JPH0634602B2 - Solid electrolyte type thermoelectric converter for space - Google Patents

Solid electrolyte type thermoelectric converter for space

Info

Publication number
JPH0634602B2
JPH0634602B2 JP62250289A JP25028987A JPH0634602B2 JP H0634602 B2 JPH0634602 B2 JP H0634602B2 JP 62250289 A JP62250289 A JP 62250289A JP 25028987 A JP25028987 A JP 25028987A JP H0634602 B2 JPH0634602 B2 JP H0634602B2
Authority
JP
Japan
Prior art keywords
working medium
solid electrolyte
container
power generation
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62250289A
Other languages
Japanese (ja)
Other versions
JPH0197181A (en
Inventor
耕太郎 田中
明 根岸
俊久 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62250289A priority Critical patent/JPH0634602B2/en
Publication of JPH0197181A publication Critical patent/JPH0197181A/en
Publication of JPH0634602B2 publication Critical patent/JPH0634602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体電解質を用いて熱エネルギーを直接電気
エネルギーへ変換する直接発電方式による発電装置に関
し、特に宇宙環境(無重力環境)における発電を目的と
した宇宙用発電装置に関する。
Description: TECHNICAL FIELD The present invention relates to a power generation device by a direct power generation method that directly converts thermal energy into electric energy by using a solid electrolyte, and particularly relates to power generation in a space environment (weightless environment). It relates to the intended space power generator.

[従来の技術] 従来、固体電解質を用いた発電の原理は1969年J.T.Kumm
erらにより提案され、(米国特許3,458,356号)、Sodiu
m Heat Engine(SHE)あるいはAlkali Metal Thermo
−Electric Convertor(AMTEC)と呼ばれている。その
後1985年にはN.Weberにより電極リードの絶縁方法(米
国特許4,505,991号)が提案されている。
[Prior Art] Conventionally, the principle of power generation using a solid electrolyte was JTKumm in 1969.
proposed by Er et al. (US Pat. No. 3,458,356), Sodiu
m Heat Engine (SHE) or Alkali Metal Thermo
-It is called Electric Convertor (AMTEC). In 1985, N.Weber proposed a method for insulating electrode leads (US Pat. No. 4,505,991).

この発電方式は、発電装置の単位重量あたりの出力が
大きい、エネルギー変換効率が高い、発電規模を自
由に選択することができる、あらゆる熱源に対応可能
である、直接発電のため動作部がなく、振動、騒音も
ない、長寿命で信頼性が高い、など数多くの利点を備
えている。
This power generation system has a large output per unit weight of the power generation device, high energy conversion efficiency, can freely select the power generation scale, is compatible with all heat sources, has no operating part for direct power generation, It has many advantages such as no vibration and noise, long life and high reliability.

この発電原理を利用した地上利用を目的とする発電装置
は今までにいくつか報告されているが、宇宙用発電装置
として公知であるものはC.P.Bankstonらの報告が唯一で
ある。第2図および第3図にその装置を示す。これらの
装置はいずれも平板形状の固体電解質を用いている。
There have been several reports of power generators for ground use that utilize this power generation principle, but CPBankston et al. Are the only known power generators for space use. The apparatus is shown in FIGS. 2 and 3. Each of these devices uses a plate-shaped solid electrolyte.

第2図は放射性同位元素を熱源とした発電装置を示す図
である。この装置は、放射性同位元素を利用した熱源23
の周囲に絶縁板20により仕切られた固体電解質21を配置
し、その外側を凝縮面25とした構成となっている。
FIG. 2 is a diagram showing a power generator using a radioactive isotope as a heat source. This device is a heat source using radioactive isotopes23
A solid electrolyte (21) partitioned by an insulating plate (20) is arranged around the periphery of the, and the outside of the solid electrolyte (21) serves as a condensation surface (25).

第3図は原子炉を熱源とした発電装置を示す図である。
この装置は原子炉33で発生する熱をヒートパイプ32によ
り移動させる点が第2図に示した装置と異るが、平板形
状の固体電解質31と、凝縮面35の配置は同様である。
FIG. 3 is a diagram showing a power generator using a nuclear reactor as a heat source.
This device is different from the device shown in FIG. 2 in that the heat generated in the nuclear reactor 33 is transferred by the heat pipe 32, but the arrangement of the flat plate-shaped solid electrolyte 31 and the condensation surface 35 is the same.

なお、作動媒体の循環方法については両装置共に記述が
ない。
It should be noted that there is no description of the method of circulating the working medium for both devices.

[発明が解決しようとする問題点] 以上説明したような従来の宇宙用発電装置においては、
以下に示すようないくつかの問題点がある。
[Problems to be Solved by the Invention] In the conventional space power generation apparatus as described above,
There are some problems as described below.

一つは固体電解質の作用により発生する電力の集電方法
および発電装置の直並列接続方法が検討されていないと
いう問題点である。さらに平板形状の固体電解質21およ
び31と凝縮面25および35との位置関係は放射熱損失を大
きくするという問題点がある。またこの種の装置で重要
である作動媒体の循環方法についてはまったく記述がな
く、この点は宇宙用発電装置としての作動が考慮されて
いないという重要な問題点である。
One is a problem that a method of collecting electric power generated by the action of the solid electrolyte and a method of connecting the power generator in series and parallel have not been studied. Further, the positional relationship between the flat plate-shaped solid electrolytes 21 and 31 and the condensation surfaces 25 and 35 has a problem of increasing radiant heat loss. Further, there is no description about the method of circulating the working medium, which is important in this type of device, and this is an important problem that the operation as a space power generation device is not considered.

本発明の目的は、放射熱損失を小さくし、作動媒体を循
環することのできる宇宙用固体電解質型熱電変換装置を
提供することにある。
An object of the present invention is to provide a solid electrolyte type thermoelectric conversion device for space that can reduce radiant heat loss and circulate a working medium.

[問題点を解決するための手段] このような目的を達成するために、本発明の宇宙用固体
電解質型熱電変換装置は、発電部(X)と、作動媒体と、
容器(9)と、作動媒体流路(6c)と、蒸発手段(2A)と、加
熱手段(A)と、供給手段(8)とを有する宇宙用固体電解質
型熱電変換装置であって、発電部(X)は、中空有底円筒
状の固体電解質(1)と、固体電解質(1)の一方の表面を覆
って形成されて作動媒体の蒸気を凝縮し負極電極を兼用
する凝縮手段(2B)と、固体電解質(1)の他方の表面を覆
って形成される正極電極膜(3)とを有し、容器(9)は、発
電部(X)と作動媒体とを収納し、発電部(X)の正極電極膜
(3)側が低圧部(Y)、凝縮手段(2B)側が高圧部(Z)となる
ように隔離され、低圧部(Y)において低温側に凝縮面(7)
が形成され、曲率半径の小さい液溜め(10)が凝縮面(7)
に連設され、蒸発手段(2A)は、凝縮手段(2B)に対向して
容器(9)の内壁側に設けられ、作動媒体流路(6c)は、一
端が低圧部(Y)の液溜め(10)に、他端が高圧部(Z)の蒸発
手段(2A)に接して開口され、供給手段(8)は、作動媒体
を液溜め(10)から高圧部(Z)に移送し、加熱手段(A)は、
蒸発手段(2A)と対向して容器(9)の外壁側に設けられ、
作動媒体を加熱して気化することを特徴とする。
[Means for Solving Problems] In order to achieve such an object, the solid electrolyte type thermoelectric conversion device for space of the present invention comprises a power generation section (X), a working medium, and
A solid electrolyte thermoelectric conversion device for space, which has a container (9), a working medium flow path (6c), an evaporation means (2A), a heating means (A), and a supply means (8), Part (X) is a hollow bottomed cylindrical solid electrolyte (1), and is formed by covering one surface of the solid electrolyte (1) to condense the vapor of the working medium and also serves as a negative electrode and a condensing means (2B). ), And a positive electrode film (3) formed to cover the other surface of the solid electrolyte (1), the container (9) contains a power generation unit (X) and a working medium, and a power generation unit. (X) Positive electrode film
The (3) side is isolated so that the low pressure part (Y) and the condensing means (2B) side become the high pressure part (Z), and the low pressure part (Y) has a condensation surface (7) on the low temperature side.
Is formed, and the liquid reservoir (10) with a small radius of curvature forms the condensation surface (7).
The evaporation means (2A) is provided on the inner wall side of the container (9) facing the condensing means (2B), and the working medium flow path (6c) has a low-pressure part (Y) at one end. The reservoir (10) is opened at the other end in contact with the evaporation means (2A) of the high pressure part (Z), and the supply means (8) transfers the working medium from the liquid reservoir (10) to the high pressure part (Z). , Heating means (A)
Provided on the outer wall side of the container (9) facing the evaporation means (2A),
It is characterized in that the working medium is heated and vaporized.

[作 用] 本発明によれば、放射熱損失はナトリウム気相流路とな
る円筒の端の円環部からだけとなり、熱効率はかなり改
善される。
[Operation] According to the present invention, the radiant heat loss is only from the annular portion at the end of the cylinder that is the sodium vapor phase flow path, and the thermal efficiency is considerably improved.

また、本発明によれば、作動媒体を循環して用いること
ができるので、作動媒体の量を少なくすることができ
る。
Further, according to the present invention, since the working medium can be circulated and used, the amount of the working medium can be reduced.

[実施例] 以下、図面を参照して本発明を詳細に説明する。[Examples] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明による宇宙用固体電解質型熱電変換装置
の一実施例を示す図である。第1図(A)は第1図(B)のA-
A断面を示す。ここで、1は固体電解質、2Aは第1のウ
イック、2Bは第2のウイック、3は正極電極膜、4は正
極の電極リード、5は負極の電極リード、6は作動媒体
流路(C)、7は凝縮面、8はポンプ、9は容器、10は液
溜めである。固体電解質1は一端部に底面を有する円筒
形状である。
FIG. 1 is a diagram showing an embodiment of a solid electrolyte type thermoelectric conversion device for space according to the present invention. Figure 1 (A) is A- in Figure 1 (B).
A cross section is shown. Here, 1 is a solid electrolyte, 2A is a first wick, 2B is a second wick, 3 is a positive electrode film, 4 is a positive electrode lead, 5 is a negative electrode lead, and 6 is a working medium flow path (C ), 7 is a condensing surface, 8 is a pump, 9 is a container, and 10 is a liquid reservoir. The solid electrolyte 1 has a cylindrical shape having a bottom surface at one end.

この装置は、容器9と発電部Xと加熱源Aと作動媒体D
とを有する。発電部Xは有底円筒状の固体電解質1と、
固体電解質1の内壁に沿って設けられた正極電極膜3
と、固体電解質1の外壁に沿って設けられた第2のウイ
ック2Bと、第2のウイック2Bの外周に設けられた第1の
ウイック2Aとから構成される。
This device includes a container 9, a power generation unit X, a heating source A, and a working medium D.
Have and. The power generation section X includes a cylindrical solid electrolyte 1 having a bottom,
Positive electrode film 3 provided along the inner wall of the solid electrolyte 1
And a second wick 2B provided along the outer wall of the solid electrolyte 1 and a first wick 2A provided on the outer circumference of the second wick 2B.

第2のウイック2Bと第1のウイック2Aは多数の微細孔を
有するモリブデン等からできている。第1のウイック2A
と第2のウイック2Bとの間は、加熱源Aにより加熱・気
化された作動媒体によって充満されている高圧部Zであ
る。
The second wick 2B and the first wick 2A are made of molybdenum or the like having many fine holes. First wick 2A
Between the second wick 2B and the second wick 2B is a high-pressure section Z filled with the working medium heated and vaporized by the heating source A.

正極電極膜3により囲まれた内側の空間は、減圧された
低圧部Yである。この低圧部Yは、低温の凝縮面7によ
り囲まれた空間と連通している。10は凝縮面7で凝縮し
た作動媒体Dを溜める液溜めである。この液溜め10の作
動媒体Dはポンプ8により作動媒体流路Cを介して発電
部Xに戻される。
The inner space surrounded by the positive electrode film 3 is a low pressure portion Y that has been decompressed. The low-pressure portion Y communicates with the space surrounded by the low-temperature condensing surface 7. Reference numeral 10 is a liquid reservoir for storing the working medium D condensed on the condensing surface 7. The working medium D in the liquid reservoir 10 is returned by the pump 8 to the power generation section X via the working medium flow path C.

次にこの発電装置の作動原理を各構成要素と関連させて
説明する。まずパイプ形状の容器9の右半分である固体
電解質側は容器周囲より加熱昇温される。固体電解質1
と容器9との間すなわち第1のウイック2Aと第2のウイ
ック2Bとの間は容器9の周囲の加熱によって蒸気となっ
た高温の作動媒体蒸気で満たされる。ウイック2Aを介し
ての蒸発、第1のウイック2Aを介しての蒸発、第2のウ
イック2Bを介しての凝縮過程により熱および作動媒体の
同時移動が起こり、作動媒体は固体電解質の外側(負極
側)面に供給される。第1のウイック2Aと第2のウイッ
ク2Bとの空間を第1のウイック2A,第2のウイック2Bを
取り去って液相の作動媒体で満たすことも可能である
が、この場合は発電装置の重量が増加してしまう。供給
された作動媒体は固体電解質1中をイオンとして通過す
る。通過したイオンは固体電解質1の内側にある正極電
極膜3で中性化された後に、低圧部Zにおいて蒸発し、
温度勾配により低温側の凝縮面7に向う。このとき固体
電解質1の内側と外側の間に生じる蒸気圧力差が固体電
解質内のイオンの駆動力となり、固体電解質1の外側か
ら内側へのイオンの移動により電位差が生じる。そし
て、容器9と絶縁された電極リード4,5により容器外
へ出力として取出される。低温側の凝縮面で凝縮した作
動媒体は、表面張力差により曲率半径の小さい方すなわ
ち作動媒体流路6へ移動し、流路6を経てポンプ8によ
り加圧されて高温側に戻されサイクルが完結する。
Next, the operating principle of this power generator will be described in relation to each component. First, the solid electrolyte side, which is the right half of the pipe-shaped container 9, is heated and heated from the periphery of the container. Solid electrolyte 1
Between the container 9 and the container 9, that is, between the first wick 2A and the second wick 2B, is filled with the high-temperature working medium vapor which has become vapor due to the heating around the container 9. Simultaneous transfer of heat and working medium occurs due to evaporation through the wick 2A, evaporation through the first wick 2A, and condensation through the second wick 2B, and the working medium is outside the solid electrolyte (negative electrode). Side) surface. It is also possible to remove the first wick 2A and the second wick 2B from the space between the first wick 2A and the second wick 2B and fill the space with the liquid-phase working medium. Will increase. The supplied working medium passes through the solid electrolyte 1 as ions. The passed ions are neutralized in the positive electrode film 3 inside the solid electrolyte 1 and then evaporated in the low pressure part Z,
The condensing surface 7 on the low temperature side is headed by the temperature gradient. At this time, the vapor pressure difference generated between the inside and the outside of the solid electrolyte 1 becomes the driving force of the ions in the solid electrolyte 1, and the potential difference is generated by the movement of the ions from the outside to the inside of the solid electrolyte 1. Then, it is taken out as an output to the outside of the container by the electrode leads 4 and 5 insulated from the container 9. The working medium condensed on the condensing surface on the low temperature side moves to the one having a smaller radius of curvature, that is, the working medium flow path 6 due to the difference in surface tension, is pressurized by the pump 8 through the flow path 6 and is returned to the high temperature side to complete the cycle. Complete.

作動媒体としてナトリウムを使用した場合には高温側す
なわち固体電解質側は800〜1400K、低温側すなわち凝
縮面側は250〜700Kが適当である。作動媒体としてはナ
トリウム以外に固体電解質中をイオンで通過するリチウ
ム、カリウム、銀、水銀、タリウム、鉛、カルシウム、
ストロンチウム、バリウム、ルビジウムおよびこれらの
混合物の使用が可能であり、そのときの高温側および低
温側の温度範囲はそれらの作動媒体の物性値に対応して
変化する。固体電解質としては導電性の高いβアルミ
ナ、β″アルミナおよびβ アルミナを使用することが
できる。
When sodium is used as the working medium, 800-1400K is suitable for the high temperature side, that is, the solid electrolyte side, and 250-700K is suitable for the low temperature side, that is, the condensation surface side. As the working medium, in addition to sodium, lithium, potassium, silver, mercury, thallium, lead, calcium, which pass by ions in the solid electrolyte,
Strontium, barium, rubidium, and mixtures thereof can be used, and the temperature ranges on the high temperature side and the low temperature side at that time change corresponding to the physical properties of the working medium. Highly conductive β-alumina, β ″ -alumina and β-alumina can be used as the solid electrolyte.

正極電極膜の材料は作動媒体に対し溶解度の小さいもの
を選択する。例えばナトリウムを作動媒体とした場合に
はモリブデン、チタン、クロム、コバルト、タングステ
ン、ニッケルおよびそれらの合金が適当である。正極電
極膜の作製方法は電子ビーム蒸着法、イオンプレーティ
ング法、スパッタ法、化学気相成長法、熱分解還元法、
スプレー法があり、電極膜の材料との関係で選択され
る。膜厚は0.1μm〜10μmの間が適当である。また、
多成分の多層膜も有効である。
The material for the positive electrode film is selected to have a low solubility in the working medium. For example, when sodium is used as the working medium, molybdenum, titanium, chromium, cobalt, tungsten, nickel and alloys thereof are suitable. The positive electrode film is manufactured by electron beam evaporation method, ion plating method, sputtering method, chemical vapor deposition method, thermal decomposition reduction method,
There is a spray method, and it is selected in relation to the material of the electrode film. A suitable film thickness is between 0.1 μm and 10 μm. Also,
Multi-component multilayer films are also effective.

作動媒体をナトリウムとし、固体電解質としてβ″アル
ミナを使用し、高温側の温度を1175K、低温側の温度を
500Kとし、正極電極膜面積を500cm2とした場合、正極
電極膜単位面積あたりの出力は1.1W/cm2が得られ、熱
効率は最大35%となる。
Using sodium as the working medium and β ″ alumina as the solid electrolyte, the temperature on the high temperature side is 1175K and the temperature on the low temperature side is
When the area is 500 K and the area of the positive electrode film is 500 cm 2 , the output per unit area of the positive electrode film is 1.1 W / cm 2 , and the thermal efficiency is 35% at maximum.

以上説明したように本実施例においては、固体電解質を
用いた、30〜40%の高い変換効率を有し電力1kWあたり
5kg程度(発電装置だけの重量)の発電装置が実現でき
る。これらの性能は、従来の直接発電方式の変換効率が
10%程度であり、ランキン、ブレイトン、スターリング
サイクルなど発電方式においては電力1kWあたり10〜20
kgの発電装置重量であることと比較してもその効果の大
きいことがわかる。
As described above, in the present embodiment, it is possible to realize a power generation device using a solid electrolyte and having a high conversion efficiency of 30 to 40% and a power of about 5 kg per 1 kW of electric power (weight of only the power generation device). These performances are comparable to the conversion efficiency of the conventional direct power generation method.
It is about 10%, and 10 to 20 per 1kW of power in power generation methods such as Rankine, Brayton, and Stirling cycle.
It can be seen that the effect is great even when compared to the weight of the power generator of kg.

[発明の効果] 以上説明したように、本発明によれば、放射熱損失はナ
トリウム気相流路となる同筒の端の円環部からだけとな
り、熱効率はかなり改善される。
[Effects of the Invention] As described above, according to the present invention, the radiant heat loss is only from the annular portion at the end of the same cylinder serving as the sodium vapor phase flow path, and the thermal efficiency is considerably improved.

また、本発明によれば、作動媒体を循環して用いること
ができるので、作動媒体の量を少なくすることができ
る。
Further, according to the present invention, since the working medium can be circulated and used, the amount of the working medium can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す図、 第2図および第3図は従来の宇宙用発電装置を示す図で
ある。 1……固体電解質、 2A……蒸発手段(ウイック)、 2B……凝縮手段(ウイック、負極電極を兼用する)、 3……正極電極膜、 4、5……電極リード、 6……作動媒体流路、 7……凝縮面、 8……ポンプ、 9……容器、 10……液溜め。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing a conventional space power generator. 1 ... Solid electrolyte, 2A ... Evaporating means (wick), 2B ... Condensing means (also serves as wick and negative electrode), 3 ... Positive electrode film, 4, 5 ... Electrode lead, 6 ... Working medium Flow path, 7 ... Condensing surface, 8 ... Pump, 9 ... Container, 10 ... Liquid reservoir.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発電部(X)と、作動媒体と、容器(9)と、作
動媒体流路(6c)と、蒸発手段(2A)と、加熱手段(A)と、
供給手段(8)とを有する宇宙用固体電解質型熱電変換装
置であって、 発電部(X)は、中空有底円筒状の固体電解質(1)と、固体
電解質(1)の一方の表面を覆って形成されて作動媒体の
蒸気を凝縮し負極電極を兼用する凝縮手段(2B)と、固体
電解質(1)の他方の表面を覆って形成される正極電極膜
(3)とを有し、 容器(9)は、発電部(X)と作動媒体とを収納し、発電部
(X)の正極電極膜(3)側が低圧部(Y)、凝縮手段(2B)側が
高圧部(Z)となるように隔離され、低圧部(Y)において低
温側に凝縮面(7)が形成され、曲率半径の小さい液溜め
(10)が凝縮面(7)に連設され、 蒸発手段(2A)は、凝縮手段(2B)に対向して容器(9)の内
壁側に設けられ、 作動媒体流路(6c)は、一端が低圧部(Y)の液溜め(10)
に、他端が高圧部(Z)の蒸発手段(2A)に接して開口さ
れ、 供給手段(8)は、作動媒体を液溜め(10)から高圧部(Z)に
移送し、 加熱手段(A)は、蒸発手段(2A)と対向して容器(9)の外壁
側に設けられ、作動媒体を加熱して気化する ことを特徴とする宇宙用固体電解質型熱電変換装置。
1. A power generation section (X), a working medium, a container (9), a working medium flow path (6c), an evaporation means (2A), a heating means (A),
A solid electrolyte type thermoelectric conversion device for space having a supply means (8), wherein the power generation section (X) is a hollow solid cylindrical solid electrolyte (1) and one surface of the solid electrolyte (1). Condensing means (2B) formed to cover and condense the vapor of the working medium and also serve as a negative electrode, and a positive electrode film formed to cover the other surface of the solid electrolyte (1)
(3), the container (9) contains the power generation unit (X) and the working medium, and
The positive electrode film (3) side of (X) is separated so that the low pressure part (Y) and the condensation means (2B) side become the high pressure part (Z), and the condensation surface (7) is formed on the low temperature side in the low pressure part (Y). Formed and has a small radius of curvature
(10) is connected to the condensing surface (7), the evaporation means (2A) is provided on the inner wall side of the container (9) facing the condensing means (2B), the working medium flow path (6c), Liquid reservoir (10) with low pressure part (Y) at one end
At the other end, the other end is opened in contact with the evaporation means (2A) of the high pressure section (Z), the supply means (8) transfers the working medium from the liquid reservoir (10) to the high pressure section (Z), and the heating means ( A) is a solid electrolyte type thermoelectric conversion device for space, which is provided on the outer wall side of the container (9) facing the evaporation means (2A) and heats and vaporizes the working medium.
JP62250289A 1987-10-02 1987-10-02 Solid electrolyte type thermoelectric converter for space Expired - Lifetime JPH0634602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62250289A JPH0634602B2 (en) 1987-10-02 1987-10-02 Solid electrolyte type thermoelectric converter for space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62250289A JPH0634602B2 (en) 1987-10-02 1987-10-02 Solid electrolyte type thermoelectric converter for space

Publications (2)

Publication Number Publication Date
JPH0197181A JPH0197181A (en) 1989-04-14
JPH0634602B2 true JPH0634602B2 (en) 1994-05-02

Family

ID=17205692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62250289A Expired - Lifetime JPH0634602B2 (en) 1987-10-02 1987-10-02 Solid electrolyte type thermoelectric converter for space

Country Status (1)

Country Link
JP (1) JPH0634602B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2742016B2 (en) * 1994-04-04 1998-04-22 株式会社環境工学研究所 Method and apparatus for composting organic matter having high moisture content

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220692A (en) * 1979-02-28 1980-09-02 Ford Motor Company Internal geometry of alkali metal thermoelectric generator devices
US4505991A (en) * 1984-05-25 1985-03-19 Ford Motor Company Sodium heat engine electrical feedthrough

Also Published As

Publication number Publication date
JPH0197181A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US4042757A (en) Thermo-electric generators
KR101137377B1 (en) Electric converter unit and electric converter system
EP0306624A1 (en) Stacked vapor fed amtec modules
Bankston et al. Experimental and systems studies of the alkali metal thermoelectric converter for aerospace power
KR101584617B1 (en) An alkali metal thermal to electric converter and electricity generating method using it
JPH03235682A (en) Alkaline metal thermoelectric generation set
US5942719A (en) Alkali metal thermal to electric conversion (AMTEC) cells
US4868072A (en) Liquid metal thermal electric converter
JPH0634602B2 (en) Solid electrolyte type thermoelectric converter for space
EP1245796B1 (en) Hybrid combustion power system
Oman Deep space travel energy sources
KR101630157B1 (en) Alkali metal thermal to Electric Converter and manipulating method the same
JP4147299B2 (en) Combined power generation element and combined power generation system comprising thermoelectric power generation element and alkali metal thermoelectric conversion element
KR101631553B1 (en) An AMTEC cell housing and an AMTEC cell using the same
JP3787625B2 (en) Thermoelectric converter
JPH0634603B2 (en) Solid electrolyte type thermoelectric converter
JPH01190274A (en) Space solar thermal power generation system
JP3453159B2 (en) Thermoelectric generator
KR101877844B1 (en) Amtec apparatus having detachable amtec cell
JPH06163089A (en) Alkali metal thermoelectric generating device
KR101857255B1 (en) Alkali Metal Thermal to Electric Convertor using Variable Conductance Heat Pipe
RU2355075C1 (en) Thermoelectrochemical generator
KR20230100122A (en) AMTEC Apparatus
RU2135825C1 (en) Process and plant for producing heat and mechanical energy (options)
KR101857256B1 (en) Alkali Metal Thermal to Electric Convertor with an Inert Gas and the Apparatus for Injecting an Inert Gas

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term