JPH0634707B2 - Method for producing yeast cells - Google Patents

Method for producing yeast cells

Info

Publication number
JPH0634707B2
JPH0634707B2 JP1256854A JP25685489A JPH0634707B2 JP H0634707 B2 JPH0634707 B2 JP H0634707B2 JP 1256854 A JP1256854 A JP 1256854A JP 25685489 A JP25685489 A JP 25685489A JP H0634707 B2 JPH0634707 B2 JP H0634707B2
Authority
JP
Japan
Prior art keywords
yeast
medium
culture
ethanol
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1256854A
Other languages
Japanese (ja)
Other versions
JPH03117480A (en
Inventor
孝規 東原
智雄 鈴木
宙朗 太宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1256854A priority Critical patent/JPH0634707B2/en
Publication of JPH03117480A publication Critical patent/JPH03117480A/en
Publication of JPH0634707B2 publication Critical patent/JPH0634707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は海洋酵母を用いて、再生産可能なバイオマス資
源から大量に生産できるエタノールを発酵原料として、
リノール酸(18:2)とリノレン酸(18:3)含量の高い
脂質を菌体内に蓄積する酵母菌体を製造する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention uses marine yeast as a fermentation raw material, which is ethanol that can be produced in large quantities from reproducible biomass resources.
The present invention relates to a method for producing yeast cells which accumulate lipids having a high linoleic acid (18: 2) and linolenic acid (18: 3) content in the cells.

さらに詳細には、カンジダ属に属しエタノール資化性を
有する海洋酵母菌株をエタノールを炭素源として含有す
る培地で培養し、リノール酸とリノレン酸含量の高い脂
質を含む酵母菌体を製造する方法に関する。
More specifically, the present invention relates to a method for producing a yeast cell containing a lipid having a high linoleic acid and linolenic acid content, by culturing a marine yeast strain belonging to the genus Candida and having ethanol-assimilating ability in a medium containing ethanol as a carbon source. .

〔従来の技術〕[Conventional technology]

従来、微生物タンパク質(SCP)は養魚飼料や家畜の飼
料として利用できることが知られている。そして、これ
らのSCPは糖蜜、パルプ廃液,n−パラフィン、メタ
ン、メタノールおよびエタノールなどの原料から生産す
ることができる(桝田淑郎,微生物タンパクの開発,講
談社,1978年)。
Conventionally, it is known that microbial protein (SCP) can be used as feed for fish farming and feed for livestock. And these SCPs can be produced from raw materials such as molasses, pulp waste liquor, n-paraffin, methane, methanol and ethanol (Yoshiro Masuda, Development of Microbial Protein, Kodansha, 1978).

また、海洋酵母は養魚飼料や海産魚類の種苗生産に不可
欠な動物プランクトン(シオミズツボワムシ)の餌料に
なることも知られている(特公昭60−40808号)。
It is also known that marine yeast serves as a feed for zooplankton (Rhinoceros rotifer), which is indispensable for fish feed and seed production of marine fish (Japanese Patent Publication No. 60-40808).

最近、魚も哺乳動物と同じように魚種によって異なる
が、18:2,18:3及びω3高度不飽和脂肪酸を必須脂肪
酸として要求することがわかってきた。例えば、ギンザ
ゲは18:3を、またシロザケは海水または淡水のいずれ
で飼育しても18:2と18:3を要求する(日水誌,48巻,
1745頁,1982年)。
Recently, fish have been found to require 18: 2, 18: 3 and ω3 polyunsaturated fatty acids as essential fatty acids, although they differ depending on the fish species as in mammals. For example, coho salmon demand 18: 3, and chum salmon require 18: 2 and 18: 3, whether raised in seawater or freshwater (Jissui, 48,
1745, 1982).

しかしながら、従来開発されたパン酵母、パルプ酵母、
石油酵母などのSCPが養魚用飼料として使用された場
合、これらの酵母菌体は水中での分散が悪く餌料効率が
劣り、生酵母であっても海水のようなイオン濃度の高い
高張液中では不安定で菌体中の有効成分の流出を起こす
と共に、飼育水の汚染を引き起こす欠点を有している
(代田昭彦,水産餌料生物学,303頁,恒星社厚生閣,1
975年)。
However, conventionally developed baker's yeast, pulp yeast,
When SCP such as petroleum yeast is used as a feed for fish farming, these yeast cells are poorly dispersed in water and the feed efficiency is poor, and even live yeast is high in hypertonic solution with high ion concentration like seawater. It is unstable and causes the active ingredient in the cells to flow out, and also has the drawback of causing contamination of breeding water (Akihiko Shirota, Fisheries Biology, p. 303, Seiseisha Koseikaku, 1
975).

上記のような欠点を解決するため、海洋酵母が開発され
ているが、発酵原料にグルコースやアルコール発酵母液
(日水誌,49巻,1015頁,1983年)が使用されている。
また、海洋性酵母のエタノール資化性についての研究報
告があるが、エタノール資化性は菌の生理的性質の一部
として知られているにすぎない(日水誌,49巻,1015
頁,1983年)。
Marine yeasts have been developed in order to solve the above-mentioned drawbacks, but glucose and alcohol yeast-producing liquid (Nissui, 49, 1015, 1983) are used as fermentation raw materials.
In addition, although there are research reports on the ethanol-utilizing ability of marine yeast, ethanol-utilizing ability is only known as a part of the physiological properties of the fungus (Nissui, 49, 1015).
P., 1983).

海洋酵母からのSCPの生産に、大量供給が可能なエタノ
ールを利用する試みはみられない。
There have been no attempts to use ethanol, which can be supplied in large quantities, to produce SCP from marine yeast.

また、微生物による油脂の生産に関する研究は古くから
行われているが、特殊な用途や機能をもった油脂、例え
ば必須脂肪酸であるリノール酸等を多量に含む油脂の生
産に関する研究は少なく、今だ目的とする成果は得られ
ていない(油化学,31巻,431頁,1982年)。リノール
酸含量の高い脂質を形成する酵母菌体の製造法が、特公
昭57−2314号に記載されているが、エタノールを炭素源
とした場合、中性脂質の脂肪酸組成で18:2が11.2%、1
8:3は1.3%、極性脂質のそれで18:2が13.8%、18:3
が1.6%とその含有量は高くなく、とくに18:3含量は少
ない。メタノールを炭素源とした場合、中性脂質の脂肪
酸組成で18:2含量は約倍の22.8%に増加しているが、1
8:3含量は1.7%と低い。以上のように微生物により1
8:2を多量に含む油脂の生産が試みられているが、いず
れも満足できるものではなかった。
Also, research on the production of fats and oils by microorganisms has been conducted for a long time, but there is little research on the production of fats and oils with special uses and functions, for example, fats and oils containing a large amount of linoleic acid, which is an essential fatty acid, The desired result has not been obtained (Oil Chemistry, Vol. 31, p. 431, 1982). A method for producing a yeast cell that forms a lipid having a high linoleic acid content is described in Japanese Examined Patent Publication No. 57-2314, but when ethanol is used as a carbon source, 18: 2 is 11.2 in the fatty acid composition of the neutral lipid. %, 1
8: 3 is 1.3%, that of polar lipids 18: 2 is 13.8%, 18: 3
The content is 1.6%, which is not high, and especially the content of 18: 3 is low. When methanol was used as the carbon source, the 18: 2 content of the fatty acid composition of neutral lipids doubled to 22.8%.
The 8: 3 content is as low as 1.7%. By microorganisms as above 1
Attempts have been made to produce fats and oils containing a large amount of 8: 2, but none of them was satisfactory.

エタノールを発酵原料として、リノール酸(18:2)と
リノレン酸(18:3)含量の高い脂質を菌体内に蓄積す
る海洋酵母の生産については全く知られていない。
Nothing is known about the production of marine yeast that accumulates lipids with a high linoleic acid (18: 2) and linolenic acid (18: 3) content in cells using ethanol as a fermentation raw material.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、以上のようなことに鑑みなされたものであっ
て、本発明の目的はバイオマス資源から大量に供給され
るエタノールから、海水中で安定で飼料効率がよく、か
つ必須脂肪酸であるリノール酸(18:2)とリノレン酸
(18:3)含量の高い脂質を菌体内に蓄積する海洋酵母
を生産する方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide linol, which is an essential fatty acid, which is stable in seawater, has good feed efficiency, from ethanol which is supplied in large quantities from biomass resources. It is intended to provide a method for producing a marine yeast that accumulates lipids having a high content of acid (18: 2) and linolenic acid (18: 3) in cells.

本発明者らはこの目的を達成するため鋭意研究を重ねた
結果、エタノール資化性を有し、エタノールを炭素源と
する培地でよく増殖し、リノール酸(18:2)とリノレ
ン酸(18:3)含量の高い脂質を菌体内に蓄積する海洋
酵母を、沿岸海域の海水から見出し、本発明を完成する
に至った。
The present inventors have conducted extensive studies to achieve this object, and as a result, have ethanol assimilation, grow well in a medium containing ethanol as a carbon source, and develop linoleic acid (18: 2) and linolenic acid (18: 2). : 3) A marine yeast that accumulates a high content of lipids in the microbial cells has been found from seawater in coastal waters, and the present invention has been completed.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の要旨は、カンジダ属に属し、エタノール資化性
を有し、リノール酸とリノレン酸含量の高い脂質を菌体
内に形成することができる菌株を、エタノールを炭素源
として含有する培地において培養し、リノール酸とリノ
レン酸含量の高い脂質を含む酵母菌体を製造する方法に
ある。
The gist of the present invention is that belonging to the genus Candida, having ethanol assimilation, and capable of forming a lipid having a high linoleic acid and linolenic acid content in the cells, culturing in a medium containing ethanol as a carbon source. And a method for producing a yeast cell containing a lipid having a high linoleic acid and linolenic acid content.

本発明においては、海洋酵母でカンジダ属に属し、エタ
ノール資化性を有し、18:2と18:3を含有する脂質を菌
体内に形成する微生物であればすべて使用することがで
きる。このような微生物として例えば本発明者らが沿岸
の海水から分離したカンジダ属(Candida)sp.S30W2株
(FERM P-11023)を例示できる。
In the present invention, any microorganism can be used as long as it is a marine yeast belonging to the genus Candida, having ethanol assimilation, and forming lipids containing 18: 2 and 18: 3 in the cells. As such a microorganism, for example, the Candida sp. S30W2 strain (FERM P-11023) isolated from coastal seawater by the present inventors can be exemplified.

この菌株S30W2(FERM P-11023)の菌学的性質は下記の
如くである。
The mycological properties of this strain S30W2 (FERM P-11023) are as follows.

1.形態学的性質 1)栄養細胞1 大きさ(μm)(2−5)
×(3−12) 形 状 楕円形な
いしときには伸長形 2)栄養体生殖1 多極出芽によってよく増殖
する。
1. Morphological properties 1) Vegetative cells * 1 size (μm) (2-5)
× (3-12) shape oval or sometimes elongated 2) vegetative reproduction * 1 Proliferate well by multipolar budding.

3)仮性菌糸2 芽出胞子を伴った仮性菌糸
を形成する。
3) Pseudohyphae * 2 Form pseudohyphae with spores.

4)分裂子2 形成せず。4) No meiosis * 2 formation.

5)子のう胞子3 形成せず。5) Ascospores * 3 No formation.

6)射出胞子4 形成せず。6) Ejected spores * 4 No formation.

7)テリオスポア5 形成せず。7) Teriospore * 5 Not formed.

2.生理的性質 2)カロチノイド色素6生成せず。2. Physiological properties 2) Carotenoid pigment * 6 is not produced.

3.その他 本菌株は炭化水素資化能を有する酵母である本菌株のコ
ロニー形態はYM及びGPY7寒天平板培地では、表面が
平滑(smooth)なコロニー(S型コロニー)であるが、
n−アルカン混合物を炭素源とした寒天斜面培地で保存
し、その培地での植継ぎ回数の多い菌株では、表面が粗
い(rough)コロニー(R型コロニー)の出現がみられ
た。R型コロニーを分離し、S型コロニーと比較した結
果、エタノールを炭素源としる培地で、菌体収量,菌体
脂質含量及び脂質の脂肪酸組成に大きな差は認められな
かった。
3. Others This strain is a yeast that has the ability to assimilate hydrocarbons The colony morphology of this strain is YM and GPY * 7 agar plate medium, but the surface is a smooth colony (S-type colony).
The appearance of rough colonies (R-type colonies) was observed in strains with a large number of subcultures on the agar slant medium containing the n-alkane mixture as a carbon source. As a result of separating the R-type colonies and comparing them with the S-type colonies, no significant difference was observed in the cell yield, the cell lipid content and the fatty acid composition of the lipids in the medium containing ethanol as a carbon source.

また、本菌株のGPY培地を用いたときの生育温度を第1
図に示した。最適生育温度は10〜20℃であったが、5℃
の低温でもよく増殖する。しかし30℃以上ではほとんど
増殖できない低温性の酵母であった。第1図の試験はL
型試験にGPY培地10mを入れ、酵母S30W2株を接種し、
振とう培養を行った。第1図−(A)は振とう温度勾配培
養装置、第1図−(B)は恒温培養室または恒温水槽に
て、それぞれ振とう培養した。 1:YM液体培地(酵母エキス(Difco)3g,麦芽エキ
ス(Difco)3g,ヘプトン(Difco)5g,グルコース10
g,蒸溜水1,pH5.5)にて25℃,3日培養後観察。 2:コーンミール寒天培地(Difco)。25℃,1〜1
7日培養,スライドカルチャ法。 3:YM寒天培地(Difco),野菜汁V−8寒天培地,G
orodkowa寒天培地及びMcClaryらのAcetate寒天培地を用
い、25℃で3日培養後、20℃にて6週間培養し観察。 4:バレイショ・グルコース寒天培地(Difco)に
て、25℃で11日また20℃で4週間培養し観察。スライ
ドグラス法。 5:コーンミール寒天培地(Difco)で10℃,6週間
培養し観察。 6:麦芽エキス寒天培地(Oxoid)を用い20℃と25℃
で16日培養して観察。 7:GPY培地(グルコース20g,ペプトン(Difco)10
g,酵母エキス(Difco)5g,蒸留水250m,熟成海
水750m,寒天20g,pH6.0,液体培地の場合はpH5.5
とした。) 以上の菌学的性質をThe yeasts a taxonomic study(3rd
ed.,N.J.W.Kreger-van Rij編,1984年)と対比した結
果、本菌株はカンジダ属(Candida)に属すると認めら
れたので、カンジダ sp.S30W2株(Candida sp.S30W2
株)と命名した。
In addition, the growth temperature when GPY medium of this strain was used
As shown in the figure. The optimum growth temperature was 10 to 20 ℃, but 5 ℃
It grows well even at low temperatures. However, it was a cold-type yeast that could hardly grow above 30 ° C. The test in Fig. 1 is L
Put 10m of GPY medium into the mold test, inoculate yeast S30W2 strain,
Shaking culture was performed. FIG. 1- (A) shows shaking temperature gradient culture equipment, and FIG. 1- (B) shows shaking culture in a constant temperature culture room or constant temperature water tank. * 1: YM liquid medium (yeast extract (Difco) 3 g, malt extract (Difco) 3 g, heptone (Difco) 5 g, glucose 10)
g, distilled water 1, pH 5.5), observed at 25 ° C for 3 days, then observed. * 2: Cornmeal agar medium (Difco). 25 ° C, 1-1
7 days culture, slide culture method. * 3: YM agar (Difco), vegetable juice V-8 agar, G
Using orodkowa agar medium and Acetate agar medium of McClary et al., cultured at 25 ° C for 3 days and then at 20 ° C for 6 weeks and observed. * 4: Cultured on potato-glucose agar medium (Difco) for 11 days at 25 ° C and 4 weeks at 20 ° C for observation. Slide glass method. * 5: Observed by culturing on corn meal agar medium (Difco) at 10 ° C for 6 weeks. * 6: Using malt extract agar medium (Oxoid) at 20 ℃ and 25 ℃
Cultivate for 16 days and observe. * 7: GPY medium (glucose 20 g, peptone (Difco) 10
g, yeast extract (Difco) 5 g, distilled water 250 m, aged seawater 750 m, agar 20 g, pH 6.0, pH 5.5 for liquid medium
And The yeasts a taxonomic study (3rd
ed., NJWKreger-van Rij, ed., 1984). As a result, it was confirmed that this strain belongs to the genus Candida. Therefore, the strain Candida sp.S30W2 (Candida sp.S30W2
Ltd.).

本発明の微生物を培養する培地及び培養条件は、通常の
酵母を培養するために用いられる培地及び培養条件を使
用することができる。
As the medium and culture conditions for culturing the microorganism of the present invention, the medium and culture conditions used for culturing ordinary yeast can be used.

本発明に使用される菌株を培養する培地は、天然海水ま
たは人工海水、またそれらを適度に希釈した海水に、主
炭素源としてエタノール、窒素源、無機塩類及びビタミ
ンその他の生育因子を適当に含有する培地であれば、天
然培地でも合成培地でも使用できる。また一般酵母の培
地、例えばWickerhamの合成培地(L.J.Wickerham,Taxon
omy of yeasts,Technical Bulletin No.1029,p.6−9,Un
ited States Department of Agriculture,Washington,1
951年)を使用することもできる。
The culture medium for culturing the strain used in the present invention, natural seawater or artificial seawater, or seawater obtained by appropriately diluting them, appropriately contains ethanol, a nitrogen source, inorganic salts and vitamins and other growth factors as main carbon sources. A natural medium or a synthetic medium can be used as long as it is a culture medium. In addition, general yeast medium, for example, Wickerham synthetic medium (LJ Wickerham, Taxon
omy of yeasts, Technical Bulletin No.1029, p.6-9, Un
ited States Department of Agriculture, Washington, 1
951) can also be used.

炭素源のエタノール濃度は0.1〜5.0%(v/v),好まし
くは0.5〜2%(v/v)。エタノールは高濃度になと微生
物の生育を阻害する。またエタノールは低沸点のため培
養中に蒸散する可能性もある。このようなことから、エ
タノールは低濃度を維持して、培養中に適当量のエタノ
ールをフィードすることは好ましい。しかし最初に添加
したエタノールのみで培養を終了させることもできる。
The ethanol concentration of the carbon source is 0.1 to 5.0% (v / v), preferably 0.5 to 2% (v / v). At high concentrations, ethanol inhibits the growth of microorganisms. In addition, ethanol has a low boiling point and may evaporate during culturing. Therefore, it is preferable to maintain a low concentration of ethanol and feed an appropriate amount of ethanol during the culture. However, it is also possible to terminate the culture only with the ethanol added first.

また、エタノールを炭素源として用いる場合、酵母菌株
が資化できる他の炭素源、例えば炭化水素、グルコース
などを併用してもよい。
When ethanol is used as a carbon source, other carbon sources that can be assimilated by the yeast strain, such as hydrocarbon and glucose, may be used in combination.

エタノールは、近年石油の代替エネルギーとして再生産
が可能なバイオマス資源から発酵法により大量に生産で
きるようになった(発酵と工業,39巻,490頁,1981
年;バイオサイエンスとインダストリー,47巻,844
頁,1989年)。
In recent years, ethanol has been able to be mass-produced by a fermentation method from a biomass resource that can be reproduced as an alternative energy to petroleum (fermentation and industry, 39, 490, 1981.
Year; Bioscience and Industry, 47, 844
P., 1989).

エタノールは水に易溶で発酵原料として取扱いやすく、
また古くから食品の一部として利用されている安全性の
高いものである。
Ethanol is easily soluble in water and easy to handle as a fermentation material,
It is also highly safe and has been used as a part of food since ancient times.

培地の窒素源としては、ペプトン、肉エキス、コンステ
ィープリカー、カザミノ酸、麦芽エキス、脱脂大豆など
の天然窒素源の他に、塩化アンモニウム、硫酸アンモニ
ウム、リン酸アンモニウム等のアンモニウム塩、硝酸ナ
トリウム、硝酸カリウムなどの硝酸塩等の無機窒素源、
尿素等の有機窒素源を用いることができる。培地中の窒
素源の濃度は通常0.01〜5.0%(w/v),好ましくは0.1
〜2.0%(w/v)である。
As the nitrogen source of the medium, in addition to natural nitrogen sources such as peptone, meat extract, constip liquor, casamino acid, malt extract, defatted soybean, ammonium salts such as ammonium chloride, ammonium sulfate and ammonium phosphate, sodium nitrate, potassium nitrate. Inorganic nitrogen sources such as nitrates,
An organic nitrogen source such as urea can be used. The concentration of nitrogen source in the medium is usually 0.01 to 5.0% (w / v), preferably 0.1.
~ 2.0% (w / v).

また、必要に応じて海水成分以外に硫酸銅、ヨウ化カリ
ウム、塩化鉄、モリブデン酸ナトリウム、硫酸亜鉛など
の無機塩類が用いられる。
Further, if necessary, in addition to seawater components, inorganic salts such as copper sulfate, potassium iodide, iron chloride, sodium molybdate, zinc sulfate and the like are used.

ビタミン類、アミノ酸類、核酸及びその塩類なども生育
因子として利用できる。また上記の生育因子を含有する
ペプトン、肉エキス、コンスティープリカー、カザミノ
酸、酵母エキスなども微量栄養源として使用できる。
Vitamins, amino acids, nucleic acids and salts thereof can also be used as growth factors. Further, peptone, meat extract, constip liquor, casamino acid, yeast extract and the like containing the above growth factors can also be used as a micronutrient source.

これらの培地成分は微生物の増殖を阻害しない濃度であ
ればとくに制限はない。
These medium components are not particularly limited as long as they have a concentration that does not inhibit the growth of microorganisms.

培地の海水濃度は100%自然海水または100%人工海水、
またはそれらを適当に希釈した海水でも使用できる。ま
た本菌株は第2図に示したように100%海水で調製した
培地より希釈海水を用いた培地が、菌体収量、脂質含量
とも良好であった。また本菌株は一般酵母の培地である
Wickerhamの合成培地(炭素化合物同化試験用培地)の
ビタミン類とアミノ酸類を0.5gの酵母エキスでおきか
え、炭素源としてエタノール1%(v/v)を添加した培
地でも増殖する。
The concentration of seawater in the medium is 100% natural seawater or 100% artificial seawater,
Alternatively, they can also be used in appropriately diluted seawater. In addition, as shown in FIG. 2, the culture medium prepared by using diluted seawater was superior to the culture medium prepared with 100% seawater in terms of the bacterial cell yield and lipid content. This strain is a medium for general yeast
The vitamins and amino acids in Wickerham's synthetic medium (medium for carbon compound assimilation test) are replaced with 0.5 g of yeast extract, and the medium also grows in a medium containing 1% (v / v) ethanol as a carbon source.

培養温度は3〜29℃、好ましくは5〜20℃とし、培地の
pHは3.5〜8.0、好ましくは4〜6とするのがよい。本菌
株の培養は振とう培養、通気撹拌培養または静置培養で
もよい。培養期間は温度によっても異なるが、通常20時
間程度から2週間位行う。
The culture temperature is 3 to 29 ° C., preferably 5 to 20 ° C.
The pH is 3.5 to 8.0, preferably 4 to 6. The culture of this strain may be shaking culture, aeration-agitation culture or static culture. The culture period varies depending on the temperature, but is usually about 20 hours to 2 weeks.

上記のように培養して、菌体内に18:2と18:3を含有す
る脂質が菌体内に生成蓄積される。培養液からの菌体及
び菌体からの脂質の採取は下記のように行う。
By culturing as described above, lipids containing 18: 2 and 18: 3 are produced and accumulated in the cells. Collection of cells and lipids from the culture is performed as follows.

培養終了後、培養液を遠心分離することにより菌体が得
られる。この菌体を水で十分洗浄した湿菌体をクロロホ
ルム−メタノール等の有機溶媒中で機械的に磨砕、撹拌
により、菌体から脂質を抽出する。この抽出物から減圧
下で有機溶媒を留去することによって、リノール酸(1
8:2)とリノレン酸(18:3)を含有する脂質が得られ
る。
After completion of the culture, the culture solution is centrifuged to obtain bacterial cells. Wet cells thoroughly washed with water are mechanically ground in an organic solvent such as chloroform-methanol and stirred to extract lipids from the cells. By removing the organic solvent from this extract under reduced pressure, linoleic acid (1
A lipid containing 8: 2) and linolenic acid (18: 3) is obtained.

本発明の方法で得られた海洋酵母は、養魚飼料、家畜飼
料、動物プランクトン飼料、高機能性脂質の製造におい
て特に有用なものである。
The marine yeast obtained by the method of the present invention is particularly useful in the production of fish feed, livestock feed, zooplankton feed and highly functional lipids.

次に実施例によりこの発明をさらに具体的に説明する。Next, the present invention will be described more specifically by way of examples.

実施例1 第1表の基本培地組成からエタノールを除いた培地100
mを500m容三角フラスコに入れ、オートクレーブ
で滅菌した後、濾過滅菌したエタノール1mを添加し
た。前記培地でカンジダsp.S30W2株(FERM P-11023)を
接種し、20℃,2日間振とう培養した培養液を前培養液
とした。この前培養液1mを前記培養フラスコに接種
し、ロータリーシェーカー(180rpm)により20℃で2日
間振とう培養した。
Example 1 Medium 100 excluding ethanol from the basic medium composition in Table 1
m was put in a 500 m Erlenmeyer flask, sterilized by an autoclave, and then 1 m of filter-sterilized ethanol was added. Candida sp. S30W2 strain (FERM P-11023) was inoculated in the above medium and shake-cultured at 20 ° C for 2 days to obtain a preculture liquid. This preculture liquid (1 m) was inoculated into the culture flask and shake-cultured at 20 ° C. for 2 days on a rotary shaker (180 rpm).

菌体収量(乾燥菌体重量DCW)は培養終了液10mを15
m容沈殿管に取り、遠心分離後、菌体を水で洗浄し、
110℃で一夜乾燥して重量を測定し、培養液101m当
りのDCWとして求めた。
The cell yield (dry cell weight DCW) is 15 after 10m of the culture solution.
Transfer to a m-volume sedimentation tube, centrifuge, wash the cells with water,
It was dried overnight at 110 ° C., weighed, and determined as DCW per 101 m of culture solution.

菌体からの脂質の抽出は次のように行った。菌の増殖に
応じて培養終了液400〜1500m(上記フラスコ4〜15
本)から遠心分離により菌体を採取した。この菌体を水
で洗浄した湿菌体3〜5gをItohらの方法(Yukagaku,
23巻,350頁,1974年)を用いて、クロロホルム−メタ
ノールの混合溶媒中でガラスビーズと共に磨砕、撹拌す
ることにより抽出した。この抽出した脂質を減圧デシケ
ーター中で乾燥した後、重量を測定し脂質量を求めた。
また、上記脂質抽出用の湿菌体の一部約0.6〜1.0gを秤
量びんに取り110℃で1夜乾燥して、乾燥菌体重量を求
めた。この乾燥菌体重量から湿菌体中の乾燥菌体量の比
率を求めた。この比率から、脂質抽出用湿菌体の乾燥菌
体量を算出した。菌体中の脂質含量はこの乾燥菌体当り
の含量として重量%で表示した。
Extraction of lipids from the cells was performed as follows. Depending on the growth of the bacterium, the culture completion liquid 400-1500m (the above flasks 4-15
Cells were collected by centrifugation. Wet cells were washed with water to obtain 3-5 g of wet cells and the method of Itoh et al. (Yukagaku,
23, p. 350, 1974), and extracted by grinding and stirring with glass beads in a mixed solvent of chloroform-methanol. The extracted lipid was dried in a vacuum desiccator and then weighed to determine the lipid amount.
Further, a portion of about 0.6 to 1.0 g of the wet microbial cell for lipid extraction was placed in a weighing bottle and dried at 110 ° C. overnight to obtain the dry microbial cell weight. From the dry cell weight, the ratio of the dry cell amount in the wet cell was determined. From this ratio, the dry bacterial cell amount of the wet bacterial cells for lipid extraction was calculated. The lipid content in the bacterial cells was expressed as the content per dry cell in% by weight.

脂質中の脂肪酸の分析は次のような行った。上記脂質20
〜30mgを90%メタノール性1NKOHを用いて80℃にて2
時間アルカリ分解後、14%、BF3メタノール錯塩処理に
より脂肪酸のメチルエステルを得た。この脂肪酸のメチ
ルエステルの組成はガスクロマトグラフにより分析し
た。
Analysis of fatty acids in lipids was performed as follows. Above lipid 20
~ 30mg 2 at 80 ° C with 90% methanolic 1N KOH
After alkaline decomposition for 14 hours, 14% BF 3 methanol complex salt treatment was performed to obtain methyl ester of fatty acid. The composition of the methyl ester of this fatty acid was analyzed by gas chromatography.

菌体収量、脂質含量及び脂質脂肪酸組成について検討し
た結果を第2表に示した。28時間の培養で脂質脂肪酸組
成中のリノール酸(18:2)とリノレン酸(18:3)の比
率が最も高く前者が38.3%、後者が22.4%、18:2と1
8:3の比率は脂肪酸組成中の60.7%を占めた。この値は
特公昭57−2341号に記載されているエタノールを炭素源
とした結果と比較すると、18:2で約3倍、18:3で約20
倍高く、特に18:3含量の高いことが特徴的である。培
養2日目になると18:2と18:3含量は約20%減少した。
第2表に示したように不飽和脂肪酸含量が高いことは低
温酵母の特徴を示しているものと思われる。
Table 2 shows the results of examining the cell yield, lipid content and lipid fatty acid composition. The highest ratio of linoleic acid (18: 2) and linolenic acid (18: 3) in the lipid fatty acid composition after 28 hours of culture was the highest at 38.3%, the latter at 22.4%, and 18: 2 and 1
The 8: 3 ratio accounted for 60.7% of the fatty acid composition. This value is about 3 times higher at 18: 2 and about 20 times at 18: 3 as compared with the results of using ethanol as a carbon source described in JP-B-57-2341.
Characteristically, it is twice as high, especially with a high 18: 3 content. By the second day of culture, the 18: 2 and 18: 3 contents decreased by about 20%.
As shown in Table 2, the high unsaturated fatty acid content seems to indicate the characteristics of cold yeast.

第2図に培地中の海水濃度の影響を検討した結果を示し
た。第1表の培地組成の人工海水を各種の濃度に希釈し
た人工海水におきかえた培地を使用した。海水濃度が低
いほど菌体収量と脂質含量が高くなった。また前記Wick
erhamの合成培地でもよく増殖した。この酵母は沿岸海
域から分離されたもので、食塩要求性については海洋細
菌のような特徴はみられなかった。一般に海洋酵母は、
耐塩性であるが、海洋細菌のような塩類要求性を示さな
いものが多いといわれている。
Figure 2 shows the results of examining the effect of seawater concentration in the medium. A medium in which artificial seawater having the medium composition shown in Table 1 was replaced with artificial seawater diluted to various concentrations was used. The lower the seawater concentration, the higher the cell yield and lipid content. Also said Wick
It also grew well in erham's synthetic medium. This yeast was isolated from coastal waters and did not show the characteristics of marine bacteria in terms of salt requirement. Generally, marine yeast
It is said that many of them are salt-tolerant, but do not show salt-requiring requirements like marine bacteria.

実施例2 カンジダsp.S30W2株(FERM P-11023)を用いて、次に菌
体収量、菌体脂質含量及び脂質脂肪酸組成に及ぼす培養
温度の影響を検討した。
Example 2 Using Candida sp. S30W2 strain (FERM P-11023), the effect of culture temperature on the cell yield, cell lipid content and lipid fatty acid composition was examined.

培地は第1表に示した培地組成の人工海水を1/4に希釈
した人工海水におきかえた培地を用いた。培養は5℃,
10℃,20℃で実施例1と同じように行った。菌体収量、
菌体中の脂質含量及び脂質の脂肪酸組成の分析は実施例
1と同様に行った。それらの結果は第3表に示した。
The medium used was a medium in which the artificial seawater having the medium composition shown in Table 1 was diluted to 1/4 and replaced with artificial seawater. Culture at 5 ℃,
The same procedure as in Example 1 was performed at 10 ° C and 20 ° C. Cell yield,
The analysis of the lipid content in the bacterial cells and the fatty acid composition of the lipid was performed in the same manner as in Example 1. The results are shown in Table 3.

菌体収量は10℃で最も高く、脂質含量は20℃に比べ5
℃,10℃の低温側でやや高い傾向がみられた。脂質中の
脂肪酸組成のうち18:2と18:3はいずれの培養温度にお
いても、培養初期に最も高く、脂質含量が最も高くなっ
た時点で著しく減少し、これ以後の定常期では大きな変
動はみられなかった。また18:3含量はとくに低温側で
高い値を示した。
Cell yield was highest at 10 ℃, lipid content was 5 ℃ compared to 20 ℃
The tendency was slightly higher on the low temperature side of ℃ and 10 ℃. Of the fatty acid composition in lipids, 18: 2 and 18: 3 were the highest at the beginning of the culture at any culture temperature, decreased significantly when the lipid content became the highest, and showed no significant fluctuations in the stationary phase thereafter. I couldn't see it. The 18: 3 content showed a high value especially at low temperatures.

以上のことから、増殖(growth phase)と培養温度をコ
ントロールすることにより、リノール酸(18:2)とリ
ノレン酸(18:3)含量の高い脂質を得ることができ
る。
From the above, by controlling the growth phase and the culture temperature, lipids with high linoleic acid (18: 2) and linolenic acid (18: 3) contents can be obtained.

10℃で最も高い菌体収量が得られたのは、低温酵母の増
殖特性を示すと共に、培養中に低沸点のエタノールの揮
散が少なく炭素源の利用効率がよいことにも起因してい
るものと考えられる。また、低温で培養すると18:2,1
8:3などの不飽和脂肪酸含量が高くなるのは、細胞膜の
流動性を維持するためと思われる。以上のことから、低
温での増殖、また脂質脂肪酸組成の中で18:2,18:3な
どの不飽和脂肪酸含量が高いことは、低温酵母の特性に
基づくものと推察される。
The highest cell yield at 10 ° C was due to the growth characteristics of the low-temperature yeast and the low efficiency of carbon source utilization with low volatilization of low boiling ethanol. it is conceivable that. Also, when cultured at low temperature, 18: 2,1
The higher unsaturated fatty acid content, such as 8: 3, seems to be to maintain the fluidity of the cell membrane. From the above, it is speculated that the growth at low temperature and the high content of unsaturated fatty acids such as 18: 2 and 18: 3 in the lipid fatty acid composition are due to the characteristics of the low temperature yeast.

〔発明の効果〕〔The invention's effect〕

本発明によれば、再生産可能なバイマス資源から石油の
代替エネルギーとして大量に供給できるエタノールを原
料として、これを微生物に資化せしめることにより、必
須脂肪酸である18:2と18:3含量の高い脂質を菌体内に
含む酵母菌体を製造することができる。本発明によって
得られる酵母菌体は、栄養価の高い養魚用飼料、家畜の
飼料及び海産魚類の種苗生産に必要な動物プランクトン
の餌料として広く使用することができる。また、本酵母
菌体は18:2と18:3含量の高い高機能性脂質の製造にも
利用できる。
According to the present invention, ethanol, which can be supplied in large quantities as an alternative energy to petroleum from renewable biomass resources, is used as a raw material, and by assimilating this into microorganisms, the essential fatty acids 18: 2 and 18: 3 A yeast cell containing a high lipid in the cell can be produced. The yeast cells obtained according to the present invention can be widely used as a feed for highly nutritive fish feed, a feed for livestock, and a feed for zooplankton, which is necessary for producing seedlings of marine fish. The yeast cells can also be used to produce highly functional lipids with high 18: 2 and 18: 3 contents.

更に、得られた酵母菌体は、海水中で安定であるため、
菌体中の有効成分が流れ出し飼育水の汚染を起こすこと
もない。
Furthermore, the obtained yeast cells are stable in seawater,
The active ingredient in the fungus body does not flow out and pollute the breeding water.

【図面の簡単な説明】[Brief description of drawings]

第1図は、生育に及ぼす培養温度の影響、第2図は、菌
体収量及び菌体脂質含量に及ぼす培地中の塩濃度の影響
を示す図である。
FIG. 1 is a diagram showing the influence of culture temperature on growth, and FIG. 2 is a diagram showing the influence of salt concentration in the medium on cell yield and cell lipid content.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 (C12P 7/64 C12R 1:72) Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location (C12P 7/64 C12R 1:72)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】カンジダ属に属し、エタノール資化性を有
し、脂質脂肪酸組成中のリノール酸含量15.8〜38.3%、
リノレン酸含量9.2〜22.4%、両者の含量25.0〜60.7%
のリノール酸とリノレン酸含量の高い脂質を菌体内に形
成することができる酵母菌株をエタノールを炭素源とし
て含有する培地において培養し、培養物からリノール酸
とリノレン酸含量の高い脂質を含む酵母菌体を採取する
ことを特徴とする酵母菌体の製造法。
1. A Candida genus, which has an ethanol-utilizing ability, and has a linoleic acid content of 15.8 to 38.3% in a lipid fatty acid composition,
Linolenic acid content 9.2 ~ 22.4%, both content 25.0 ~ 60.7%
Yeast strains capable of forming lipids with high linoleic acid and linolenic acid content in the cells were cultured in a medium containing ethanol as a carbon source, and yeast strains containing lipids with high linoleic acid and linolenic acid contents were obtained from the culture. A method for producing a yeast cell, which comprises collecting the body.
【請求項2】培養を5〜20℃の低温で行う請求項1記載
の酵母菌体の製造法。
2. The method for producing a yeast cell according to claim 1, wherein the culture is carried out at a low temperature of 5 to 20 ° C.
【請求項3】使用する酵母がカンジダ属(Candida)sp.
S30W2株(FERM P-11023)である請求項1または2記載
の酵母菌体の製造法。
3. The yeast used is Candida sp.
The method for producing a yeast cell according to claim 1 or 2, which is S30W2 strain (FERM P-11023).
JP1256854A 1989-09-29 1989-09-29 Method for producing yeast cells Expired - Lifetime JPH0634707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1256854A JPH0634707B2 (en) 1989-09-29 1989-09-29 Method for producing yeast cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1256854A JPH0634707B2 (en) 1989-09-29 1989-09-29 Method for producing yeast cells

Publications (2)

Publication Number Publication Date
JPH03117480A JPH03117480A (en) 1991-05-20
JPH0634707B2 true JPH0634707B2 (en) 1994-05-11

Family

ID=17298337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256854A Expired - Lifetime JPH0634707B2 (en) 1989-09-29 1989-09-29 Method for producing yeast cells

Country Status (1)

Country Link
JP (1) JPH0634707B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071896A (en) * 1973-11-09 1975-06-14
JPS5328984B2 (en) * 1973-11-09 1978-08-17
JPS63177782A (en) * 1987-01-19 1988-07-21 Kenji Suzuki Fermentation and production of marine fat or oil yeasts

Also Published As

Publication number Publication date
JPH03117480A (en) 1991-05-20

Similar Documents

Publication Publication Date Title
JP4418930B2 (en) Heterotropic method for producing a microbial product containing a high concentration of omega-3 highly unsaturated fatty acid
AU2016399463C1 (en) Omega-7 fatty acid composition, methods of cultivation of Tribonema for production of composition and application of composition
US8541210B2 (en) Producing eicosapentaenoic acid (EPA) from biodiesel-derived crude glycerol
US6410282B1 (en) Method for enhancing levels of polyunsaturated fatty acids in thraustochytrid fungi
CN103827289A (en) Methods of mutagenesis of schizochytrium sp and variant strains produced thereof
CN1986822A (en) Crypthecodinium connii fermenting process for producing docosahexaenoic acid grease
CN113308387B (en) Bacterial strain for co-production of unsaturated fatty acid and carotenoid and application thereof
Koh et al. Screening of yeasts and cultural conditions for cell production from palm oil
Ciegler et al. Beta‐carotene production in 20‐liter fermentors
JP6947941B2 (en) A novel strain of Thorium spp. And a method for producing polyunsaturated fatty acids using it.
CN107460223A (en) A kind of degreasing silkworm chrysalis hydrolysate for microculture and its preparation method and application
US2865814A (en) Method of making carotenes and related substances by mixed culture fermentation
CA2519894A1 (en) A method for enhancing levels of polyunsaturated fatty acids in thraustochytrid protists
GB1604782A (en) Selection process for obtaining a fungal microorganism of the genus trichoderma having advantageous characteristics
Bednarski et al. Utilization of beet molasses and whey for fat biosynthesis by a yeast
US8652814B2 (en) Method for production of DHA-containing phospholipid through microbial fermentation
CN105189769A (en) Production of omega-3 fatty acids from pythium species
EP1276891B1 (en) A method for enhancing levels of polyunsaturated fatty acids in thraustochytrids
Glatz et al. Fermentation of bananas and other food wastes to produce microbial lipid
JPH0449396B2 (en)
JPH0634707B2 (en) Method for producing yeast cells
Pruess et al. Studies on the mass culture of various algae in carboys and deep-tank fermentations
US3291701A (en) Beta-carotene production and composition therefor
JPS6314696A (en) Production of bishomo gamma-linolenic acid
CN117947118B (en) Method for producing DHA by culturing schizochytrium limacinum by using kelp hydrolysate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term