JPH06347457A - Structure spalling test method for refractories, evaluation method for crack caused by sintering, and its test device - Google Patents

Structure spalling test method for refractories, evaluation method for crack caused by sintering, and its test device

Info

Publication number
JPH06347457A
JPH06347457A JP19717993A JP19717993A JPH06347457A JP H06347457 A JPH06347457 A JP H06347457A JP 19717993 A JP19717993 A JP 19717993A JP 19717993 A JP19717993 A JP 19717993A JP H06347457 A JPH06347457 A JP H06347457A
Authority
JP
Japan
Prior art keywords
refractory
slag
temperature
sample
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19717993A
Other languages
Japanese (ja)
Other versions
JP3754094B2 (en
Inventor
Etsuro Udagawa
悦郎 宇田川
Eizo Maeda
榮造 前田
Tsutomu Nozaki
努 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19717993A priority Critical patent/JP3754094B2/en
Publication of JPH06347457A publication Critical patent/JPH06347457A/en
Application granted granted Critical
Publication of JP3754094B2 publication Critical patent/JP3754094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable effect of sintering, the depth of slag penetration and cracks caused by slag penetration to be simulated to a case of actual furnace utilization by raising and lowering the temperature of a furnace after slag has been molten over the refractory specimen rested on the bottom section of the furnace. CONSTITUTION:After slag 7 has been molten over the upper surface of a refractory specimen 6, the temperature of a furnace is raised and lowered. In this case, when the specimen 6 which is 100 to 400mm long, as thin as 50 to 20mm, is used, the same result as the case of an actual furnace can be obtained. Furthermore, temperature for heating on the refractory specimen surface is made equal to or more than 1200 deg.C, temperature gradient within the specimen is made 2 to 10 deg.C/mm, and slag 7 equal to or more than 0.3g/cm<2> on the upper surface of the refractory specimen is made to be molten on the aforesaid surface, and the slag is heated for more than four hours at the highest temperature range after the slag has been molten. In this case, when an AE sensor 4 is installed on the specimen 6, an AE signal is detected corresponding to a heating condition, and material to be poured in, so that it is possible to make judgement more accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不定形耐火物、特に流
し込み施工用耐火物の開発にあたって、評価、解析に用
いるスラグ浸透スポーリング試験方法、焼成起因割れの
評価方法及び試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slag permeation spalling test method, a method for evaluating cracks caused by firing, and a testing apparatus, which are used for evaluation and analysis in the development of irregular refractory materials, especially refractory materials for casting.

【0002】[0002]

【従来の技術】従来から取鍋内張り用流し込み耐火材と
して、珪石、ロー石、アルミナ質、ジルコン質、マグネ
シア質などの耐火材が使用されてきた。近年、高純度鋼
溶製のための取鍋精錬技術の進歩により、溶鋼温度の上
昇、溶鋼滞留時間の延長など、取鍋耐火物の使用環境は
過酷化している。このため、従来の材質の耐火材では、
耐食性、耐スポーリング性の点で対応できなくなってき
ている。
2. Description of the Related Art Hitherto, refractory materials such as silica stone, lozenge, alumina, zircon and magnesia have been used as pouring refractory materials for ladle linings. In recent years, due to advances in ladle refining technology for producing high-purity steel, the environment in which ladle refractories are used has become more severe, such as rising molten steel temperature and extending molten steel residence time. Therefore, with conventional refractory materials,
Corrosion resistance and spalling resistance are becoming unusable.

【0003】これまでに、ジルコン質、高アルミナ質、
アルミナ−スピネル質など耐火材の材質面から様々な改
良が加えられ、耐用性の向上が図られてきた。そして、
これらの改良により鋼浴部においては高耐用性が実現し
ている。この改良により、さらに耐用性の要求されるス
ラグライン部への拡大適用も試みられてきたが、いまだ
に工程実施レベルの耐用性は得られていない。スラグラ
イン部への適用を可能とするには、材質面での一層の改
良が必要となる。
So far, zircon, high alumina,
Various improvements have been made in terms of the material properties of the refractory material such as alumina-spinel and the durability has been improved. And
Due to these improvements, high durability is realized in the steel bath. With this improvement, it has been attempted to expand the application to the slag line portion where durability is further required, but the durability at the process implementation level has not yet been obtained. In order to be applicable to the slag line part, further improvement in material is required.

【0004】酸性材であるジルコン質においては、その
主な損耗形態が化学反応による溶損であることから、改
良には限界があると思われる。また中性材であるアルミ
ナ−スピネル質では、スラグ浸透に伴う構造スポーリン
グの発生が問題となっており、この問題解決にも様々な
検討がなされている。塩基性材であるマグネシア質につ
いては、耐溶損性は問題が少ないものの、その熱膨張性
などからくるスポーリングの問題が解決されていないの
が現状である。従来、このようなスポーリング問題の解
決が十分でない原因の一つとして、実使用上発生する構
造スポーリングを再現できる評価・試験方法がなかった
ことがあげられる。
It is considered that there is a limit to the improvement of zircon, which is an acidic material, because the main form of wear is erosion due to chemical reaction. Further, in the case of the alumina-spinel material which is a neutral material, the occurrence of structural spalling due to the penetration of slag has become a problem, and various studies have been made to solve this problem. Regarding magnesia, which is a basic material, although there are few problems with melting resistance, the problem of spalling due to its thermal expansion has not yet been solved. Conventionally, one of the reasons why such a spalling problem is not sufficiently solved is that there is no evaluation / test method capable of reproducing the structural spalling that occurs in actual use.

【0005】従来の耐火物評価・試験方法としては、 (1)スラグ回転浸食法 (2)高周波溶解炉内張法 (3)熊谷らによるAE計測法(窯業協会誌87(5)
259〜296(1979)など) (4)末川らによる耐剥離性評価(材料とプロセスvo
l.1(1992)、250 などがあげられる。
The conventional refractory evaluation / testing methods are: (1) slag rotation erosion method (2) high-frequency melting furnace lining method (3) AE measurement method by Kumagai et al.
259-296 (1979) etc.) (4) Evaluation of peeling resistance by Suekawa et al.
l. 1 (1992), 250 and the like.

【0006】[0006]

【発明が解決しようとする課題】上記(1)、(2)に
ついては、スポーリング現象を評価するのに必要な大き
さの試料が得られないこと、試料内に適度な温度勾配を
つけられないことなどの問題があった。上記(3)につ
いてはスラグ浸透の影響を評価することができないなど
の問題があった。また、流し込み材は不焼成品であり、
溶鋼を受けて始めて片面から焼結が始まるので、AEセ
ンサによる耐スポーリング性評価は試みられていない。
上記(4)ではスラグ浸透後の保持時間が短いためか、
スラグ浸透深さ、亀裂発生深さが実炉結果と一致しない
という問題があった。
With respect to the above (1) and (2), it is impossible to obtain a sample of a size necessary for evaluating the spalling phenomenon, and it is necessary to provide an appropriate temperature gradient in the sample. There was a problem such as not being. Regarding (3) above, there was a problem that the effect of slag penetration could not be evaluated. Also, the casting material is a non-fired product,
Since sintering starts from one side only after receiving molten steel, spalling resistance evaluation by an AE sensor has not been attempted.
In (4) above, because the retention time after slag penetration is short,
There was a problem that the slag penetration depth and crack initiation depth did not match the actual furnace results.

【0007】また、これらのスラグ浸透試験、スポーリ
ング試験によって発生した様々な亀裂については、数例
の試み(例えば特開昭60−60985号公報、特開平
4−42868号公報等)を除けば、切断面での目視観
察にとどまっており、亀裂発生の原因となる応力分布や
弾性率、強度などの物性変化と関連付ける試みがなされ
ていないのが現状である。
With respect to various cracks generated by these slag penetration test and spalling test, some trials (for example, JP-A-60-60985 and JP-A-4-42868) are excluded. However, the present situation is limited to visual observation on the cut surface, and no attempt has been made to correlate it with changes in physical properties such as stress distribution, elastic modulus, and strength that cause cracks.

【0008】以上の問題点により、これまでの耐火物開
発、特に不定形耐火物、流し込み材の開発においては、
その開発段階で十分に実使用を反映するような評価方法
や試験方法がなかった。本発明では、不焼成品である流
し込み材耐火物の材料開発にあたり、焼結の影響、スラ
グ浸透深さ、及びスラグ浸透量が及ぼす亀裂発生につい
て、実炉使用、特に溶鋼取鍋の操業条件を再現すること
ができるような評価方法、試験方法及びその装置を提供
することを目的とする。また、片面から焼結が進行する
ことによって生ずる物性変化の不均一性と相関を持つ耐
スポーリング性を評価する方法を提供することを目的と
する。
Due to the above problems, in the development of refractory materials, particularly in the development of amorphous refractory materials and casting materials,
At the development stage, there was no evaluation method or test method that sufficiently reflects actual use. In the present invention, in the material development of the casting material refractory that is a non-fired product, the influence of sintering, the slag penetration depth, and the crack generation caused by the slag penetration amount, the actual furnace use, especially the operating conditions of the molten steel ladle It is an object of the present invention to provide an evaluation method, a test method and a device therefor which can be reproduced. It is another object of the present invention to provide a method for evaluating spalling resistance which correlates with nonuniformity of changes in physical properties caused by progress of sintering from one surface.

【0009】さらに、亀裂発生の原因となる応力分布や
耐火材料の弾性率、強度などの物性変化と関連付けるた
めに必要となる定量化方法を提供することを目的とす
る。
Further, it is an object of the present invention to provide a quantification method necessary for associating with stress distribution which causes crack generation and changes in physical properties such as elastic modulus and strength of refractory material.

【0010】[0010]

【課題を解決するための手段】発明者等は、流し込み材
へのスラグ浸透深さと時間の関係を調査し、取鍋での使
用を考えた場合のような、十分長い使用条件のもとでの
スラグ浸透の深さは温度のみによって決定されること、
スラグ量と亀裂発生の間に密接な関係があることを見出
し、実炉使用を再現できる評価方法、試験方法及びその
装置を開発した。
[Means for Solving the Problems] The inventors investigated the relationship between the depth of slag penetration into the pouring material and time, and under a sufficiently long use condition such as when considering the use in a ladle. That the depth of slag penetration is determined only by temperature,
We have found that there is a close relationship between the amount of slag and the occurrence of cracks, and have developed an evaluation method, test method and equipment that can reproduce the use of an actual furnace.

【0011】すなわち、本発明の第1の発明は、炉の底
部に設置された耐火物試料の上面でスラグを溶融させた
後、炉の温度を上昇、下降させることを特徴とする耐火
物の構造スポーリング試験方法であり、この場合一辺の
長さが100乃至400mm、厚さが50乃至200m
mである耐火物試料を用いることにより実炉と同様の結
果を得ることができる。また、耐火物試料上面における
加熱温度を1200℃以上とし、試料内温度勾配を2〜
10℃/mmとし、耐火物試料上面の面積1cm2
り、0.3g以上のスラグを耐火物試料上面で溶融さ
せ、スラグ溶融後の最高温度域で4時間以上加熱する。
That is, the first invention of the present invention is characterized in that after the slag is melted on the upper surface of the refractory sample installed at the bottom of the furnace, the temperature of the furnace is raised and lowered. This is a structural spalling test method, in which one side has a length of 100 to 400 mm and a thickness of 50 to 200 m.
By using a refractory sample having m, it is possible to obtain the same result as in the actual furnace. Further, the heating temperature on the upper surface of the refractory sample is set to 1200 ° C. or higher, and the temperature gradient in the sample is set to 2
At 10 ° C./mm, 0.3 g or more of slag is melted on the upper surface of the refractory sample per 1 cm 2 of the upper surface of the refractory sample, and heated in the maximum temperature range after melting the slag for 4 hours or more.

【0012】次に発明者らは、本発明により、不焼成品
である流し込み材の耐スポーリング性が、片面加熱によ
って生ずる、鉱物相、強度、弾性率等の変化が主因であ
ることを見出した。流し込み材が片面加熱によってどの
ように割れるのかをAEセンサを用いてリアルタイムで
観察することによって、バインダや化学成分等の流し込
み材料構成がどうあるべきかを発見するに至った。
Next, the inventors of the present invention have found that the spalling resistance of the casting material, which is an unfired product, is mainly due to changes in the mineral phase, strength, elastic modulus, etc. caused by heating on one side. It was By observing how the casting material is cracked by one-sided heating in real time using an AE sensor, we have discovered what the casting material composition such as the binder and chemical components should be.

【0013】すなわち、本発明の第2の発明は、炉の底
部に設置された流し込み材耐火物試料の冷却面側に取り
つけたAEセンサにより、炉の温度を上昇、降下させる
ことによって生ずる試料内の割れを判定評価する。上記
発明を好適に実施することができる本発明の装置は、炉
の底部に設置された耐火物試料設置部と、該耐火物試料
に取り付けたアコースティックエミッション(AE)セ
ンサと、該耐火物試料の上面側から加熱する発熱体と、
炉温を上昇下降させる装置とを備えたことを特徴とする
耐火物の構造スポーリング試験装置である。
That is, the second aspect of the present invention is that the inside of the sample produced by raising and lowering the temperature of the furnace by the AE sensor mounted on the cooling surface side of the pouring material refractory sample installed at the bottom of the furnace. The crack is evaluated. An apparatus of the present invention capable of suitably carrying out the above-mentioned invention is a refractory sample installation unit installed at the bottom of a furnace, an acoustic emission (AE) sensor attached to the refractory sample, and a refractory sample of the refractory sample. A heating element that heats from the top side,
A structural spalling test device for a refractory, which is provided with a device for raising and lowering the furnace temperature.

【0014】本発明者らは、流し込み材へのスラグ浸透
量、溶融浸透時間、熱負荷条件などを変えて、スポーリ
ング試験を行い、この試験によって発生した亀裂を数値
化した。本発明と関係の深い、スラグ浸透スポーリング
試験については、スラグ浸透(量と深さ)と加熱条件の
関係を調査し、取鍋での使用を考えた場合のような十分
長い使用条件のもとでのスラグ浸透の深さは温度のみに
よって決定されること、スラグ量と亀裂発生の間に密接
な関係があることを見出し、実炉使用を再現できる評価
方法及び試験方法を用いた。
The inventors of the present invention conducted a spalling test by changing the amount of slag permeated into the casting material, the melt permeation time, the heat load condition, etc., and quantified the cracks generated by this test. Regarding the slag permeation spalling test, which is closely related to the present invention, the relationship between the slag permeation (amount and depth) and the heating conditions was investigated, and the sufficiently long use conditions such as when considering the use in a ladle were also investigated. We found that the depth of slag penetration in and was determined only by temperature, and that there was a close relationship between the amount of slag and the occurrence of cracks, and we used the evaluation method and test method that can reproduce the actual furnace use.

【0015】[0015]

【作用】スラグ浸透による構造スポーリングの発生を確
認するためには、十分な量のスラグを溶融させ、実炉と
同様の温度勾配を持たせたうえで、十分な時間保持し、
スラグを十分に試験片に浸透させる必要がある。試験片
を炉の底部に置き、試験片を上方から加熱することによ
って、加熱面側でスラグを溶融させることが可能とな
る。またこうすることで上から下に向かって温度が低下
するような温度勾配を作り出すことが可能となる。
[Function] In order to confirm the occurrence of structural spalling due to slag infiltration, a sufficient amount of slag is melted, given a temperature gradient similar to that of an actual furnace, and held for a sufficient time.
The slag needs to penetrate the test piece sufficiently. By placing the test piece on the bottom of the furnace and heating the test piece from above, it becomes possible to melt the slag on the heating surface side. Further, this makes it possible to create a temperature gradient in which the temperature decreases from the top to the bottom.

【0016】試験方法としては、試験片上面から加熱
し、十分温度が平衡に達するまで保持し、スラグを溶融
させ試験片に浸透させる。この状態で実炉に近い温度変
化を与え、亀裂発生の有無を調べることによって、実炉
の再現を得ることが可能となる。また、不焼成品である
不定形耐火物内に、焼成起因の不均一さを作り出すこと
が可能となり、試料形状のうち、特に厚さを実使用に合
わせることによって、実炉に近い濁度変化を与える。
As a test method, heating is performed from the upper surface of the test piece and the temperature is maintained until a sufficient temperature reaches equilibrium, and the slag is melted and penetrated into the test piece. In this state, it is possible to reproduce the actual furnace by applying a temperature change close to that of the actual furnace and checking for the occurrence of cracks. In addition, it is possible to create non-uniformity due to firing within an irregularly shaped refractory that is an unfired product, and by adjusting the thickness of the sample shape to actual use, the turbidity change close to that of an actual furnace can be achieved. give.

【0017】図1に本発明の試験装置の模式的断面図を
示す。鉄皮3内に断熱材2を詰め、耐火物試料6をお
き、その上方に発熱体1を備えている。耐火物試料6に
はAEセンサ4、熱電対5を備え、また耐火物試料6上
にスラグ7を載置するようになっている。耐火物試料6
のサイズは、一辺の長さが100〜400mm、厚さが
50〜200mmとするのが好ましい。一辺の長さが1
00mm未満では亀裂の発生が実炉の再現とならない。
400mmを越えると亀裂の発生状況に変化はなく、し
かも試験上装置が大きくなりすぎて経済的でない。好適
には一辺の長さが150〜300mmの範囲である。厚
さは、50mm未満では薄すぎて亀裂が発生しにくい。
200mmを越えると厚すぎて異なったタイプの亀裂発
生がみられるようになる。好適には80〜150mmで
ある。
FIG. 1 shows a schematic sectional view of the test apparatus of the present invention. A heat insulating material 2 is packed in a steel shell 3, a refractory sample 6 is placed, and a heating element 1 is provided above it. The refractory sample 6 is provided with an AE sensor 4 and a thermocouple 5, and the slag 7 is placed on the refractory sample 6. Refractory sample 6
It is preferable that one side has a length of 100 to 400 mm and a thickness of 50 to 200 mm. The length of one side is 1
If it is less than 00 mm, cracks cannot be reproduced in an actual furnace.
If it exceeds 400 mm, there is no change in the state of crack generation, and the device becomes too large for testing, which is not economical. The length of one side is preferably in the range of 150 to 300 mm. If the thickness is less than 50 mm, it is too thin and cracks are less likely to occur.
If it exceeds 200 mm, it is too thick and different types of cracks are generated. It is preferably 80 to 150 mm.

【0018】耐火物試料内の温度勾配は2〜10℃/m
mとするのが好ましい。この値は実炉での耐火物内の温
度勾配に近い値であるが、発明者らの発見では、スラグ
浸透深さは温度によってのみ決まるため、温度勾配が変
化するとスラグの浸透深さが変化することになり、実炉
の再現とならない。好適には3〜7℃/mmである。所
定の温度勾配にするには、耐火物試料の冷却側(下面)
に断熱材を入れるか、もしくは空冷するなどすればよ
い。
The temperature gradient in the refractory sample is 2 to 10 ° C./m.
It is preferably m. This value is close to the temperature gradient in the refractory in the actual furnace, but the inventors found that the slag penetration depth is determined only by the temperature, so if the temperature gradient changes, the slag penetration depth changes. It will be done and it will not be a reproduction of the actual furnace. It is preferably 3 to 7 ° C / mm. Cooling side of refractory sample (bottom surface) to obtain a prescribed temperature gradient
Insulation may be put in or air-cooled.

【0019】最高温度は1200℃以上が好ましい。1
200℃未満ではスラグが溶融されない。好ましくは実
炉温度である1450〜1600℃である。スラグ溶融
後の最高温度域での加熱時間は4時間以上が好ましい。
4時間未満ではスラグ浸透が十分でなく、本来より浅い
位置で亀裂が発生してしまう。好ましくは10時間以上
とするのがよいが、15時間以上であればなおよい。4
5時間以上加熱しても結果に大差なく経済的でない。
The maximum temperature is preferably 1200 ° C. or higher. 1
If it is less than 200 ° C, the slag is not melted. The actual furnace temperature is preferably 1450 to 1600 ° C. The heating time in the maximum temperature range after melting the slag is preferably 4 hours or more.
If it is less than 4 hours, the penetration of slag is not sufficient and cracks occur at a shallower position than originally expected. The time is preferably 10 hours or more, more preferably 15 hours or more. Four
Even if heated for 5 hours or more, the result is not so different and it is not economical.

【0020】耐火物試料上で溶融させるスラグ量は0.
3g/cm2 以上が好ましい。これを下回るとスラグ量
が十分でなく、亀裂の発生が見られないこともある。望
ましくは0.8g/cm2 以上である。試験中の耐火物
試料にAEセンサを取り付けることによって、加熱条
件、流し込み材の材質に応じたAE信号が検出され、よ
り正確な判定が可能となる。従来法では冷却後の切断面
から亀裂を観察していたため、温度変化の際に亀裂が発
生したのか、冷却中に発生したのか判定することができ
なかった。AEセンサを取り付け、亀裂の量、発生時
間、発生位置を評定することによってより正確な判定が
できるようになる。
The amount of slag to be melted on the refractory sample is 0.
It is preferably 3 g / cm 2 or more. Below this, the amount of slag is not sufficient, and cracks may not occur. Desirably, it is 0.8 g / cm 2 or more. By attaching the AE sensor to the refractory sample under test, the AE signal according to the heating conditions and the material of the casting material is detected, and more accurate determination is possible. In the conventional method, cracks were observed from the cut surface after cooling, so it was not possible to determine whether the cracks occurred during the temperature change or during cooling. By attaching an AE sensor and evaluating the amount of cracks, the time of occurrence, and the position of occurrence, more accurate judgment can be made.

【0021】本発明方法による耐火物試料の判定は、試
料内に発生した加熱面に垂直な亀裂(縦亀裂)と加熱面
に平行な亀裂(横亀裂)の大きさと数を図2に示すよう
な方法で評価した。なお、亀裂は最大亀裂幅0.1mm
以上のものについて計測した。亀裂定量化の手順を図2
を参照して説明する。 (1)加熱面8から深さ方向にY軸12をとる。 (2)Y軸12を10mmピッチ14で刻んで加熱面8
と背面9との間に多数の平行な測定線13を引く。 (3)測定線13と縦亀裂11との交点10を計数す
る。 (4)横軸に測定線13の加熱面8からの距離をとり、
縦軸に交点10の数を取り、グラフ化する。このように
してグラフ化した例を図3に示す。ハッチングを施した
部分の面積を損傷量と定義する。
The refractory sample is judged by the method of the present invention as shown in FIG. 2 by the size and number of cracks (vertical cracks) perpendicular to the heating surface and cracks (transverse cracks) parallel to the heating surface, which are generated in the sample. It evaluated by various methods. The maximum crack width is 0.1 mm
The above items were measured. Figure 2 shows the procedure for crack quantification
Will be described with reference to. (1) The Y axis 12 is taken in the depth direction from the heating surface 8. (2) Heating surface 8 by cutting the Y-axis 12 at 10 mm pitch 14
A large number of parallel measuring lines 13 are drawn between the and the back surface 9. (3) Count the intersections 10 of the measurement lines 13 and the vertical cracks 11. (4) The horizontal axis is the distance from the heating surface 8 of the measuring line 13,
The number of intersections 10 is taken on the vertical axis and graphed. An example of the graph thus formed is shown in FIG. The area of the hatched part is defined as the damage amount.

【0022】同様に、加熱面と平行な亀裂についても、 (a)試料の1側面からもう一方の側面方向に加熱面に
沿ってY軸をとる。 (b)Y軸を5mmピッチで刻んで、加熱面と垂直な測
定線を引く。 (c)測定線と横亀裂の交点を計数する。 (d)横軸に測定線の加熱面からの距離をとり、縦軸に
交点の数をとり、グラフ化する。
Similarly, for cracks parallel to the heating surface, (a) the Y axis is taken from one side surface of the sample to the other side surface along the heating surface. (B) The Y axis is carved at a pitch of 5 mm and a measurement line perpendicular to the heating surface is drawn. (C) Count the intersection of the measurement line and the lateral crack. (D) The horizontal axis represents the distance of the measurement line from the heating surface, and the vertical axis represents the number of intersections, which are graphed.

【0023】グラフ化した1例を図3に示す。このよう
にすれば横亀裂も同様にグラフ化し、亀裂量を定量化す
ることができる。図3に示す亀裂発生パターンは先に述
べた実使用に基づいたスポーリング試験方法において、
計算機による熱応力シミュレーションの結果と強い相関
を持っていることがわかった。具体的には加熱面側(1
500℃)から冷却面側(900℃)にかけて弾性率を
図9に示す曲線50のように変化させて、熱応力計算を
行い、試料内に発生する熱応力分布を求めた結果と良い
一致をみた。図11に、加熱面と平行な応力成分(横亀
裂発生要因)、図12に、加熱面と垂直な応力成分(縦
亀裂発生要因)の等応力線図をそれぞれ示す。
An example of a graph is shown in FIG. In this way, the lateral cracks can be graphed in the same manner, and the crack amount can be quantified. The crack generation pattern shown in FIG. 3 is obtained by the above-described spalling test method based on actual use.
It was found to have a strong correlation with the results of computer-aided thermal stress simulations. Specifically, the heating surface side (1
The thermal stress was calculated by changing the elastic modulus from 500 ° C.) to the cooling surface side (900 ° C.) as shown by the curve 50 in FIG. 9, and the thermal stress distribution generated in the sample was found to be in good agreement. saw. FIG. 11 shows a stress component parallel to the heating surface (lateral crack generation factor), and FIG. 12 shows a stress component perpendicular to the heating surface (vertical crack generation factor).

【0024】本発明方法は取鍋流し込み材の試験でだけ
でなく、樋、RH装置、転炉、タンディッシュ等の不定
形耐火物開発の場合の評価・試験にも適用可能である。
The method of the present invention can be applied not only to a test of a ladle pouring material, but also to an evaluation and a test in the case of developing an unshaped refractory such as a gutter, an RH device, a converter or a tundish.

【0025】[0025]

【実施例】【Example】

実施例−1 アルミナ系流し込み材(試料名A〜H)の230t溶鋼
取鍋での使用実績と、本発明によるスラグ浸透スポーリ
ング試験結果との関係を調べた。230t取鍋における
損傷は、スラグ浸透による構造スポーリングが主である
ことが、観察、解析の結果から判明している。
Example-1 The relationship between the use results of the alumina-based casting materials (sample names A to H) in the 230t molten steel ladle and the results of the slag infiltration spalling test according to the present invention was investigated. It has been found from the results of observation and analysis that the damage to the 230-ton ladle is mainly structural spalling due to slag infiltration.

【0026】スラグ浸透スポーリング試験は次のように
行った。耐火物試料サイズは200×200×100m
mとし、200×200mmの面を加熱した。最高温度
は1500℃とし、耐火物内に4.2℃/mmの温度勾
配をつけた。最高保持温度に達して5時間後、転炉スラ
グを400g(1g/cm2 )投入し18時間保持した
後、900〜1500℃の温度変化を6回与えた後冷却
した。この耐火物試料にはAEセンサを4個取り付け、
亀裂の発生位置、時間を記録した。冷却後、耐火物試料
を切断し、図3に示したのと同じ方法で亀裂の評価を行
った。
The slag infiltration spalling test was conducted as follows. Refractory sample size is 200 × 200 × 100m
m, and the surface of 200 × 200 mm was heated. The maximum temperature was 1500 ° C, and a temperature gradient of 4.2 ° C / mm was provided in the refractory. After 5 hours from reaching the maximum holding temperature, 400 g (1 g / cm 2 ) of converter slag was charged and held for 18 hours, then, a temperature change of 900 to 1500 ° C. was given 6 times and then cooled. Attaching four AE sensors to this refractory sample,
The position and time of occurrence of cracks were recorded. After cooling, the refractory samples were cut and cracks were evaluated in the same manner as shown in FIG.

【0027】図4に本発明によるスラグ浸透スポーリン
グ試験結果と実鍋使用結果との関係を示す。また、比較
のため、スラグ回転浸食試験及び先に述べた末川らの方
法と実使用結果の関係を図5に示す。これらの図から明
らかなように、本方法が実使用結果と最もよく一致する
ことがわかる。
FIG. 4 shows the relationship between the slag permeation spalling test results according to the present invention and the actual pot use results. Further, for comparison, FIG. 5 shows the relationship between the slag rotary erosion test and the method of Suekawa et al. As is clear from these figures, it can be seen that the method is in best agreement with the actual use result.

【0028】実施例−2 実施例1と同様のアルミナ系流し込み材(試料名A〜
H)について、同一寸法の試験片を作成し、次の条件で
試験を行った。 最高温度:1550℃ 温度勾配:5.6℃/mm スラグ投入:転炉スラグ800g(Ig/cm2 ) 保持時間:20時間 温度変化:(900〜1550℃)×8回 結果は図4と実質的に同じであった。
Example-2 Alumina-based casting material similar to that of Example 1 (sample name A to
For H), a test piece having the same size was prepared and tested under the following conditions. Maximum temperature: 1550 ° C. Temperature gradient: 5.6 ° C./mm Slag input: Converter slag 800 g (Ig / cm 2 ) Holding time: 20 hours Temperature change: (900 to 1550 ° C.) × 8 times The result is substantially as shown in FIG. Were the same.

【0029】実施例−3 マグネシア−ジルコン質(アルミナセメント使用)、マ
グネシア−アルミナ質(アルミナセメント使用)、及び
アルミナ−スピネル質(シリカゾル使用)流し込み材を
用いた。スラグ浸透スポーリング試験は次のように行っ
た。試験片サイズは200×200×100mmとし、
200×200mmの面を加熱した。昇温速度は8℃/
分、最高温度は1500℃とし、3種類の使用に対して
4〜5℃/mmの温度勾配を付けた。本試験において
は、亀裂位置の評定を行うための4本のAEセンサを取
り付けた。
Example 3 A casting material of magnesia-zircon (using alumina cement), magnesia-alumina (using alumina cement), and alumina-spinel (using silica sol) was used. The slag infiltration spalling test was conducted as follows. The test piece size is 200 × 200 × 100 mm,
The 200 × 200 mm surface was heated. Temperature rising rate is 8 ° C /
The maximum temperature was 1500 ° C., and a temperature gradient of 4 to 5 ° C./mm was applied to the three types of use. In this test, four AE sensors for evaluating the crack position were attached.

【0030】図6に、ヒートパターンとAE信号の計測
数(カウントレイト)の関係をそれぞれの試料に対して
示す。図6(a)に示すマグネシア−ジルコン質では、
1500℃の保持開始後400分ほどで計測数が急増し
た。急激な増加は200分ほど続き、その後冷却に入る
までの600分ほど高いカウントレイトを維持した。冷
却開始から、800℃まで計測数は激減し、冷却後約1
00分はほぼ0となった。その後室温に下がるまでの
間、3回の大きなピークを計測しながら低下した。図6
(b)に示すマグネシア−アルミナ質では、昇温過程、
保持過程で計測数はほぼ0であった。冷却開始後、計測
数が急増し、冷却後約100〜200分でピークとなっ
た。その後室温まで単調に低下した。図6(c)に示す
アルミナ−スピネル質では、昇温過程、保持過程で、小
さなピークが現れたものの、計測数は少ない。冷却開始
直後に計測数は急増し、1回目のピークとなり、再び減
少し、冷却後約120分で2回目のピークとなった。
FIG. 6 shows the relationship between the heat pattern and the number of AE signals measured (count rate) for each sample. In the magnesia-zircon material shown in FIG. 6 (a),
About 400 minutes after the start of holding at 1500 ° C., the number of measurements increased sharply. The rapid increase continued for about 200 minutes, and then maintained a high count rate for about 600 minutes before entering cooling. The number of measurements decreased drastically from the start of cooling to 800 ° C, and about 1 after cooling
It was almost 0 at 00 minutes. After that, the temperature decreased while measuring three large peaks until the temperature decreased to room temperature. Figure 6
In the magnesia-alumina material shown in (b),
During the holding process, the number of measurements was almost zero. The number of measurements increased rapidly after the start of cooling, and reached a peak at about 100 to 200 minutes after cooling. After that, the temperature decreased to room temperature. In the alumina-spinel material shown in FIG. 6C, a small peak appeared in the temperature rising process and the holding process, but the number of measurements was small. Immediately after the start of cooling, the number of measurements increased sharply, reached the first peak, then decreased again, and reached the second peak about 120 minutes after cooling.

【0031】本発明によると、流し込み材の材質によっ
て異なるAE信号の検出パターンは、以下のように整理
することができる。 (a)マグネシア−ジルコン質 マグネシア−ジルコン質では、試験後の切断面観察で
は、加熱面に垂直な亀裂が見られた。この亀裂は図6
(a)で示したa点で発生し始めて、b点まで成長し続
けることが、2次元位置評定の結果から分かっている。
マグネシア−ジルコン質では、焼成温度と室温での曲げ
強度及び弾性率の関係から、昇温、温度保持過程で焼結
が進行することがわかった。以上のことから、マグネシ
ア−ジルコン質は片面加熱による焼結の不均一差が大き
い材料であるといえる。 (b)マグネシア−アルミナ質 図6(b)に示すマグネシア−アルミナ質では、試験後
の切断面の観察では、加熱面に垂直な亀裂が見られた。
マグネシア−ジルコン質では、焼成温度と室温での曲げ
強度及び弾性率の関係から、昇温、温度保持過程で亀裂
発生にいたらない程度のマトリックスの破壊が起こり強
度と弾性率が低下し、冷却過程に入って亀裂が発生した
ものと考えられる。 (c)アルミナ−スピネル質 図6(c)に示すシリカゾルをバインダとして用いたこ
の系では、焼成温度と共に室温強度が著しく増加するも
のの、気孔率はほとんど変化しなかった。強度の増加に
伴って、弾性率はごくわずか増加した。この系は加熱面
側と冷却面側での不均一差の小さい材料といえる。
According to the present invention, the detection pattern of the AE signal which differs depending on the material of the casting material can be arranged as follows. (A) Magnesia-zircon material In the magnesia-zircon material, cracks perpendicular to the heating surface were observed in the observation of the cut surface after the test. This crack is shown in Figure 6.
It is known from the results of the two-dimensional position evaluation that the point a shown in (a) starts to occur and the point b continues to grow.
In the case of magnesia-zircon, it was found from the relationship between the firing temperature and the bending strength and elastic modulus at room temperature that sintering proceeds during the temperature rising and temperature holding processes. From the above, it can be said that the magnesia-zircon material is a material having a large non-uniformity in sintering due to heating on one side. (B) Magnesia-alumina material In the magnesia-alumina material shown in FIG. 6 (b), cracks perpendicular to the heating surface were observed in the observation of the cut surface after the test.
In the magnesia-zircon material, due to the relationship between the bending temperature and the bending modulus at room temperature and the elastic modulus, the strength and elastic modulus of the matrix decrease to the extent that cracking does not occur during the temperature rising and temperature holding processes, and the cooling process decreases. It is probable that a crack occurred when it entered. (C) Alumina-spinel In this system using the silica sol shown in FIG. 6 (c) as a binder, the room temperature strength increased remarkably with the firing temperature, but the porosity hardly changed. The modulus increased only slightly with increasing strength. This system can be said to be a material with a small non-uniformity difference between the heating surface side and the cooling surface side.

【0032】実施例−4 スラグ浸透スポーリング試験を次のように行った。用い
た試料は、マグネシア質である。試験片サイズは200
×200×100mmとし、200×200mmの面を
加熱した。最高温度は1500℃とし、耐火物内に4.
2℃/mmの温度勾配を付けた。最高保持温度に達して
5時間後、転炉スラグを400g(0〜2g/cm2
投入し、18時間保持した後、900〜1500℃の温
度変化を6回与えた後冷却した。この試験片にはAEセ
ンサを4個取付け、亀裂の発生位置、時間を記録した。
冷却後、試験片を切断し、図1、2に示したのと同じ方
法で亀裂の評価を行った。
Example 4 A slag permeation spalling test was conducted as follows. The sample used is magnesia. The test piece size is 200
It was set to × 200 × 100 mm, and the surface of 200 × 200 mm was heated. Maximum temperature is 1500 ° C, and refractory is 4.
A temperature gradient of 2 ° C / mm was applied. 5 hours after reaching the maximum holding temperature, 400 g (0-2 g / cm 2 ) of converter slag
After being charged and held for 18 hours, a temperature change of 900 to 1500 ° C. was applied 6 times and then cooled. Four AE sensors were attached to this test piece, and the crack generation position and time were recorded.
After cooling, the test piece was cut and evaluated for cracks by the same method as shown in FIGS.

【0033】図7、図8に本発明による、発生亀裂のグ
ラフ化の結果の一部を示す。曲線40はスラグ400
g、曲線41はスラグ800gの交点の数を示してい
る。スラグ400gでは加熱面からの距離14mm、ス
ラグ800gでは18mmとなっており、スラグ投入量
の増加にともなって、横亀裂がより深いところで発生し
ているのがわかる。また、加熱面側から冷却面側にかけ
ての弾性率(室温値)が、図9に示すように、スラグを
投入しない場合曲線51であり2g/cm2 投入した場
合では曲線50に示す通りとなる。これに基づいた熱応
力計算から、試料中心部で発生する加熱面と垂直方向の
応力(横亀裂の発生要因)は、それぞれ弾性率曲線5
0、51に応じ図10に示した曲線60、61のように
なり、図8に示した横亀裂のグラフ化の結果と良い一致
をみた。
FIG. 7 and FIG. 8 show a part of the results of graphing the generated cracks according to the present invention. Curve 40 is slag 400
The curve 41 indicates the number of intersections of the slag 800g. The distance from the heated surface is 14 mm for 400 g of slag and 18 mm for 800 g of slag, and it can be seen that lateral cracks have occurred at a deeper depth as the amount of slag added increases. Further, the elastic modulus (room temperature value) from the heating surface side to the cooling surface side is, as shown in FIG. 9, a curve 51 when slag is not charged and a curve 50 when 2 g / cm 2 is charged. . From the thermal stress calculation based on this, the stress (factor of occurrence of lateral crack) in the direction perpendicular to the heating surface generated in the center of the sample is calculated by the elastic modulus curve 5 respectively.
Curves 60 and 61 shown in FIG. 10 were obtained according to 0 and 51, and good agreement was seen with the result of graphing the lateral cracks shown in FIG.

【0034】[0034]

【発明の効果】本発明によるスラグ浸透スポーリング試
験方法は、開発品の実鍋使用結果と良く一致し、実鍋へ
の適用判定に有効であるといえる。また、本来不焼成で
ある流し込み耐火物の持つ、不焼成起因の割れを加熱中
にリアルタイムで観察でき、片面からの加熱によって引
き起こされる物性の不均一さの程度を評価できる。
The slag infiltration spalling test method according to the present invention is in good agreement with the result of using the developed actual pot, and can be said to be effective in determining the application to the actual pot. In addition, cracks due to non-firing which are inherently non-firing of cast refractory can be observed in real time during heating, and the degree of non-uniformity of physical properties caused by heating from one side can be evaluated.

【0035】さらに、本発明によるスラグ浸透スポーリ
ング試験方法と、これによって発生した亀裂の定量化
は、これまで目視観察にとどまっていた亀裂評価を例え
ば弾性率の変化といった物性値と結び付けて評価するこ
とを可能とした。
Further, the slag permeation spalling test method according to the present invention and the quantification of cracks generated by the slag permeation spalling test are evaluated by associating the crack evaluation which has been limited to visual observation with physical property values such as change in elastic modulus. Made it possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラグ浸透スポーリング試験装置の模式図であ
る。
FIG. 1 is a schematic diagram of a slag permeation spalling test apparatus.

【図2】亀裂定量化の手順を説明する説明図である。FIG. 2 is an explanatory diagram illustrating a crack quantification procedure.

【図3】亀裂の定量化を示す図である。FIG. 3 is a diagram showing quantification of cracks.

【図4】スラグ浸透スポーリング試験装置による試験結
果と実鍋使用実績を示すグラフである。
FIG. 4 is a graph showing test results by a slag infiltration spalling test device and actual pot usage results.

【図5】スラグ回転浸食法と末川らの方法による試験結
果と実鍋使用実績との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the test results by the slag rotary erosion method and the method of Suekawa et al.

【図6】AE信号のカウントレイトのグラフである。FIG. 6 is a graph of a count rate of an AE signal.

【図7】加熱面からの距離と交点の数の関係を示すグラ
フである。
FIG. 7 is a graph showing the relationship between the distance from the heating surface and the number of intersections.

【図8】加熱面からの距離と交点の数の関係を示すグラ
フである。
FIG. 8 is a graph showing the relationship between the distance from the heating surface and the number of intersections.

【図9】加熱面からの距離と弾性率の値を示すグラフで
ある。
FIG. 9 is a graph showing the values of the elastic modulus and the distance from the heating surface.

【図10】加熱面からの距離と応力との関係を示すグラ
フである。
FIG. 10 is a graph showing the relationship between the distance from the heating surface and the stress.

【図11】熱応力計算による量応力分布図である。FIG. 11 is a quantitative stress distribution diagram by thermal stress calculation.

【図12】熱応力計算による量応力分布図である。FIG. 12 is a quantitative stress distribution diagram by thermal stress calculation.

【符号の説明】[Explanation of symbols]

1 発熱体 2 断熱材 3 鉄皮 4 AEセン
サ 5 熱電対 6 耐火物試
料 7 スラグ 8 加熱面 9 背面 10 交点 11 縦亀裂 12 Y軸 13 測定線 14 ピッチ
DESCRIPTION OF SYMBOLS 1 Heating element 2 Heat insulating material 3 Iron skin 4 AE sensor 5 Thermocouple 6 Refractory sample 7 Slag 8 Heating surface 9 Back surface 10 Intersection point 11 Vertical crack 12 Y axis 13 Measuring line 14 Pitch

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炉の底部に設置された耐火物試料の上面
でスラグを溶融させた後、炉の温度を上昇、下降させる
ことを特徴とする耐火物の構造スポーリング試験方法。
1. A structural spalling test method for a refractory, which comprises melting the slag on the upper surface of a refractory sample installed at the bottom of the furnace and then raising or lowering the temperature of the furnace.
【請求項2】 一辺の長さが100乃至400mm、厚
さが50乃至200mmである耐火物試料を用いること
を特徴とする請求項1記載の試験方法。
2. The test method according to claim 1, wherein a refractory sample having a side length of 100 to 400 mm and a thickness of 50 to 200 mm is used.
【請求項3】 耐火物試料上面における加熱温度を12
00℃以上とし、試料内温度勾配を2〜10℃/mmと
し、耐火物試料上面の面積1cm2 当り、0.3g以上
のスラグを耐火物試料上面で溶融させ、スラグ溶融後の
最高温度域で4時間以上加熱することを特徴とする請求
項1記載の試験方法。
3. The heating temperature on the upper surface of the refractory sample is set to 12
The temperature within the sample is set to 00 ° C or more, the temperature gradient in the sample is set to 2 to 10 ° C / mm, and 0.3 g or more of slag is melted on the upper surface of the refractory sample per 1 cm 2 of the upper surface of the refractory sample, and the maximum temperature range after slag melting The test method according to claim 1, wherein heating is performed for 4 hours or more.
【請求項4】 不定形耐火物試料を炉内に一面を露出さ
せて配置し、炉の温度を上昇、降下させ、該不定形耐火
物の冷却面側で検出した音響情報から、不定形耐火物試
料内に発生した割れを判定評価することを特徴とする不
定形耐火物の焼成起因割れの評価方法。
4. An amorphous refractory sample is placed in a furnace with one surface exposed, the temperature of the furnace is raised and lowered, and the amorphous refractory is detected from acoustic information detected on the cooling surface side of the amorphous refractory. A method for evaluating cracks caused by firing of an irregular-shaped refractory, characterized by judging and evaluating cracks that have occurred in a material sample.
【請求項5】 炉の底部に設置された耐火物試料設置部
と、該耐火物試料に取り付けたアコースティックエミッ
ションセンサと、該耐火物試料の上面側から加熱する発
熱体と、炉温を上昇下降させる装置とを備えたことを特
徴とする耐火物の試験装置。
5. A refractory sample installation section installed at the bottom of the furnace, an acoustic emission sensor attached to the refractory sample, a heating element for heating from the upper surface side of the refractory sample, and a furnace temperature rise and fall. A device for testing a refractory material, comprising:
JP19717993A 1993-04-13 1993-08-09 Refractory structure spalling test method, firing crack evaluation method and test apparatus Expired - Fee Related JP3754094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19717993A JP3754094B2 (en) 1993-04-13 1993-08-09 Refractory structure spalling test method, firing crack evaluation method and test apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-86038 1993-04-13
JP8603893 1993-04-13
JP19717993A JP3754094B2 (en) 1993-04-13 1993-08-09 Refractory structure spalling test method, firing crack evaluation method and test apparatus

Publications (2)

Publication Number Publication Date
JPH06347457A true JPH06347457A (en) 1994-12-22
JP3754094B2 JP3754094B2 (en) 2006-03-08

Family

ID=26427199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19717993A Expired - Fee Related JP3754094B2 (en) 1993-04-13 1993-08-09 Refractory structure spalling test method, firing crack evaluation method and test apparatus

Country Status (1)

Country Link
JP (1) JP3754094B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017295A (en) * 2005-07-07 2007-01-25 Nippon Steel Corp Refractory testing method and refractory tester
CN107121334A (en) * 2017-04-28 2017-09-01 西南大学 Reinforced concrete structure safety monitoring system and method under fire condition based on magnetic field
KR20190067472A (en) * 2017-12-07 2019-06-17 주식회사 포스코 Damage simulator for refractory and manufacture apparatus thereof
CN111256475A (en) * 2020-01-19 2020-06-09 南京江宁分析仪器有限公司 Flame-retardant wood fire-proof performance test furnace and test method thereof
CN112611667A (en) * 2020-11-03 2021-04-06 北京科技大学 Physical simulation test device for steel ladle slag line resistant material erosion corrosion and use method
CN114383931A (en) * 2021-12-27 2022-04-22 新源动力股份有限公司 Method for evaluating high and low temperature resistance of metal bipolar plate of fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017295A (en) * 2005-07-07 2007-01-25 Nippon Steel Corp Refractory testing method and refractory tester
CN107121334A (en) * 2017-04-28 2017-09-01 西南大学 Reinforced concrete structure safety monitoring system and method under fire condition based on magnetic field
CN107121334B (en) * 2017-04-28 2019-05-17 西南大学 Reinforced concrete structure safety monitoring system and method under fire condition based on magnetic field
KR20190067472A (en) * 2017-12-07 2019-06-17 주식회사 포스코 Damage simulator for refractory and manufacture apparatus thereof
CN111256475A (en) * 2020-01-19 2020-06-09 南京江宁分析仪器有限公司 Flame-retardant wood fire-proof performance test furnace and test method thereof
CN112611667A (en) * 2020-11-03 2021-04-06 北京科技大学 Physical simulation test device for steel ladle slag line resistant material erosion corrosion and use method
CN112611667B (en) * 2020-11-03 2022-07-15 北京科技大学 Physical simulation test device for steel ladle slag line resistant material erosion corrosion and use method
CN114383931A (en) * 2021-12-27 2022-04-22 新源动力股份有限公司 Method for evaluating high and low temperature resistance of metal bipolar plate of fuel cell

Also Published As

Publication number Publication date
JP3754094B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
US4667725A (en) Method for producing cast-iron, and in particular cast-iron which contains vermicular graphite
Andreev et al. Thermal and mechanical cyclic tests and fracture mechanics parameters as indicators of thermal shock resistance–case study on silica refractories
US9121803B2 (en) Thermal distortion tester
JP3754094B2 (en) Refractory structure spalling test method, firing crack evaluation method and test apparatus
CN106197027B (en) A kind of device and method for detecting dry type ramming refractory material sintering character
CN107290271A (en) The method that magnesia carbon brick anti-erosion experiment is carried out using small intermediate frequency stove
Damhof et al. Experimental analysis of the evolution of thermal shock damage using transit time measurement of ultrasonic waves
Brochen et al. Determination of the thermal shock resistance of refractories
Banerjee Properties of refractories
CN213121688U (en) Test system for evaluating hot surface viscous layer properties of blast furnace hearth
JP2000039412A (en) Refractory testing device
JPH08189886A (en) Slag permeating spalling test device equipped with constraint force
Cockcroft et al. Thermal Stress Analysis of Fused‐Cast AZS Refractories during Production: Part I, Industrial Study
CN110806362A (en) Method for testing slag adhering performance of refractory brick for zinc leaching slag volatilization kiln
CN116858758A (en) Slag resistance test method for refractory material
JPH0618520A (en) Method for evaluating corrosion resistance of refractory
TWI792485B (en) continuous casting method for steel
JP2637004B2 (en) Evaluation method of powder for continuous casting of low carbon steel
KR102036793B1 (en) Refractory indicator brick and steelmaking ladle using the same
CN220063781U (en) Experimental device for high-temperature material erosion by melt
WO2017157444A1 (en) Taphole assembly
SU1458068A1 (en) Apparatus for testing material of metal moulds
Darban et al. High-temperature tensile strength of alumina-spinel refractory by Brazilian test at 1200oC coupled with DIC in-situ monitoring
JP3037144U (en) Refractory test furnace structure
Blumenfeld et al. Recent improvements in Arcelor steel ladles through optimization of refractory materials, steel shell and service conditions

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees