head described above is provided with electron cooling elements near the magneto-resistance effect element parts 12. As a result, the increase in the thermal noise generated by generation of heat in the magneto- resistance effect element parts 12, the unstability of exchange biases and the destruction of the elements by an abnormal resistance increase are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に高い出力及び高い
信頼性を有する磁気抵抗効果型ヘッド及びその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head having particularly high output and high reliability, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】磁気ディスク装置の高性能化に伴い、そ
れに用いる薄膜磁気ヘッドにも種々の高性能化が要求さ
れている。その一環として、磁気抵抗効果型ヘッドの利
用がある。磁気抵抗効果型ヘッドは出力が周速に依存し
ないため、小径ディスク装置の容量増加に多大な効果を
与えるが、実用上はまだ多くの技術的課題を有してい
る。特に磁気抵抗効果型ヘッドの利点が大きく発揮され
る挟トラックヘッドに関して、その出力を大きくするた
め、磁気抵抗効果素子の高さを小さくしたり、これに流
す電流を大きくしたりすると、電気抵抗あるいは電流の
増加により熱ノイズの影響が顕著となり、さらにより悪
い状態として異常な発熱により素子の溶断が発生してし
まうという問題点がある。
2. Description of the Related Art As the performance of magnetic disk devices increases, the thin film magnetic heads used therein are required to have various performances. One of them is the use of a magnetoresistive head. Since the output of the magnetoresistive head does not depend on the peripheral speed, it has a great effect on increasing the capacity of the small-diameter disk device, but it still has many technical problems in practice. In particular, regarding a narrow track head in which the advantages of the magnetoresistive head are greatly exerted, if the height of the magnetoresistive element is reduced or the current supplied thereto is increased in order to increase the output, the electric resistance or There is a problem that the influence of thermal noise becomes remarkable due to the increase in current, and as a worse state, abnormal heat generation causes melting of the element.

【0003】以下、従来技術で製造したハードディスク
ドライブ用磁気抵抗効果型ヘッドの構成を、図2,図
3,図4を参照して説明する。図2に磁気抵抗効果型ヘ
ッドの媒体対向面よりみた斜視図、図3に素子部の拡大
図を示す。磁気抵抗効果型ヘッドは再生専用のヘッドで
あるため,通常記録インダクティブヘッドと一体化され
た形で使用される。したがって以下、記録ヘッドも含め
て説明する。
The structure of a magnetoresistive head for a hard disk drive manufactured by the conventional technique will be described below with reference to FIGS. 2, 3 and 4. FIG. 2 is a perspective view of the magnetoresistive head viewed from the medium facing surface, and FIG. 3 is an enlarged view of the element portion. Since the magnetoresistive head is a read-only head, it is usually used in an integrated form with the recording inductive head. Therefore, the description will be given below including the recording head.

【0004】磁気抵抗効果型ヘッドはセラミック基板上
に薄膜形成技術を用いて素子を形成し、図2のような磁
気ディスク装置用のスライダー1の形状にした状態で使
用するが、磁気抵抗効果型ヘッドを装置に搭載するとき
は、浮上レール2に対して裏面側に平行にジンバルを接
着して磁気ヘッドアセンブリ状態として用いる。この浮
上レール2は用途に応じて種々の形態を取り、機械加工
やイオンビームエッチング等により2〜3本のレールを
形成する。
The magnetoresistive head is used in the state in which elements are formed on a ceramic substrate by using a thin film forming technique and the slider 1 for a magnetic disk device as shown in FIG. 2 is used. When the head is mounted on the apparatus, a gimbal is adhered to the floating rail 2 in parallel with the back surface side and used as a magnetic head assembly state. The levitation rail 2 takes various forms depending on the application, and two or three rails are formed by machining or ion beam etching.

【0005】図2には機械加工で形成した3本のレール
の形状を示している。磁気抵抗効果型ヘッド素子は、図
ではスライダー1の手前側、動作時には媒体の回転方向
に対して後端面に形成されており,3が上部絶縁層、4
が上部磁性層、5が端子、6が後にワイヤーをボンディ
ングするためのパッドである。ここで、端子5及びパッ
ド6が各々4ケ所ずつあるのは記録部、及び再生部に少
なくとも2ケ所ずつの端子5が必要であることを示して
いる。図3は、図2においてA部で示す磁気抵抗効果型
ヘッド素子部の拡大図である。7は記録ヘッドの上下磁
性層が接合するバックギャップ部である。
FIG. 2 shows the shape of three rails formed by machining. The magnetoresistive head element is formed on the front side of the slider 1 in the figure, and on the rear end surface in the rotational direction of the medium during operation.
Is an upper magnetic layer, 5 is a terminal, and 6 is a pad for bonding a wire later. Here, there are four terminals 5 and four pads 6, respectively, which means that at least two terminals 5 are required for each of the recording section and the reproducing section. FIG. 3 is an enlarged view of the magnetoresistive head element part shown by A in FIG. Reference numeral 7 is a back gap portion where the upper and lower magnetic layers of the recording head are joined.

【0006】この図3における磁気抵抗効果型ヘッド素
子部が媒体と対向するB部を図4に示す。このものは、
まずスパッタ法により形成したアルミナ等の絶縁物9で
被覆されたセラミック基板8上に、電気めっき法あるい
はスパッタ法により形成したパーマロイ、センダストあ
るいは鉄系の合金材料により下部シールド層10を形成
し、次にスパッタ法により形成したアルミナ等の絶縁材
料からなる下部リードギャップ層11を形成し、さらに
その上に磁気抵抗効果素子部12を順次積層する。この
磁気抵抗効果素子部12は図中では単層で示しているが
磁気抵抗効果素子を駆動する際のバイアス方式によっ
て、2〜4層構成となり、例えばシャントバイアスでは
パーマロイ(磁気抵抗効果膜)とチタン、SAL(Soft
AdjacentLayer)バイアスではパーマロイ(磁気抵抗効
果膜)とタンタル等のスペーサ及び鉄とニッケルにロジ
ウム等の第3元素を添加したSAL膜の3層、さらに磁
気抵抗効果膜に交換バイアスを付与する場合は磁気抵抗
効果膜に直接接触する形に鉄とマンガンの合金である反
強磁性膜を積層して用いる。
FIG. 4 shows a portion B where the magnetoresistive head element portion in FIG. 3 faces the medium. This one is
First, a lower shield layer 10 is formed of permalloy, sendust, or an iron-based alloy material formed by electroplating or sputtering on a ceramic substrate 8 coated with an insulator 9 such as alumina formed by sputtering. A lower read gap layer 11 made of an insulating material such as alumina is formed by sputtering, and a magnetoresistive effect element portion 12 is further laminated thereon. Although the magnetoresistive effect element portion 12 is shown as a single layer in the figure, it has a two- to four-layered structure depending on the bias system used for driving the magnetoresistive effect element. Titanium, SAL (Soft
With Adjacent Layer bias, three layers of permalloy (magnetoresistive effect film) and spacers such as tantalum and SAL film in which a third element such as rhodium is added to iron and nickel are added, and when an exchange bias is applied to the magnetoresistive effect film, it is magnetic. An antiferromagnetic film, which is an alloy of iron and manganese, is laminated and used so as to be in direct contact with the resistance effect film.

【0007】次に金等の低抵抗材料及び金とその上下各
層の密着力を強化するためのクロム、チタン等の密着強
化層を用いて形成したリード層14、アルミナ等の絶縁
材料により形成した上部リードギャップ層15、電気め
っき法あるいはスパッタ法で形成したパーマロイや鉄系
合金を用いて形成した上部シールド層16を順次積層し
て再生ヘッド部の作成が終了する。
Next, a low resistance material such as gold, a lead layer 14 formed by using an adhesion strengthening layer such as chromium or titanium for strengthening adhesion between gold and each layer above and below, and an insulating material such as alumina. The upper read gap layer 15 and the upper shield layer 16 formed of permalloy or iron-based alloy formed by the electroplating method or the sputtering method are sequentially laminated to complete the production of the reproducing head portion.

【0008】次に記録ヘッド部の作成は、まず上部シー
ルド層16上に記録部の下部磁性層17を電気めっき法
等により形成する。ここで上部シールド層16と下部磁
性層17の磁気的結合を防止するため、この2層の間に
アルミナ等の絶縁材料からなる分離層を入れる場合もあ
る。次に記録部のギャップ層18を積層した後、本図面
には示していないがノボラック系あるいはポリイミド系
等の樹脂からなる下部絶縁層、電気めっき法等により形
成した下部コイル層、下部絶縁層と同様に上部絶縁層を
順次積層し、電気めっき法等により上部磁性層19を積
層し最終的にアルミナ等の保護層20で保護した形とし
て磁気抵抗効果型ヘッドの作成が終了する。
Next, in forming the recording head portion, first, the lower magnetic layer 17 of the recording portion is formed on the upper shield layer 16 by electroplating or the like. Here, in order to prevent magnetic coupling between the upper shield layer 16 and the lower magnetic layer 17, a separation layer made of an insulating material such as alumina may be inserted between the two layers. Next, after laminating the gap layer 18 of the recording portion, although not shown in the drawing, a lower insulating layer made of a resin such as a novolac resin or a polyimide resin, a lower coil layer formed by an electroplating method, and a lower insulating layer are formed. Similarly, an upper insulating layer is sequentially laminated, an upper magnetic layer 19 is laminated by an electroplating method or the like, and finally a protective layer 20 made of alumina or the like is used as a protective layer to complete the production of the magnetoresistive head.

【0009】[0009]

【発明が解決しようとする課題】以下、従来技術の問題
点について図5,図6を参照しながら説明する。図5は
磁気抵抗効果素子部の平面図を示す。図中、21は磁気
抵抗効果素子、22はリード層である。磁気抵抗効果素
子21は磁束応答型再生ヘッドであるため、媒体の速度
に依存しない再生出力が得られるが、その出力は磁気抵
抗効果素子21の高さHが小さいほど、膜厚tが薄いほ
ど大きくなる。通常リード層22の幅L及び膜厚Tは磁
気抵抗効果素子21の高さ(幅)H及び膜厚tより大き
く、Lが数十μm、Tが1000〜2000オングストロームに
対してHが1 〜3 μm、tがバイアス層を含めて500 〜
1000オングストロームである。したがって磁気抵抗効果
型ヘッドはその構造上最も電気抵抗が大きい領域が磁気
抵抗効果素子21であることがわかる。
The problems of the prior art will be described below with reference to FIGS. FIG. 5 shows a plan view of the magnetoresistive effect element portion. In the figure, 21 is a magnetoresistive effect element, and 22 is a lead layer. Since the magnetoresistive effect element 21 is a magnetic flux response type reproducing head, a reproduction output independent of the speed of the medium can be obtained. The smaller the height H of the magnetoresistive effect element 21 and the thinner the film thickness t, the output. growing. Normally, the width L and the film thickness T of the lead layer 22 are larger than the height (width) H and the film thickness t of the magnetoresistive effect element 21, L is several tens of μm, and T is 1000 to 2000 angstroms and H is 1 to. 3 μm, t is 500 including bias layer
It is 1000 angstroms. Therefore, it is understood that the region of the magnetoresistive head having the highest electric resistance is the magnetoresistive effect element 21 due to its structure.

【0010】上記のように、元来磁気抵抗効果素子21
の電気抵抗は高いが、再生出力を向上するため、磁気抵
抗効果素子21の高さHを小さくしたり、膜厚tを薄く
したりすると、磁気抵抗効果素子21の電気抵抗が益々
増加してしまう。磁気抵抗効果型ヘッドを駆動する際
は、素子部に一定の直流電離を流すが、素子部の電気抵
抗が増加するとその温度は抵抗値の2乗と電流値の積に
比例して増加するため、図6に示すように素子抵抗の増
加に伴い素子温度が急激に上昇する。しかしながら素子
温度の上昇に伴って、再生信号への熱ノイズの影響が顕
著となると共に、交換バイアスを用いる際は反強磁性膜
が熱的に不安定なため、そのバイアスの不安定さを招き
バルクハウゼンノイズを発生させてしまう。
As described above, the magnetoresistive effect element 21 is originally used.
However, if the height H of the magnetoresistive effect element 21 is decreased or the film thickness t is decreased in order to improve the reproduction output, the electric resistance of the magnetoresistive effect element 21 increases more and more. I will end up. When driving a magnetoresistive head, a certain amount of direct current ionization is applied to the element part. However, if the electric resistance of the element part increases, its temperature increases in proportion to the product of the square of the resistance value and the current value. As shown in FIG. 6, the element temperature rapidly rises as the element resistance increases. However, as the temperature of the element rises, the influence of thermal noise on the reproduced signal becomes remarkable, and when the exchange bias is used, the antiferromagnetic film is thermally unstable, which causes the bias instability. Barkhausen noise is generated.

【0011】さらに素子温度が上昇すると、素子が溶
断、破壊する状態となり、磁気ヘッドとしての機能を果
たさないものとなってしまう。図5のT.W.で示す寸
法が磁気抵抗効果型ヘッドのトラック幅であるが、トラ
ック密度を向上するためこの寸法を小さくすると素子部
の電気抵抗は減少するものの、出力も同時に減少するた
め、出力を向上するには素子に流す直流電流を大きくす
る必要がある。この際にも、素子温度が上昇するため、
上記に述べた現象と同様の種々の問題が発生する。
When the element temperature further rises, the element is in a state of fusing and breaking, and the function as a magnetic head is not fulfilled. In FIG. W. The dimension shown by is the track width of the magnetoresistive head, but if this dimension is reduced to improve the track density, the electrical resistance of the element part decreases, but the output also decreases, so to improve the output It is necessary to increase the direct current flowing through the element. Also at this time, since the element temperature rises,
Various problems similar to the above-mentioned phenomenon occur.

【0012】上述した従来の磁気抵抗効果型ヘッドは、
再生出力を向上する目的で磁気抵抗効果素子21の高さ
Hを小さくしたり膜厚tを薄くしたりすると、素子抵抗
が増加するため、素子温度が急激に増加し、再生信号に
対する熱ノイズの増加、交換バイアスの不安定性、さら
には異常な発熱による素子の溶断を生じさせるという問
題があった。またトラック幅T.W.を小さくし、かつ
高い出力を得るため素子への印加電流を大きくした場合
も、同様な問題があった。
The conventional magnetoresistive head described above is
When the height H of the magnetoresistive effect element 21 is decreased or the film thickness t is decreased for the purpose of improving the reproduction output, the element resistance increases, so that the element temperature rapidly increases and the thermal noise of the reproduction signal is increased. However, there is a problem in that the increase, instability of the exchange bias, and the fusing of the element due to abnormal heat generation occur. In addition, the track width T. W. There is a similar problem when the current applied to the device is increased in order to reduce the voltage and obtain a high output.

【0013】本発明はこのような課題を解決するもの
で、高い出力でかつ安定した再生信号を得ることができ
る磁気抵抗効果型ヘッド及びその製造方法を提供するこ
とを目的とする。
The present invention solves such a problem, and an object of the present invention is to provide a magnetoresistive head capable of obtaining a stable reproduction signal with high output and a method for manufacturing the same.

【0014】[0014]

【課題を解決するための手段】このために本発明の磁気
抵抗効果型ヘッドは、磁気抵抗効果素子の近傍に電子冷
却素子を設けたものである。
For this reason, the magnetoresistive head of the present invention is provided with an electronic cooling element near the magnetoresistive element.

【0015】[0015]

【作用】上記構成によれば、磁気抵抗効果素子の抵抗増
加によって発生する熱を電子冷却素子によって吸収、冷
却できる。したがって磁気抵抗効果素子の発熱によって
生ずる熱ノイズの増加、交換バイアスの不安定性、さら
には異常な抵抗増加による素子の破壊を防止することが
出来る。
According to the above structure, the heat generated by the increased resistance of the magnetoresistive effect element can be absorbed and cooled by the electronic cooling element. Therefore, it is possible to prevent an increase in thermal noise caused by heat generation of the magnetoresistive effect element, instability of the exchange bias, and further, destruction of the element due to an abnormal increase in resistance.

【0016】[0016]

【実施例】以下、本発明の一実施例を図面を参照しなが
ら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の一実施例における磁気抵抗
効果型ヘッドの素子部の媒体対向面からみた拡大断面図
を示す。なお磁気抵抗効果型ヘッドの完成状態は従来例
と同様であるため説明は省略する。
FIG. 1 is an enlarged cross-sectional view of the element portion of a magnetoresistive head according to an embodiment of the present invention as seen from the medium facing surface. Since the completed state of the magnetoresistive head is the same as that of the conventional example, description thereof will be omitted.

【0018】まずスパッタ法により形成したアルミナ等
の絶縁物9で被覆されたセラミック基板8上に電子冷却
素子を形成する。電子冷却素子はN型半導体23を例え
ばビスマスとテルルの合金にセレンを少量添加した材料
を用いて形成し、次にP型半導体24を例えばビスマス
とテルルの合金にアンチモンを少量添加した材料を用い
て形成する。さらに、このN型半導体23及びP型半導
体24を電気的に接続するための架橋部25a及びリー
ド部25bを銅や金等の低抵抗材料を用いて形成して、
電子冷却素子を得る。ここでN型半導体23から架橋部
25aを通してP型半導体24に電流が流れるように電
子冷却素子を動作させれば、架橋部25aが冷却接点と
なる。N型半導体23及びP型半導体24から外部に電
極を取り出す電子冷却素子のリード部25bとN型半導
体23、P型半導体24各々の接点は発熱接点となる
が、この接点は磁気抵抗効果素子に熱の影響を与えない
位置まで充分離しておけば特に問題はない。
First, an electronic cooling element is formed on a ceramic substrate 8 covered with an insulator 9 such as alumina formed by a sputtering method. The electronic cooling element is formed by using an N-type semiconductor 23, for example, using a material obtained by adding a small amount of selenium to an alloy of bismuth and tellurium, and then using a P-type semiconductor 24 by using a material obtained by adding a small amount of antimony to an alloy of bismuth and tellurium. To form. Further, a bridge portion 25a and a lead portion 25b for electrically connecting the N-type semiconductor 23 and the P-type semiconductor 24 are formed by using a low resistance material such as copper or gold,
Obtain an electronic cooling element. If the electronic cooling element is operated so that current flows from the N-type semiconductor 23 to the P-type semiconductor 24 through the bridge portion 25a, the bridge portion 25a serves as a cooling contact. The lead part 25b of the electronic cooling element for extracting electrodes from the N-type semiconductor 23 and the P-type semiconductor 24 to the outside and the contact point of each of the N-type semiconductor 23 and the P-type semiconductor 24 serve as a heating contact point. There is no particular problem as long as it is charged and separated to a position where it is not affected by heat.

【0019】次に電子冷却素子が上層と電気的に接続す
るのを防止するため、絶縁層26をスパッタ法によりア
ルミナ等の絶縁材料を用いて形成する。次に電気めっき
法あるいはスパッタ法により形成したパーマロイ、セン
ダストあるいは鉄系の合金材料により下部シールド層1
0を形成する。次にスパッタ法により形成したアルミナ
等の絶縁材料からなる下部リードギャップ層11を形成
し、さらにその上に磁気抵抗効果素子部12を順次積層
する。この磁気抵抗効果素子部12は図中では単層で示
しているが磁気抵抗効果素子部を駆動する際のバイアス
方式によって、2〜4層構成となり、詳細は従来例で説
明した通りである。
Next, in order to prevent the electronic cooling element from being electrically connected to the upper layer, the insulating layer 26 is formed by the sputtering method using an insulating material such as alumina. Next, the lower shield layer 1 is made of permalloy, sendust, or an iron-based alloy material formed by electroplating or sputtering.
Form 0. Next, the lower read gap layer 11 made of an insulating material such as alumina formed by the sputtering method is formed, and the magnetoresistive effect element portion 12 is sequentially laminated thereon. Although the magnetoresistive effect element portion 12 is shown as a single layer in the figure, it has a two- to four-layered structure depending on the bias system used for driving the magnetoresistive effect element portion, and the details are as described in the conventional example.

【0020】次に金等の低抵抗材料を用いて形成したリ
ード層14、アルミナ等の絶縁材料により形成した上部
リードギャップ層15、電気めっき法あるいはスパッタ
法で形成したパーマロイや鉄系合金を用いて形成した上
部シールド層16を順次積層して再生ヘッド部の作成が
終了する。交換バイアスを利用する場合は、磁気抵抗効
果膜に直接接触する形に磁気抵抗効果膜の上、あるいは
リード層14の最下部に鉄とマンガンの合金を用いて形
成する。次に記録部の作成であるが、これは従来例と同
様であるため説明は省略する。
Next, a lead layer 14 formed of a low resistance material such as gold, an upper lead gap layer 15 formed of an insulating material such as alumina, a permalloy or an iron-based alloy formed by electroplating or sputtering is used. The upper shield layer 16 thus formed is sequentially laminated to complete the production of the reproducing head portion. When the exchange bias is used, an alloy of iron and manganese is formed on the magnetoresistive effect film so as to be in direct contact with the magnetoresistive effect film or on the lowermost part of the lead layer 14. Next, the creation of the recording unit will be omitted because it is similar to the conventional example.

【0021】上記のようにして形成した磁気抵抗効果型
ヘッドは、ヘッド動作時、磁気抵抗効果素子部12に流
れる電流や磁気抵抗効果素子部12の電気抵抗が大きく
なるほど発熱量が多くなるが、電子冷却素子を用いて強
制的に冷却するため、再生信号に対する熱ノイズの影響
を緩和し、交換バイアスの安定性を増し、素子の破壊を
防止することができる。この効果は高トラック密度化の
際に、磁気抵抗効果膜の膜厚を薄くする、磁気抵抗効果
素子の高さを低くする、磁気抵抗効果素子に印加する電
流を大きくするなどの手段を講じた場合に特に大きな効
力を発揮するものとなる。
In the magnetoresistive effect head formed as described above, the amount of heat generated increases as the current flowing through the magnetoresistive effect element section 12 and the electric resistance of the magnetoresistive effect element section 12 increase during head operation. Since the electronic cooling element is forcibly cooled, the influence of thermal noise on the reproduction signal can be mitigated, the stability of the exchange bias can be increased, and the element can be prevented from being destroyed. To achieve this effect, when increasing the track density, measures such as thinning the magnetoresistive film, lowering the height of the magnetoresistive element, and increasing the current applied to the magnetoresistive element were taken. In this case, it will be particularly effective.

【0022】上記実施例では下部シールド層10の下に
電子冷却素子を設ける構造を示したが、上記実施例と同
様な効果を得るため、絶縁層26を介して上部シールド
層16の上に電子冷却素子を設けてもよい。さらに電子
冷却素子の効果をより強化するため、下部シールド層1
0と下部リードギャップ層11の間あるいは上部リード
ギャップ層15と上部シールド層16の間に設けること
も可能である。また、工程及び層を簡略化するため下部
シールド層10あるいは上部シールド層16にN型半導
体及びP型半導体を直接接続させて、上部シールド層1
6や下部シールド層10を冷却点として用いることもで
きる。また別の方法として、磁気抵抗効果素子部12に
冷却点となる層を直接接触させて、磁気抵抗効果素子部
12のリード層14の一部にN型半導体23及びP型半
導体24を用いて冷却点となる層に接触させることによ
り電子冷却素子を構成し、かつ冷却点となる層をシャン
トバイアス層に用いる方法や、磁気抵抗効果素子部12
に接触するリード層14の一部にN型半導体23及びP
型半導体24を用いて、磁気抵抗効果素子部12自体を
冷却点とすることもできる。また、図1では、電子冷却
素子部が表面に露出している状態を示しているが、本発
明に示した効果が得られれば、必ずしも表面に露出させ
る必要はない。
In the above embodiment, the structure in which the electronic cooling element is provided under the lower shield layer 10 is shown. However, in order to obtain the same effect as in the above embodiment, the electron is placed on the upper shield layer 16 through the insulating layer 26. A cooling element may be provided. Further, in order to further enhance the effect of the electronic cooling element, the lower shield layer 1
It is also possible to provide it between 0 and the lower read gap layer 11 or between the upper read gap layer 15 and the upper shield layer 16. Further, in order to simplify the steps and layers, the N-type semiconductor and the P-type semiconductor are directly connected to the lower shield layer 10 or the upper shield layer 16, and the upper shield layer 1
6 or the lower shield layer 10 can also be used as a cooling point. As another method, a layer serving as a cooling point is brought into direct contact with the magnetoresistive effect element section 12, and the N-type semiconductor 23 and the P-type semiconductor 24 are used in a part of the lead layer 14 of the magnetoresistive effect element section 12. A method of forming an electronic cooling element by bringing it into contact with a layer serving as a cooling point and using the layer serving as a cooling point as a shunt bias layer, and a magnetoresistive effect element section 12
On the part of the lead layer 14 that contacts the N-type semiconductor 23 and P
The magnetoresistive effect element portion 12 itself may be used as a cooling point by using the type semiconductor 24. Further, although FIG. 1 shows a state where the electronic cooling element portion is exposed on the surface, it is not always necessary to expose it on the surface as long as the effect of the present invention can be obtained.

【0023】[0023]

【発明の効果】以上のように本発明は、磁気抵抗効果素
子の抵抗増加によって発熱する熱を電子冷却素子によっ
て吸収、冷却できるので、磁気抵抗効果素子の発熱によ
って生じる熱ノイズの増加、交換バイアスの不安定性、
さらには異常な抵抗増加による素子の破壊を防止するこ
とができる。
As described above, according to the present invention, the heat generated by the increase in the resistance of the magnetoresistive effect element can be absorbed and cooled by the electronic cooling element, so that the thermal noise generated by the heat generation of the magnetoresistive effect element and the exchange bias are increased. Instability of
Further, it is possible to prevent the device from being broken due to an abnormal increase in resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における磁気抵抗効果型ヘッ
ドの素子部の媒体対向面からみた拡大断面図
FIG. 1 is an enlarged cross-sectional view of an element portion of a magnetoresistive head according to an embodiment of the present invention viewed from a medium facing surface.

【図2】従来の磁気抵抗効果型ヘッドの媒体対向面より
みた斜視図
FIG. 2 is a perspective view of a conventional magnetoresistive head when viewed from the medium facing surface.

【図3】従来の磁気抵抗効果型ヘッドの素子部の拡大図FIG. 3 is an enlarged view of an element portion of a conventional magnetoresistive head.

【図4】従来の磁気抵抗効果型ヘッドの素子部の拡大断
面図
FIG. 4 is an enlarged sectional view of an element portion of a conventional magnetoresistive head.

【図5】従来の磁気抵抗効果型ヘッドの素子部の平面図FIG. 5 is a plan view of an element portion of a conventional magnetoresistive head.

【図6】従来の磁気抵抗効果型ヘッドの素子抵抗と素子
温度の関係図
FIG. 6 is a relational diagram of element resistance and element temperature of a conventional magnetoresistive head.

【符号の説明】[Explanation of symbols]

8 セラミック基板 9 絶縁物 10 下部シールド層 11 下部リードギャップ層 12 磁気抵抗効果素子部 14 リード層 15 上部リードギャップ層 23 N型半導体 24 P型半導体 25a 架橋部 25b リード部 8 Ceramic Substrate 9 Insulator 10 Lower Shield Layer 11 Lower Lead Gap Layer 12 Magnetoresistive Element 14 Lead Layer 15 Upper Lead Gap Layer 23 N-type Semiconductor 24 P-type Semiconductor 25a Bridge 25b Lead

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】磁気抵抗効果素子と、この磁気抵抗効果素
子に接続されたリード層と、この磁気抵抗効果素子およ
びリード層を周囲の金属膜から絶縁する上部リードギャ
ップ層および下部リードギャップ層と、この上部リード
ギャップ層および下部リードギャップ層に接する上部シ
ールド層および下部シールド層とを具備する磁気抵抗効
果型ヘッドであって、前記磁気抵抗効果素子の近傍に電
子冷却素子を設けたことを特徴とする磁気抵抗効果型ヘ
ッド。
1. A magnetoresistive effect element, a lead layer connected to the magnetoresistive effect element, an upper read gap layer and a lower read gap layer for insulating the magnetoresistive effect element and the lead layer from a surrounding metal film. A magnetoresistive head having an upper shield layer and a lower shield layer in contact with the upper read gap layer and the lower read gap layer, wherein an electronic cooling element is provided in the vicinity of the magnetoresistive element. And a magnetoresistive head.
【請求項2】前記上部シールド層あるいは前記下部シー
ルド層の一部を前記電子冷却素子の冷却点に用いること
を特徴とする請求項1記載の磁気抵抗効果型ヘッド。
2. The magnetoresistive head according to claim 1, wherein a part of the upper shield layer or the lower shield layer is used as a cooling point of the electronic cooling element.
【請求項3】前記磁気抵抗効果素子と前記上部シールド
層の間、あるいは前記磁気抵抗効果素子と前記下部シー
ルド層の間に前記電子冷却素子を設けたことを特徴とす
る請求項1記載の磁気抵抗効果型ヘッド。
3. The magnetic element according to claim 1, wherein the electronic cooling element is provided between the magnetoresistive effect element and the upper shield layer, or between the magnetoresistive effect element and the lower shield layer. Resistance effect type head.
【請求項4】前記磁気抵抗効果素子に接する層を前記電
子冷却素子の冷却点に用いることを特徴とする請求項1
記載の磁気抵抗効果型ヘッド。
4. The layer in contact with the magnetoresistive effect element is used as a cooling point of the electronic cooling element.
The magnetoresistive head described.
【請求項5】前記磁気抵抗効果素子を前記電子冷却素子
の冷却点に用いることを特徴とする請求項1記載の磁気
抵抗効果型ヘッド。
5. The magnetoresistive head according to claim 1, wherein the magnetoresistive effect element is used at a cooling point of the electronic cooling element.
【請求項6】無機絶縁物で被覆された基板上に電子冷却
素子を形成した後、絶縁層を介して下部シールド層、下
部リードギャップ層、磁気抵抗効果素子、リード層、上
部リードギャップ層、上部シールド層を順に積層して形
成することを特徴とする磁気抵抗効果型ヘッドの製造方
法。
6. A thermoelectric cooler is formed on a substrate covered with an inorganic insulating material, and then a lower shield layer, a lower read gap layer, a magnetoresistive effect element, a lead layer, an upper read gap layer is formed through an insulating layer. A method of manufacturing a magnetoresistive head, comprising forming an upper shield layer in order.
JP13450093A 1993-06-04 1993-06-04 Magneto-resistance effect type head and its production Pending JPH06349028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13450093A JPH06349028A (en) 1993-06-04 1993-06-04 Magneto-resistance effect type head and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13450093A JPH06349028A (en) 1993-06-04 1993-06-04 Magneto-resistance effect type head and its production

Publications (1)

Publication Number Publication Date
JPH06349028A true JPH06349028A (en) 1994-12-22

Family

ID=15129781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13450093A Pending JPH06349028A (en) 1993-06-04 1993-06-04 Magneto-resistance effect type head and its production

Country Status (1)

Country Link
JP (1) JPH06349028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051762A1 (en) * 2002-12-03 2004-06-17 Fujitsu Limited Electromagnetic conversion element and ccp structure magnetoresistance effect element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051762A1 (en) * 2002-12-03 2004-06-17 Fujitsu Limited Electromagnetic conversion element and ccp structure magnetoresistance effect element

Similar Documents

Publication Publication Date Title
US5907459A (en) Magnetoresistive thin film magnetic head with specific shapes of leads
US4429337A (en) Magnetic head unit having thermally dissipating cover plate
JP2002025006A (en) Thin film magnetic head and method for manufacturing the same
JPH0154768B2 (en)
US20040257711A1 (en) Composite magnetic thin film head
JP2000113425A (en) Thin film magnetic head and manufacture thereof
JPS59195311A (en) Vertical magnetic head
JPH06349028A (en) Magneto-resistance effect type head and its production
JP3553393B2 (en) Method for manufacturing thin-film magnetic head
JPS61242313A (en) Magneto-resistance effect type thin film head
JP2004005775A (en) Recording/reproducing separation type head
JPH1091917A (en) Recording and reading matrix type magnetic head and its manufacture
US20240233758A9 (en) Perpendicular Magnetic Recording Writer With Tunable Pole Side Bridge Design
US20240135965A1 (en) Perpendicular Magnetic Recording Writer With Tunable Pole Side Bridge Design
JP3441116B2 (en) Thin film magnetic head
JP2000285422A (en) Head gimbals assembly and its manufacture
JPH0773418A (en) Magneto-resistance effect type thin-film magnetic head
JPH10275314A (en) Magneto-resistive head
JP2000155913A (en) Thin film magnetic head and its manufacture
JPH09115112A (en) Magnetoresistive element and its production and magnetic head
JPH07210829A (en) Magnetoresistance effect thin film magnetic head
JP2000090417A (en) Thin-film magnetic head
JP2007305215A (en) Magnetoresistance effect type magnetic head
JPH06150258A (en) Magnetoresistance effect-type thin-film head
JPH06180823A (en) Composite type thin film magnetic head