JPH06347842A - Optical waveguide crystal and its production - Google Patents
Optical waveguide crystal and its productionInfo
- Publication number
- JPH06347842A JPH06347842A JP5137543A JP13754393A JPH06347842A JP H06347842 A JPH06347842 A JP H06347842A JP 5137543 A JP5137543 A JP 5137543A JP 13754393 A JP13754393 A JP 13754393A JP H06347842 A JPH06347842 A JP H06347842A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- crystal
- dimensional
- refractive index
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、発光材料として有用で
あり又、光計測、光情報処理、光医療、光プロセッシン
グ等コヒーレント光を利用する分野において、各種光デ
バイス、例えばレーザー素子、光増幅素子の小型、高効
率化さらにファイバーとのカップリングに有効なエルビ
ウム又はプラセオジウムドープペロブスカイト光導波路
結晶およびその製造方法に関する。BACKGROUND OF THE INVENTION The present invention is useful as a light-emitting material, and in the field of utilizing coherent light such as optical measurement, optical information processing, optical medical treatment, optical processing, various optical devices such as laser elements and optical amplifiers. TECHNICAL FIELD The present invention relates to an erbium- or praseodymium-doped perovskite optical waveguide crystal effective for downsizing an element, improving efficiency, and coupling with a fiber, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来、光導波路結晶としてはレーザー用
半導体が知られている。また、非半導体では、例えば、
イオン交換法を利用した光導波路を形成したものとして
Ndを添加したLiNdO3 導波路結晶、KTiOPO
4 結晶などが知られている。2. Description of the Related Art Conventionally, a semiconductor for a laser is known as an optical waveguide crystal. Also, in non-semiconductors, for example,
LiNdO 3 waveguide crystal added with Nd as an optical waveguide formed by using an ion exchange method, KTiOPO
4 crystals are known.
【0003】スパッタ法により薄膜光導波路を形成した
ものは、NdあるいはCrを添加したY3 Ga5 O
12(M.YAMAGA et al、Japanese Journal of Applied Ph
ysics.23,312(1984)、Journal of Luminesence 39,335
(1988))が知られている。又、イオン注入により光導波
路を作成したものはHe+ イオン注入によるNd:Y3
Al5 O12(S.J.Field et al,IEEE Journal of QUANTU
M Electoronics 27,423(1991) 、P.J.Chandler et al,
Nuclear Instruments and Methods in Physics Researc
h B59/60,1223(1991))、He+ イオン注入によるKNb
O3 (D.Flick et al,Applied Physics Letter 59,3213
(1991))、C+ イオン注入によるサファイア( P.D.Towns
end et al,ElectronicsLetter 26,1193(1990)) 等が知
られている。The thin-film optical waveguide formed by the sputtering method is a Y 3 Ga 5 O containing Nd or Cr.
12 (M.YAMAGA et al, Japanese Journal of Applied Ph
ysics.23,312 (1984), Journal of Luminesence 39,335
(1988)) is known. In addition, an optical waveguide prepared by ion implantation is Nd: Y 3 produced by He + ion implantation.
Al 5 O 12 (SJField et al, IEEE Journal of QUANTU
M Electoronics 27,423 (1991), PJChandler et al,
Nuclear Instruments and Methods in Physics Researc
h B59 / 60,1223 (1991)), KNb by He + ion implantation
O 3 (D.Flick et al, Applied Physics Letter 59,3213
(1991)), C + ion implanted sapphire (PDTowns
end et al, Electronics Letter 26, 1193 (1990)) are known.
【0004】又、波長可変レーザー結晶であるTiドー
プサファイア結晶にHe+ 又はB+ イオンを注入すること
によって2次元あるいは3次元光導波路を形成したいわ
ゆるチタンサファイア光導波路結晶は提案されている
(N.Kodama et al 特願平 5-92329)。[0004] Further, Ti-doped sapphire crystals He + or B + ion-implanted formed was called titanium sapphire optical waveguide crystals two- or three-dimensional optical waveguide by a wavelength-tunable laser crystal have been proposed ( N. Kodama et al Japanese Patent Application No. 5-92329).
【0005】しかしながら、レーザー活性イオンとして
Ti3+を含んだ、組成式ABTixAl1-xO4 (A:C
a2+又はSr2+、B:Y3+、Gd3+、La3+から選ばれ
る一種、x:0.001≦x≦0.1)で表されるペロ
ブスカイト型結晶に、He+ イオンを注入して結晶のあ
る部分に損傷層を形成し結晶の他の部分と屈折率の異な
る2次元又は3次元光導波路を形成したペロブスカイト
型光導波路結晶は知られていない。However, the composition formula ABTi x Al 1-x O 4 (A: C) containing Ti 3+ as the laser active ions is used.
a 2+ or Sr 2+ , B: Y 3+ , Gd 3+ , one selected from La 3+ , x: 0.001 ≦ x ≦ 0.1) perovskite type crystal represented by He + ion There is no known perovskite type optical waveguide crystal in which a damage layer is formed in a certain portion of the crystal by injecting the above-mentioned material to form a two-dimensional or three-dimensional optical waveguide having a different refractive index from other portions of the crystal.
【0006】[0006]
【発明が解決しようとする課題】本発明は、近赤外域
(1500〜1650nm)で波長可変レーザー発振材料
として有用なTiドープペロブスカイト単結晶で、素子
の小型化、レーザー発振効率の高効率化が可能な光導波
路を有する結晶及びその製造法を提供することを目的と
するものある。The present invention is a Ti-doped perovskite single crystal useful as a wavelength tunable laser oscillation material in the near infrared region (1500 to 1650 nm), and is capable of reducing the device size and increasing the laser oscillation efficiency. It is an object of the present invention to provide a crystal having a possible optical waveguide and a manufacturing method thereof.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記した
目的を達成するために種々の検討を重ねた結果、Tiド
ープペロブスカイト単結晶の表面に、入射エネルギーを
1MeV以上で変化させてHe+ イオン、B+ イオン又
はC+ イオンを注入することにより結晶表面からある程
度の深さ範囲内で、ある厚さの屈折率の小さい損傷層を
形成すると、損傷層と最表層との間に挟まれた層部分に
光が閉じ込められること、又、単結晶面にフォトレジス
トでマスクパターンを形成し、さらにイオン注入マスク
としてPt、及びPt粘着を防ぐための下地層としてA
l膜をつけ、上記イオンを注入することにより深さの異
なる屈折率の小さい損傷層を形成すると、深さと幅を持
つチャンネル型の3次層内に光が閉じ込められることを
見出した。As a result of various studies to achieve the above object, the inventors of the present invention have found that the incident energy on the surface of a Ti-doped perovskite single crystal is changed at 1 MeV or more to achieve He. If a damage layer having a small refractive index and having a certain thickness is formed within a certain depth range by implanting + ions, B + ions or C + ions, the damage layer is sandwiched between the damage layer and the outermost layer. Light is confined in the layer part formed, a mask pattern is formed on the single crystal surface with a photoresist, Pt is used as an ion implantation mask, and A is used as a base layer for preventing Pt adhesion.
It has been found that light is confined in a channel-type tertiary layer having a depth and a width when a damaged layer having a small refractive index and a different depth is formed by attaching an I film and implanting the ions.
【0008】即ち本発明は、レーザー活性イオンとして
Ti3+を含んだ、組成式ABTixAl1-xO4 (A:C
a2+又はSr2+、B:Y3+、Gd3+、La3+から選ばれ
る一種、x:0.001≦x≦0.1)で表されるペロ
ブスカイト型結晶で、表面から深さ方向又は深さ方向と
面方向に他の部分と屈折率の異なる2次元又は3次元光
導波路を形成したペロブスカイト型光導波路結晶に関す
るものである。That is, the present invention provides a composition formula ABTi x Al 1-x O 4 (A: C) containing Ti 3+ as laser active ions.
a 2+ or Sr 2+ , B: Y 3+ , Gd 3+ , La 3+ , a perovskite-type crystal represented by x: 0.001 ≦ x ≦ 0.1), which is deep from the surface. The present invention relates to a perovskite type optical waveguide crystal in which a two-dimensional or three-dimensional optical waveguide having a different refractive index from other portions is formed in the depth direction or the depth direction and the plane direction.
【0009】次に本発明を詳細に説明する。本発明で用
いるTiドープペロブスカイト単結晶は、組成式ABT
ixAl1-xO4 (A:Ca2+又はSr2+、B:Y3+、G
d3+、La3+から選ばれる一種、x:0.001≦x≦
0.1)で表され、400〜600nmの可視域で発光す
る通常の板状結晶である。Next, the present invention will be described in detail. The Ti-doped perovskite single crystal used in the present invention has a composition formula ABT.
i x Al 1-x O 4 (A: Ca 2+ or Sr 2+ , B: Y 3+ , G
one selected from d 3+ and La 3+ , x: 0.001 ≦ x ≦
0.1), which is a normal plate crystal that emits light in the visible region of 400 to 600 nm.
【0010】本発明の結晶の光導波路の形状は、イオン
注入によりイオン飛程近傍に結晶の他の部分と比較して
屈折率の小さい2次元的な損傷層が形成された2次元光
導波路、あるいはマスクパターンを形成した後のイオン
注入により、深さの異なる損傷層が形成された3次元チ
ャンネル型光導波路である。The shape of the crystalline optical waveguide of the present invention is a two-dimensional optical waveguide in which a two-dimensional damaged layer having a smaller refractive index than the other portions of the crystal is formed near the ion range by ion implantation, Alternatively, it is a three-dimensional channel type optical waveguide in which damaged layers having different depths are formed by ion implantation after forming a mask pattern.
【0011】本発明におけるこれらの導波路の大きさは
2次元光導波路の場合、導波路の厚さは結晶の表面から
ほぼ20μm 以内の深さの範囲内で0.2〜1μm の厚
さを持つものであり、又、3次元チャンネル型光導波路
の場合、同じく表面からほぼ20μm 以内の深さを持
ち、約50μm 以内の幅を持つ3次元チャンネル型の光
導波路である。結晶の深さ方向で必要以上に深い部分ま
で損傷層を形成してもマルチ導波モードとなるなど効果
は小さい。In the case of a two-dimensional optical waveguide, the size of these waveguides in the present invention is such that the thickness of the waveguide is 0.2 to 1 μm within a depth range of approximately 20 μm from the surface of the crystal. In addition, in the case of a three-dimensional channel type optical waveguide, it is also a three-dimensional channel type optical waveguide having a depth within about 20 μm from the surface and a width within about 50 μm. Even if a damaged layer is formed to a deeper portion than necessary in the depth direction of the crystal, the effect such as a multi-waveguide mode is small.
【0012】本発明のイオン注入による2次元光導波路
の製造法では、注入イオン種としてはHe+ 、B+ 、C
+ イオンが用いられる。He+ イオンを用いる場合は、
その注入量は1016〜1017イオン/cm2 が目安とな
る。この注入量が1016イオ/cm2 より少ないと結晶の
損傷層の屈折率変化が小さく光導波路として目的とする
ものが形成されない。又、1017/cm2 より大きいと光
導波路は形成されるが結晶に多量の欠陥が発生し、得ら
れる結晶の光学的品質を低下させるので好ましくない。
B+ 、C+ イオンを用いる場合は、その注入量は1015
〜1017イオン/cm2 が目安となる。この場合の注入量
がこの範囲の量より少ないと結晶に光導波路を形成する
に充分な屈折率変化をもたらすことができず、注入量が
この範囲より多いと結晶内に欠陥が増え導波路の光学的
品質が低下する。B+ 、C+ イオンは注入量がHe+ イ
オンより少なくてすみ、結晶内に発生する歪みを小さく
する効果がある。In the method of manufacturing a two-dimensional optical waveguide by ion implantation of the present invention, the implanted ion species are He + , B + and C.
+ Ions are used. When using He + ions,
The implantation amount is 10 16 to 10 17 ions / cm 2 as a standard. If the injection amount is less than 10 16 io / cm 2, the change in the refractive index of the crystal damage layer is small and the intended optical waveguide cannot be formed. On the other hand, if it is larger than 10 17 / cm 2 , an optical waveguide is formed, but a large number of defects are generated in the crystal, which deteriorates the optical quality of the obtained crystal, which is not preferable.
When B + and C + ions are used, the implantation amount is 10 15
Approximately 10 17 ions / cm 2 is a standard. If the injection amount in this case is less than this range, it is not possible to bring about a sufficient change in the refractive index for forming an optical waveguide in the crystal. If the injection amount is more than this range, defects in the crystal increase and the waveguide Optical quality is degraded. B + and C + ions need only be implanted in a smaller amount than He + ions, and have the effect of reducing the strain generated in the crystal.
【0013】また注入方位は結晶のa軸、c軸いずれの
方向でも良い。イオン注入時の結晶温度は液体窒素温度
の77Kから350Kの範囲に保持することが好まし
い。The implantation direction may be either the a-axis or the c-axis of the crystal. The crystal temperature at the time of ion implantation is preferably maintained in the range of liquid nitrogen temperature of 77K to 350K.
【0014】本発明の3次元チャンネル型の光導波路の
作成は、例えばポジ型フォトレジスト(例えばAZ−1
350)を用い、UV光で露光、マスクパターンを形成
した後、Al膜(厚さ100nm程度)を蒸着またはスパ
ッタ法で形成被覆し、その上にイオンマスクとして、イ
オン注入する結晶の表面以外の面にPt膜を蒸着あるい
はスパッタ法で付けた後、レジストを剥離する。前記し
たような方法でイオンを注入した後、Pt、Al膜を剥
離することにより3次元チャンネル型光導波路を得る。The three-dimensional channel type optical waveguide of the present invention is produced by using, for example, a positive photoresist (for example, AZ-1).
350), and after exposing with UV light to form a mask pattern, an Al film (thickness: about 100 nm) is formed and covered by vapor deposition or sputtering, and an ion mask is formed on the Al film (excluding the surface of the crystal to be ion-implanted). After depositing a Pt film on the surface by vapor deposition or sputtering, the resist is peeled off. After implanting ions by the method described above, the Pt and Al films are peeled off to obtain a three-dimensional channel type optical waveguide.
【0015】[0015]
【実施例】次に本発明を実施例により更に詳細に説明す
る。EXAMPLES The present invention will now be described in more detail with reference to Examples.
【0016】実施例1 組成式CaGdTi0.01Al0.99O4 で表されるTiド
ープペロブスカイトの板状(5mm×10mm×2mm)単結
晶を試料として、タンデム型イオンビーム加速器により
B+ イオンを、注入エネルギー2.01MeV で、注入量
1×1016イオン/cm2 でc面から結晶全面に注入し2
次元光導波路結晶を作成した。注入時の結晶は結晶ホル
ダーが300Kになるように冷却した。得られた結晶は
プリズムカプラ、He−Neレーザーを用いた屈折率及
びモード測定の結果、光導波路層厚1.6μmの2次元
光導波路が形成されていることを確認した。Example 1 A plate-shaped (5 mm × 10 mm × 2 mm) single crystal of Ti-doped perovskite represented by the composition formula CaGdTi 0.01 Al 0.99 O 4 was used as a sample, and B + ions were implanted with a tandem type ion beam accelerator. Implant at 2.01 MeV with a dose of 1 × 10 16 ions / cm 2 from the c-plane to the entire surface of the crystal 2
A three-dimensional optical waveguide crystal was created. The crystal at the time of injection was cooled so that the crystal holder became 300K. As a result of measuring the refractive index and mode of the obtained crystal using a prism coupler and a He—Ne laser, it was confirmed that a two-dimensional optical waveguide having an optical waveguide layer thickness of 1.6 μm was formed.
【0017】図1に光導波路厚、モード屈折率を測定す
るためにプリズムカプラを用いて測定した透過強度のレ
ーザー入射角度依存性を示す。光導波路層のTEモード
屈折率は1.942で注入前の結晶の屈折率より高くな
っていることが確認された。結晶内の光導波路層及び損
傷層の組織は光学顕微鏡及び透過電子顕微鏡で観察し
た。FIG. 1 shows the laser incident angle dependence of the transmission intensity measured by using a prism coupler to measure the optical waveguide thickness and the mode refractive index. It was confirmed that the TE mode refractive index of the optical waveguide layer was 1.942, which was higher than the refractive index of the crystal before injection. The structures of the optical waveguide layer and the damaged layer in the crystal were observed with an optical microscope and a transmission electron microscope.
【0018】実施例2 組成式CaGdTi0.01Al0.99O4 で表されるPrド
ープペロブスカイトの板状単結晶のc面にタンデム型イ
オンビーム加速器を用いて、入射エネルギー2.0MeV
でC+ イオンを、注入量2×1015イオン/cm2 で注入
し2次元光導波路結晶を作成した。得られた結晶は実施
例1と同様に屈折率及モード測定の結果、導波路厚1.
5μm の2次元光導波路が形成されていることを確認し
た。又、実施例1と同様に結晶内の光導波路層及び損傷
層の組織は光学顕微鏡及び透過電子顕微鏡で観察した。Example 2 An incident energy of 2.0 MeV was applied to the c-plane of a plate-shaped single crystal of Pr-doped perovskite represented by the composition formula CaGdTi 0.01 Al 0.99 O 4 using a tandem type ion beam accelerator.
C + ions were implanted at a dose of 2 × 10 15 ions / cm 2 to prepare a two-dimensional optical waveguide crystal. The obtained crystal was measured for refractive index and mode in the same manner as in Example 1, and the waveguide thickness was 1.
It was confirmed that a 5 μm two-dimensional optical waveguide was formed. Further, as in Example 1, the structures of the optical waveguide layer and the damaged layer in the crystal were observed with an optical microscope and a transmission electron microscope.
【0019】実施例3 組成式CaYTi0.01Al0.99O4 で表されるErドー
プペロブスカイト単結晶にポジ型フォトレジスト(AZ
−1350)を膜厚2μm 塗布し、70℃、20min ベ
ーキングした後、UV光で露光マスクパターンを形成し
た。この結晶に膜厚100nmのAl膜をスパッタ法で形
成し、イオンマスクとなるPt膜をスパッタ法で形成し
た後、アセトンでレジストを剥離した。Example 3 An Er-doped perovskite single crystal represented by the composition formula CaYTi 0.01 Al 0.99 O 4 was used as a positive photoresist (AZ).
-1350) was applied to a film thickness of 2 μm and baked at 70 ° C. for 20 minutes, and then an exposure mask pattern was formed by UV light. An Al film having a film thickness of 100 nm was formed on this crystal by a sputtering method, a Pt film serving as an ion mask was formed by the sputtering method, and then the resist was peeled off with acetone.
【0020】この試料にタンデム型イオンビーム加速器
を用いて、入射エネルギー2.0MeV で、注入量1016
イオン/cm2 のB+ イオンを注入した後、Pt、Al膜
を酸を用いて剥離しチャンネル型の3次元光導波路を作
成した。得られた結晶は光学電子顕微鏡、透過電子顕微
鏡及びプリズムカップラ法で深さ1.8μm 、幅1.5
μm の3次元光導波路が形成されていることを確認し
た。A tandem ion beam accelerator was used for this sample, the incident energy was 2.0 MeV, and the implantation amount was 10 16.
After implanting B + ions of ions / cm 2 , the Pt and Al films were stripped using acid to form a channel type three-dimensional optical waveguide. The obtained crystal was 1.8 μm in depth and 1.5 in width by an optical electron microscope, a transmission electron microscope and a prism coupler method.
It was confirmed that a 3-dimensional optical waveguide of μm was formed.
【0021】[0021]
【発明の効果】本発明の構成のTiドープペロブスカイ
ト光導波路結晶は、レーザー発振効率が高く、小型の可
視域波長可変レーザー、光増幅素子として利用できる。INDUSTRIAL APPLICABILITY The Ti-doped perovskite optical waveguide crystal having the constitution of the present invention has high laser oscillation efficiency and can be used as a small visible wavelength tunable laser and an optical amplifying device.
【図1】実施例1で得た結晶の透過強度のレーザー入射
角度依存性を示す図。FIG. 1 is a diagram showing the laser incident angle dependence of the transmission intensity of the crystal obtained in Example 1.
Claims (4)
だ、組成式ABTixAl1-xO4 (A:Ca2+又はSr
2+、B:Y3+、Gd3+、La3+から選ばれる一種、x:
0.001≦x≦0.1)で表されるペロブスカイト型
結晶で、表面から深さ方向又は深さ方向と面方向に他の
部分と屈折率の異なる2次元又は3次元光導波路を形成
したペロブスカイト型光導波路結晶。1. A composition formula ABTi x Al 1-x O 4 (A: Ca 2+ or Sr) containing Ti 3+ as laser active ions.
2+ , B: Y 3+ , Gd 3+ , one selected from La 3+ , x:
0.001 ≦ x ≦ 0.1), and a two-dimensional or three-dimensional optical waveguide having a refractive index different from that of other portions is formed from the surface in the depth direction or the depth direction and the surface direction from the surface. Perovskite type optical waveguide crystal.
18イオン/cm2 、又はB+ 又はC+ を1015〜1017イ
オン/cm2 でイオン注入を行なうことにより、組成式A
BTixAl1-xO4 (A:Ca2+又はSr2+、B:
Y3+、Gd3+、La3+から選ばれる一種、x:0.00
1≦x≦0.1)で表されるペロブスカイト型結晶に損
傷層を付与し、表面から深さ方向又は深さ方向および面
方向に他の部分と屈折率の異なる光導波路を形成したペ
ロブスカイト型光導波路結晶を製造する方法。2. He + as an ion implantation species is 10 16 to 10 10.
The composition formula A is obtained by implanting 18 ions / cm 2 or B + or C + at 10 15 to 10 17 ions / cm 2.
BTi x Al 1-x O 4 (A: Ca 2+ or Sr 2+ , B:
One selected from Y 3+ , Gd 3+ and La 3+ , x: 0.00
1 ≦ x ≦ 0.1) A perovskite type crystal in which a damaged layer is provided to a perovskite type crystal to form an optical waveguide having a refractive index different from that of other portions in the depth direction from the surface or in the depth direction and the plane direction. A method for manufacturing an optical waveguide crystal.
持しイオン注入する請求項2記載の製造方法。3. The manufacturing method according to claim 2, wherein the crystal at the time of ion implantation is held at 77 to 350 K and ion implantation is performed.
を形成し、注入イオンのマスクとしてPtを、Ptマス
クの下地層としてAlを用いる請求項2又は3記載のチ
ャンネル型3次元光導波路の製造方法。4. A method of manufacturing a channel type three-dimensional optical waveguide according to claim 2, wherein a mask pattern is formed using a photoresist, and Pt is used as a mask for implanted ions, and Al is used as a base layer of the Pt mask. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5137543A JPH06347842A (en) | 1993-06-08 | 1993-06-08 | Optical waveguide crystal and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5137543A JPH06347842A (en) | 1993-06-08 | 1993-06-08 | Optical waveguide crystal and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06347842A true JPH06347842A (en) | 1994-12-22 |
Family
ID=15201153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5137543A Pending JPH06347842A (en) | 1993-06-08 | 1993-06-08 | Optical waveguide crystal and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06347842A (en) |
-
1993
- 1993-06-08 JP JP5137543A patent/JPH06347842A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7110652B2 (en) | Optical waveguide and method of manufacture | |
US8189981B2 (en) | Stable lithium niobate waveguides, and methods of making and using same | |
US4938836A (en) | Process for locally increasing the refractive indexes of an electrooptical material usable in guided optics and material obtained by this process | |
US4521443A (en) | Integrated optical waveguide fabrication by ion implantation | |
EP0986768A1 (en) | Microstrip line | |
Knauss et al. | Growth of nonlinear optical thin films of KTa 1− x Nb x O 3 on GaAs by pulsed laser deposition for integrated optics | |
Tien et al. | Research in optical films for the applications of integrated optics | |
JPH06350183A (en) | Light guide crystal and its manufacture | |
JPH06347842A (en) | Optical waveguide crystal and its production | |
JPH06350184A (en) | Thin film light guide crystal and its manufacture | |
Ishitani et al. | Single‐crystal Sr2Nb2O7 film optical waveguide deposited by rf sputtering | |
JPH11335199A (en) | Production of single crystal membrane | |
JPH06281832A (en) | Optical waveguide crystal and its production | |
Beckers et al. | Potassium niobate waveguides: He+ implantation in bulk single crystals and pulsed laser deposition of thin films | |
Zhu et al. | Optical properties of a proton-implanted Nd: CNGG planar waveguide | |
Essahlaoui et al. | Optical waveguiding properties of lead titanate thin films grown on quartz by pulsed-laser deposition | |
JPH06305888A (en) | Thin-film waveguide crystal and its production | |
KR930010830B1 (en) | Wave guide | |
JP2003114346A (en) | Method for manufacturing optical waveguide element | |
US6744560B2 (en) | Non-linear optical material | |
Tan et al. | Characterization and Optical Properties of Erbium doped As2S3 Films Prepared by Multi-layer Magnetron Sputtering | |
JP2965644B2 (en) | Manufacturing method of wavelength conversion optical element | |
JP2903581B2 (en) | Manufacturing method of optical waveguide device | |
Domenech et al. | Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals | |
JPH06305889A (en) | Waveguide crystal and its production |