JPH06346006A - Water-based electrically conductive coating - Google Patents

Water-based electrically conductive coating

Info

Publication number
JPH06346006A
JPH06346006A JP13632293A JP13632293A JPH06346006A JP H06346006 A JPH06346006 A JP H06346006A JP 13632293 A JP13632293 A JP 13632293A JP 13632293 A JP13632293 A JP 13632293A JP H06346006 A JPH06346006 A JP H06346006A
Authority
JP
Japan
Prior art keywords
copper powder
coating
water
dispersed
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13632293A
Other languages
Japanese (ja)
Inventor
Masayoshi Yoshitake
正義 吉武
Kazumasa Morikawa
和政 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP13632293A priority Critical patent/JPH06346006A/en
Publication of JPH06346006A publication Critical patent/JPH06346006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject inexpensive coating without using an organic solvent and emitting malodor or causing the poisoning and useful as an electromagnetic wave coating, etc., by mixing and dispersing electrolytic copper powder subjected to surface lipophilic treatment in an aqueous emulsion coating containing a polyurethane, having a specific average particle diameter and dispersed therein. CONSTITUTION:This water-based electrically conductive coating is obtained by adding isopropyl triisostearoyl titanate which is a titanate-based coupling agent as a surface modifying agent to electrolytic copper powder, mixing both in a mixer and mixing and dispersing the resultant surface treated electrolytic copper powder in a water-based emulsion coating containing a polyurethane resin, having <=200nm average particle diameter and dispersed therein. There is no fear of malodor or poisoning in this coating due to no use of an organic solvent such as toluene and the more inexpensive copper powder than silver or nickel is used. This coating is optimal as an electromagnetic wave shielding coating used for carrying out the coating in a wide area or a hermetically closed room.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅粉を用いた水性導電
塗料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aqueous conductive paint using copper powder.

【0002】[0002]

【従来の技術】コンピュータ等から発生する不要電磁波
を防止するため、プラスチック筐体に導電塗料を塗布す
る方法が行われている。従来までニッケル粉が主であ
り、銅粉を用いた導電塗料は、銅粉が表面酸化し塗膜の
導電性が悪くなる欠点を有していた。これらの欠点を改
良する方法として、有機リン化合物 (特開昭58−145769
号公報) 、ホスホン酸類 (特開昭60−231772号公報) 、
亜リン酸エステル類 (特開昭60−229966号公報) 、有機
チタネート化合物(特開昭56−36553 号公報)などを塗
料に添加することが提案され、銅粉を用いた導電塗料が
実用化されてきた。しかし、銅粉を用いた導電塗料は、
トルエンなどの有機溶剤を含む溶剤系の塗料であり、引
火爆発の危険性をもたらし、臭気や中毒のおそれなど衛
生面から好ましいものでない。これらの問題を解消する
1つの手段として、導電塗料においても溶剤を用いたも
のから水性化への転換が進められている。
2. Description of the Related Art In order to prevent unnecessary electromagnetic waves generated from a computer or the like, a method of applying a conductive paint to a plastic housing is used. Until now, nickel powder has been mainly used, and the conductive coating material using copper powder has a drawback that the copper powder is surface-oxidized and the conductivity of the coating film deteriorates. As a method for improving these drawbacks, an organic phosphorus compound (JP-A-58-145769)
No.), phosphonic acids (JP-A-60-231772),
It has been proposed to add phosphite esters (JP-A-60-229966), organic titanate compounds (JP-A-56-36553), etc. to a paint, and a conductive paint using copper powder is put into practical use. It has been. However, conductive paint using copper powder is
It is a solvent-based paint containing an organic solvent such as toluene, which poses a risk of ignition and explosion, and is not preferable in terms of hygiene such as fear of odor and poisoning. As one means to solve these problems, the conductive paint is also being changed from one using a solvent to one using water.

【0003】[0003]

【発明が解決しようとする課題】水性塗料は有機溶剤の
代わりに水を溶媒とするため銅粉を混合分散すると、非
常に短時間に表面が酸化して導電性が得られなくなった
り、耐湿試験などにおいて塗膜導電性の劣化が速く、使
用に耐えられる水性導電塗料はまだ開発されていない。
本発明は、銅粉の表面酸化を防止し、かつ塗膜の耐湿性
を向上し、実用に耐える銅系水性導電塗料を提供するこ
とにある。
Water-based paints use water as a solvent instead of an organic solvent. Therefore, when copper powder is mixed and dispersed, the surface oxidizes in a very short time and conductivity cannot be obtained, or a moisture resistance test is conducted. For example, the water-based conductive paint which has a rapid deterioration of the conductivity of the coating film and can be used has not yet been developed.
An object of the present invention is to provide a copper-based water-based conductive paint that prevents surface oxidation of copper powder, improves the moisture resistance of a coating film, and is practically usable.

【0004】[0004]

【課題を解決するための手段】本発明は、平均粒子径が
200nm以下のポリウレタン樹脂を分散した水性エマルジ
ョン塗料に、親油性の表面処理をした電解銅粉を混合分
散することを特徴とする水性導電塗料である。本発明に
用いる水性エマルジョン塗料は、水に分散している高分
子の平均粒子径が 200nm以下であることが必要である。
高分子の平均粒子径が大きいと緻密な塗膜が形成され
ず、耐湿性などが悪くなる。高分子の平均粒子径は小さ
いほど導電塗料として優れた性能を示すが、好ましい平
均粒子径は50nm〜100nm である。本発明の水性エマルジ
ョン塗料は、水中にポリウレタン樹脂が微細な粒子とし
て分散しているウレタンエマルジョンのことである。ア
クリル,酢酸ビニル,スチレンブタジエン共重合,塩化
ビニル,エチレン酢酸ビニル共重合などの粒子を分散し
たエマルジョンでは、良好な導電性塗膜が得られず良く
ない。
According to the present invention, the average particle size is
A water-based conductive paint characterized by mixing and dispersing a lipophilic surface-treated electrolytic copper powder in a water-based emulsion paint in which a polyurethane resin of 200 nm or less is dispersed. The water-based emulsion paint used in the present invention needs to have an average particle size of the polymer dispersed in water of 200 nm or less.
When the average particle size of the polymer is large, a dense coating film is not formed and the moisture resistance is deteriorated. The smaller the average particle size of the polymer, the better the performance as a conductive coating, but the preferred average particle size is 50 nm to 100 nm. The aqueous emulsion paint of the present invention is a urethane emulsion in which a polyurethane resin is dispersed in water as fine particles. An emulsion in which particles of acrylic, vinyl acetate, styrene-butadiene copolymer, vinyl chloride, ethylene vinyl acetate copolymer, etc. are dispersed is not good because a good conductive coating film cannot be obtained.

【0005】本発明に用いる銅粉は、水溶液電解法で製
造する電解銅粉である。機械粉砕法による片状銅粉や噴
霧法による噴霧銅粉を用いて本発明を実施しても良い効
果は得られない。電解銅粉の形状は、樹枝状であり、枝
部を機械的に粉砕して細かい樹枝状の電解銅粉粉砕粉は
使用できる。電解銅粉は、硫酸銅の水溶液から析出して
製造するため、銅粉表面は親水性である。これを水性エ
マルジョン塗料に混合分散すると、銅粉表面と水が濡
れ、表面酸化が進み、導電性が悪くなる。
The copper powder used in the present invention is an electrolytic copper powder produced by an aqueous solution electrolysis method. Even if the present invention is carried out by using flaky copper powder produced by the mechanical pulverization method or atomized copper powder produced by the atomization method, good effects cannot be obtained. The electrolytic copper powder has a dendritic shape, and a fine dendritic electrolytic copper powder crushed powder can be used by mechanically crushing the branch portion. Electrolytic copper powder is produced by depositing it from an aqueous solution of copper sulfate, and therefore the surface of the copper powder is hydrophilic. When this is mixed and dispersed in an aqueous emulsion paint, the surface of the copper powder gets wet with water, surface oxidation proceeds, and conductivity deteriorates.

【0006】電解銅粉に対して親油性の表面処理を行う
方法は、石油系オイル、脂肪酸、カップリング剤、有機
溶剤などを少量加え、銅粉と混合すれば良い。水に対し
て濡れない表面処理方法であればどのような方法でも良
いが、少量で効果がある方法としては、ステアリン酸な
どの高級脂肪酸や表面改質剤であるチタネート系カップ
リング剤が好ましい。銅粉量はエマルジョン中の高分子
固形分20〜30重量部に対し、80〜70重量部混合分散する
のが好ましい。使用目的に応じて塗料中の水の量や、少
量のアルコール類を添加して粘度などを調整して使用す
れば良い。
As a method for subjecting the electrolytic copper powder to a lipophilic surface treatment, a small amount of petroleum oil, fatty acid, coupling agent, organic solvent, etc. may be added and mixed with the copper powder. Any method may be used as long as it is a surface treatment method that does not get wet with water, but higher fatty acids such as stearic acid and a titanate coupling agent that is a surface modifier are preferable as a method effective in a small amount. The amount of copper powder is preferably 80 to 70 parts by weight and mixed and dispersed with respect to 20 to 30 parts by weight of polymer solids in the emulsion. Depending on the purpose of use, the amount of water in the paint or a small amount of alcohol may be added to adjust the viscosity and the like.

【0007】[0007]

【作用】本発明の水性導電塗料が優れた導電性を示し、
かつ塗膜の耐湿性が向上する理由については、次のこと
が考えられる。高分子粒子を水中に分散したエマルジョ
ン塗料の塗膜形成は、常温で高分子粒子間の融着が行わ
れる。粒子同士が融着する機構については、水の表面張
力説や粒子間の毛細管説などあるが、いずれにしても粒
子が融着し均質塗膜を形成するものである。
[Function] The water-based conductive coating material of the present invention exhibits excellent conductivity,
The reason why the moisture resistance of the coating film is improved is considered as follows. To form a coating film of an emulsion paint in which polymer particles are dispersed in water, the polymer particles are fused at room temperature. Regarding the mechanism of fusion of particles, there is a theory of surface tension of water and a theory of capillaries between particles, but in any case, the particles are fused to form a homogeneous coating film.

【0008】一般の塗膜においては、高分子粒子の平均
粒子径が問題になることは少ないが、銅粉のような無機
粉体を大量に混合分散すると、高分子粒子間の融着が、
均質に行われなくなる。平均粒子径が小さいと高分子粒
子間の融着が容易となり、銅粉を大量に混合分散しても
均質で緻密な塗膜が形成される。銅粉を大量に混合分散
しても、緻密な塗膜が形成できる高分子粒子の平均粒子
径は高分子の種類によって異なる。ポリウレタン樹脂に
ついて、本発明者等の研究によると、平均粒子径が 200
nmより大きくなると、銅粉含有塗膜表面に多くの穴が認
められるようになり、耐湿試験後の導電性も非常に悪く
なる。これらのことから、ポリウレタン樹脂の粒子径は
200nmより小さくなければ、銅粉と共存して緻密な塗膜
形成ができないのであろう。粒子径が小さいほど良好な
導電塗膜が形成される傾向にあるが、50nmより小さいも
のは、まだ工業的に製造されていない。ポリウレタン樹
脂が他の高分子より優れた性能を示す理由については、
ポリマー自体の耐水性が良いためと考えられるが、造膜
過程においても銅粉同士を接着させる性能が優れている
ためであろう。
In a general coating film, the average particle size of polymer particles is less of a problem, but when a large amount of inorganic powder such as copper powder is mixed and dispersed, fusion between polymer particles is caused.
It will not be done homogeneously. When the average particle size is small, fusion between the polymer particles becomes easy, and even if a large amount of copper powder is mixed and dispersed, a uniform and dense coating film is formed. Even if a large amount of copper powder is mixed and dispersed, the average particle size of polymer particles capable of forming a dense coating film varies depending on the type of polymer. According to the study of the present inventors, the average particle diameter of the polyurethane resin is 200
If it is larger than nm, many holes will be observed on the surface of the coating containing copper powder, and the conductivity after the humidity resistance test will be very poor. From these facts, the particle size of polyurethane resin is
Unless it is smaller than 200 nm, it may be impossible to form a dense coating film in coexistence with copper powder. A smaller particle size tends to form a better conductive coating film, but particles smaller than 50 nm have not been industrially produced. The reason why polyurethane resin shows better performance than other polymers is as follows.
It is considered that the water resistance of the polymer itself is good, but this is probably because the performance of adhering the copper powders to each other is excellent even in the film forming process.

【0009】次に、エマルジョン塗料に混合分散する粉
体としては、一般に水に濡れやすく親水性の表面処理を
したものが、使用されている。それは、親水性の粉体の
方がエマルジョン中に均一に分散しやすいためである。
しかし、本発明の方法は、従来までの考えとは反対に親
油性の表面処理をした銅粉を混合分散するものである。
親油性の表面処理をすることにより、銅粉と水が濡れな
くなり、エマルジョンの高分子粒子と銅粉が接触し、銅
粉と高分子粒子が共存して融着し、導電性塗膜を形成す
ることになる。親水性の銅粉だと水がまとわりつき塗膜
の耐水性に悪い影響を与える。さらに使用する銅粉の形
状も重要である。電解銅粉は樹枝状の形状であり、樹枝
状の枝部間に 200nm以下の高分子粒子が付着する。塗膜
形成の時に高分子粒子が融着するのであるが、この時に
枝部に有る高分子粒子が銅粉同士を接着させる接着剤の
働きをして優れた導電性がでる。片状銅粉や球状銅粉で
は融着する時の接着作用が弱く、塗膜中に銅粉を固定で
きず、また、銅粉相互の接触点数も少ないため、良い導
電性塗膜を形成することができない。本発明は、以上説
明した作用の相乗効果により実用に耐える銅系水性塗料
となる。
Next, as the powder to be mixed and dispersed in the emulsion paint, one which is generally wettable with water and has a hydrophilic surface treatment is used. This is because the hydrophilic powder is more likely to be uniformly dispersed in the emulsion.
However, contrary to the conventional ideas, the method of the present invention mixes and disperses a copper powder having a lipophilic surface treatment.
The lipophilic surface treatment prevents the copper powder and water from getting wet, the polymer particles in the emulsion come into contact with each other, and the copper powder and polymer particles coexist and fuse to form a conductive coating film. Will be done. If it is a hydrophilic copper powder, water will cling to it and adversely affect the water resistance of the coating film. Further, the shape of the copper powder used is also important. The electrolytic copper powder has a dendritic shape, and polymer particles of 200 nm or less adhere to between the dendritic branches. The polymer particles are fused at the time of forming the coating film. At this time, the polymer particles at the branch portion act as an adhesive for adhering the copper powders to each other, and thus excellent conductivity is obtained. With flake-shaped copper powder and spherical copper powder, the adhesive action during fusion bonding is weak, copper powder cannot be fixed in the coating film, and the number of contact points between copper powder particles is small, so a good conductive coating film is formed. I can't. INDUSTRIAL APPLICABILITY The present invention provides a copper-based water-based paint that can be put to practical use due to the synergistic effect of the above-described actions.

【0010】[0010]

【実施例・比較例】以下、実施例によって本発明を具体
的に説明するが、これにより本発明の範囲が限定される
ものではない。なお、文中に部とあるものは全て重量部
である。 実施例1 平均粒径15μm の電解銅粉に、表面改質剤としてチタネ
ート系カップリング剤のイソプロピルトリイソステアロ
イルチタネートを1重量パーセント添加し、ミキサーで
混合して親油性の電解銅粉を得た。このようにして得た
親油性の電解銅粉50部を平均粒子径 200nm, 100nm, 50n
m の高分子粒子を分散した3種類のポリウレタンエマル
ジョン塗料(エマルジョン中の高分子固形分は全て30重
量パーセント) 50部に混合分散して、3種類の水性導電
塗料を製造した。このようにして製造した水性導電塗料
の初期導電性を測定するため、フェノール基板上に塗布
し常温で24時間放置して膜厚70μm の塗膜を形成した。
EXAMPLES AND COMPARATIVE EXAMPLES The present invention will be described in detail below with reference to Examples, but the scope of the present invention is not limited thereby. All parts in the text are parts by weight. Example 1 1% by weight of isopropyl triisostearoyl titanate, a titanate coupling agent, was added as a surface modifier to electrolytic copper powder having an average particle size of 15 μm and mixed with a mixer to obtain a lipophilic electrolytic copper powder. . 50 parts of the lipophilic electrolytic copper powder obtained in this way were average particle sizes 200 nm, 100 nm, 50 n
Three types of polyurethane emulsion paints in which m 3 polymer particles were dispersed (all polymer solids in the emulsion were 30 weight percent) were mixed and dispersed to prepare three types of aqueous conductive paints. In order to measure the initial conductivity of the water-based conductive coating material thus produced, it was applied on a phenol substrate and left at room temperature for 24 hours to form a coating film having a thickness of 70 μm.

【0011】塗膜の初期導電性は、平均粒子径 200nmの
エマルジョン塗料では、 1.5×10-3Ω・cm 、平均粒子
径 100nmのエマルジョン塗料では、 1.0×10-3Ω・cm
、平均粒子径50nmのエマルジョン塗料では、 0.9×10
-3Ω・cmと全て、従来の溶剤系ニッケル塗料の5×10-3
Ω・cmより良好な性能を示した。塗膜の耐湿性を見るた
め、形成した塗膜を60℃, 95% RH 雰囲気中に1000時間
放置し、導電性を測定した結果、平均粒子径 200nmのエ
マルジョン塗料では 4.8×10-3Ω・cm、平均粒子径 100
nmのエマルジョン塗料では 1.5×10-3Ω・cm、平均粒子
径50nmのエマルジョン塗料では 1.3×10-3Ω・cmと良好
な耐湿性を示した。
The initial conductivity of the coating film is 1.5 × 10 −3 Ω · cm for emulsion paints with an average particle size of 200 nm and 1.0 × 10 −3 Ω · cm for emulsion paints with an average particle size of 100 nm.
, 0.9 × 10 for emulsion paint with an average particle size of 50 nm
-3 Ω ・ cm, all 5 × 10 -3 of conventional solvent-based nickel paint
It showed better performance than Ω · cm. In order to check the moisture resistance of the coating film, the formed coating film was left to stand in an atmosphere of 60 ° C and 95% RH for 1000 hours, and the conductivity was measured. As a result, it was found that 4.8 × 10 -3 Ω. cm, average particle size 100
The emulsion paint with a thickness of 1.5 nm showed a good moisture resistance of 1.5 × 10 -3 Ω · cm, and the emulsion paint with an average particle size of 50 nm showed a resistance of 1.3 × 10 -3 Ω · cm.

【0012】実施例2 平均粒径15μm の電解銅粉に、表面改質剤として5号ソ
ルベント,ステアリン酸,アルミネートカップリング剤
のアセトアルコキシアルミニウムジイソプロピレート,
イソホロン,流動パラフィン,オレイン酸を各々1重量
パーセント添加し、ミキサーで混合して親油性の電解銅
粉を得た。このようにして得た6種類の親油性表面処理
をした電解銅粉50部を平均粒子径50nmの高分子粒子を分
散したポリウレタンエマルジョン塗料(エマルジョン中
の高分子固形分は30重量パーセント) 50部に各々混合分
散して、6種類の水性導電塗料を製造した。
Example 2 Electrolytic copper powder having an average particle size of 15 μm, No. 5 solvent as a surface modifier, stearic acid, acetoalkoxyaluminum diisopropylate as an aluminate coupling agent,
Isophorone, liquid paraffin, and oleic acid were added in an amount of 1 wt% each and mixed with a mixer to obtain a lipophilic electrolytic copper powder. Polyurethane emulsion paint in which 50 parts of 6 kinds of electrolytic copper powders thus treated with lipophilic surface treatment are dispersed in polymer particles having an average particle diameter of 50 nm (polymer solid content in emulsion is 30 weight percent) 50 parts Were mixed and dispersed in 6 to prepare 6 types of aqueous conductive paints.

【0013】実施例1と同じ方法で塗膜の初期導電性を
測定した結果、5号ソルベントで処理した銅粉を用いた
塗料は、 1.5×10-3Ω・cm 、ステアリン酸で処理した
銅粉を用いた塗料は、 0.9×10-3Ω・cm 、アルミネー
トカップリング剤で処理した銅粉を用いた塗料は、 1.2
×10-3Ω・cm 、イソホロンで処理した銅粉を用いた塗
料は、 1.3×10-3Ω・cm 、流動パラフィンで処理した
銅粉を用いた塗料は、1.2×10-3Ω・cm 、オレイン酸
で処理した銅粉を用いた塗料は、 1.0×10-3Ω・cmと良
好な性能を示した。
As a result of measuring the initial conductivity of the coating film by the same method as in Example 1, the paint using the copper powder treated with No. 5 solvent was 1.5 × 10 −3 Ω · cm, copper treated with stearic acid. The coating using powder is 0.9 × 10 -3 Ω ・ cm, and the coating using copper powder treated with aluminate coupling agent is 1.2
× 10 -3 Ωcm, paint using isophorone-treated copper powder is 1.3 × 10 -3 Ωcm, paint using liquid paraffin treated copper powder is 1.2 × 10 -3 Ωcm The paint using copper powder treated with oleic acid showed good performance of 1.0 × 10 -3 Ω · cm.

【0014】実施例1と同じ条件で塗膜の耐湿試験を行
った結果、5号ソルベントで処理した銅粉を用いた塗料
は、 4.2×10-3Ω・cm 、ステアリン酸で処理した銅粉
を用いた塗料は、 1.5×10-3Ω・cm 、アルミネートカ
ップリング剤で処理した銅粉を用いた塗料は、 1.9×10
-3Ω・cm 、イソホロンで処理した銅粉を用いた塗料
は、 4.9×10-3Ω・cm 、流動パラフィンで処理した銅
粉を用いた塗料は、 1.5×10-3Ω・cm 、オレイン酸で
処理した銅粉を用いた塗料は、 1.3×10-3Ω・cmと良好
な性能を示した。
As a result of performing a moisture resistance test of the coating film under the same conditions as in Example 1, the paint using copper powder treated with No. 5 solvent was 4.2 × 10 −3 Ω · cm, copper powder treated with stearic acid. The paint that used is 1.5 × 10 -3 Ωcm, and the paint that uses copper powder treated with an aluminate coupling agent is 1.9 × 10 3.
-3 Ω ・ cm, paint using isophorone-treated copper powder is 4.9 × 10 -3 Ω ・ cm, paint using liquid paraffin treated copper powder is 1.5 × 10 -3 Ω ・ cm, olein The paint using the acid-treated copper powder showed good performance of 1.3 × 10 −3 Ω · cm.

【0015】実施例3 平均粒径18μm の電解銅粉に、機械的に粉砕して製造し
た平均粒径5μm の電解銅粉に、オレイン酸,ステアリ
ン酸,イソプロピルトリイソステアロイルチタネートを
各々2重量パーセント添加し、ボールミルで混合して親
油性の電解銅粉を得た。このようにして得た3種類の親
油性表面処理をした電解銅粉55部を平均粒子径50nmの高
分子粒子を分散したポリウレタンエマルジョン塗料(エ
マルジョン中の高分子固形分は30重量パーセント) 45部
に各々混合分散して、流動性を改善するためイソプロピ
ルアルコールを10部加えて、3種類の水性導電塗料を製
造した。
Example 3 Electrolytic copper powder having an average particle diameter of 18 μm and mechanically pulverized to produce electrolytic copper powder having an average particle diameter of 5 μm, and oleic acid, stearic acid, and isopropyltriisostearoyl titanate were each added at 2 weight percent. The mixture was added and mixed with a ball mill to obtain a lipophilic electrolytic copper powder. 45 parts of the thus obtained 55 parts of electrolytic copper powder that has been subjected to three types of lipophilic surface treatment and polymer particles having an average particle size of 50 nm dispersed therein (polyurethane solid content in emulsion is 30 weight percent) 45 parts Each of them was mixed and dispersed, and 10 parts of isopropyl alcohol was added to improve the fluidity to prepare three kinds of aqueous conductive paints.

【0016】実施例1と同じ方法で塗膜の初期導電性を
測定した結果、オレイン酸で処理した銅粉を用いた塗料
は、 1.3×10-3Ω・cm 、ステアリン酸で処理した銅粉
を用いた塗料は、 1.1×10-3Ω・cm 、チタネートで処
理した銅粉を用いた塗料は、1.1×10-3Ω・cm 、と良
好な性能を示した。実施例1と同じ条件で塗膜の耐湿試
験を行った結果、オレイン酸で処理した銅粉を用いた塗
料は、 2.5×10-3Ω・cm 、ステアリン酸で処理した銅
粉を用いた塗料は、 2.7×10-3Ω・cm 、チタネートで
で処理した銅粉を用いた塗料は、 2.3×10-3Ω・cm と
耐湿試験後に塗膜の導電性が少し悪くなるが、使用上問
題となるものではなかった。
The initial conductivity of the coating film was measured by the same method as in Example 1. As a result, the paint using the copper powder treated with oleic acid was 1.3 × 10 −3 Ω · cm, the copper powder treated with stearic acid. The paints using the same showed 1.1 × 10 −3 Ω · cm, and the paints using the copper powder treated with titanate showed 1.1 × 10 −3 Ω · cm, showing good performance. As a result of performing a moisture resistance test on the coating film under the same conditions as in Example 1, the paint using the copper powder treated with oleic acid was 2.5 × 10 −3 Ω · cm, and the paint using the copper powder treated with stearic acid. Is 2.7 × 10 -3 Ωcm, the paint using copper powder treated with titanate is 2.3 × 10 -3 Ωcm, and the conductivity of the coating film is a little poor after the humidity resistance test, but it is a problem in use. It wasn't.

【0017】比較例1 実施例1で使用した平均粒径15μm の電解銅粉を表面改
質なしで、平均粒子径50nmの高分子粒子を分散した実施
例1のポリウレタンエマルジョン塗料に、実施例1と同
じ配合方法で混合分散した。直ちに塗料中の水が緑青色
になり、実施例1と同じ方法で塗膜の初期導電性を測定
した結果、80Ω・cmと使用できるものでなかった。
Comparative Example 1 The electrolytic copper powder having an average particle size of 15 μm used in Example 1 was applied to the polyurethane emulsion paint of Example 1 in which polymer particles having an average particle size of 50 nm were dispersed without surface modification. Mixed and dispersed by the same compounding method. Immediately after, the water in the paint turned greenish blue, and the initial conductivity of the coating film was measured by the same method as in Example 1. The result was 80 Ω · cm, which was not usable.

【0018】比較例2 実施例1と同じ方法で表面改質した平均粒径15μm の親
油性の電解銅粉50部を平均粒子径 500nmの高分子粒子を
分散したポリウレタンエマルジョン塗料 (エマルジョン
中の高分子固形分は30重量パーセント) 50部に混合分散
した。実施例1と同じ方法で塗膜の初期導電性, 耐湿試
験後の導電性を測定した結果、塗膜の初期導電性は、5
×10-3Ω・cmであったが、耐湿試験後は 100Ω・cmと非
常に悪いものになった。
Comparative Example 2 Polyurethane emulsion paint in which 50 parts of lipophilic electrolytic copper powder having an average particle size of 15 μm and surface-modified by the same method as in Example 1 are dispersed with polymer particles having an average particle size of 500 nm (high in the emulsion) The molecular solid content was 30% by weight) and mixed and dispersed in 50 parts. As a result of measuring the initial conductivity of the coating film and the conductivity after the moisture resistance test by the same method as in Example 1, the initial conductivity of the coating film was 5
It was × 10 -3 Ω · cm, but after the moisture resistance test, it became very poor at 100 Ω · cm.

【0019】[0019]

【発明の効果】本発明の導電塗料は、トルエンなどの有
機溶剤を使用しないため、臭気や中毒のおそれがなく、
しかも銀やニッケルよりも安価な銅粉が使用できる、ま
ったく新しいタイプの水性導電塗料である。広い面積
や、密閉した室内で塗装する電磁波シールド用塗料とし
て最適である。
The conductive coating material of the present invention does not use an organic solvent such as toluene and therefore has no fear of odor or poisoning.
Moreover, it is a completely new type of water-based conductive paint that can use copper powder that is cheaper than silver or nickel. It is ideal as a paint for electromagnetic wave shielding that is applied in a large area or in a closed room.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が 200nm以下のポリウレタン
樹脂を分散した水性エマルジョン塗料に、親油性の表面
処理をした電解銅粉を混合分散することを特徴とする水
性導電塗料。
1. A water-based conductive coating material comprising a water-based emulsion coating material in which a polyurethane resin having an average particle diameter of 200 nm or less is dispersed, and an electrolytic copper powder having a lipophilic surface treatment mixed and dispersed therein.
JP13632293A 1993-06-08 1993-06-08 Water-based electrically conductive coating Pending JPH06346006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13632293A JPH06346006A (en) 1993-06-08 1993-06-08 Water-based electrically conductive coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13632293A JPH06346006A (en) 1993-06-08 1993-06-08 Water-based electrically conductive coating

Publications (1)

Publication Number Publication Date
JPH06346006A true JPH06346006A (en) 1994-12-20

Family

ID=15172520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13632293A Pending JPH06346006A (en) 1993-06-08 1993-06-08 Water-based electrically conductive coating

Country Status (1)

Country Link
JP (1) JPH06346006A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815291A1 (en) * 1998-04-06 1999-10-14 Degussa Coating composition for the production of electrically conductive layers
US6558746B2 (en) 1998-04-06 2003-05-06 Ferro Gmbh Coating composition for producing electrically conductive coatings
WO2005052080A1 (en) * 2003-11-25 2005-06-09 Aica Kogyo Co.,Ltd. Electromagnetic wave shielding water-base paint and basket obtainable therewith
JP2014195067A (en) * 2013-02-27 2014-10-09 n−tech株式会社 Electromagnetic wave shield paint
CN112408909A (en) * 2020-11-20 2021-02-26 江苏扬建集团有限公司 High-performance sleeve grouting material for prefabricated building and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815291A1 (en) * 1998-04-06 1999-10-14 Degussa Coating composition for the production of electrically conductive layers
US6558746B2 (en) 1998-04-06 2003-05-06 Ferro Gmbh Coating composition for producing electrically conductive coatings
DE19815291B4 (en) * 1998-04-06 2006-05-24 Ferro Gmbh Coating composition for the production of electrically conductive layers
WO2005052080A1 (en) * 2003-11-25 2005-06-09 Aica Kogyo Co.,Ltd. Electromagnetic wave shielding water-base paint and basket obtainable therewith
JP2014195067A (en) * 2013-02-27 2014-10-09 n−tech株式会社 Electromagnetic wave shield paint
CN112408909A (en) * 2020-11-20 2021-02-26 江苏扬建集团有限公司 High-performance sleeve grouting material for prefabricated building and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102050124B1 (en) Ultrathin flake-type silver powder and manufacturing method therefor
JP3937113B2 (en) Organic-inorganic composite conductive sol and method for producing the same
TWI518038B (en) Flaky silver powder, conductive paste composition and producing method for flaky silver powder
US20060081808A1 (en) Hydrophilic magnetic metal oxide nanoparticles and preparing method thereof
JPH08510275A (en) Dispersible intrinsically conductive polymer and method for producing the same
JP7293212B2 (en) Shielding Formulations Using Discrete Carbon Nanotubes with Targeted Oxidation Levels and Method of Formulation
WO2020004273A1 (en) Conductive particles, conductive material, and connecting structure
TW200526342A (en) Granular metal powder
JP5862848B2 (en) Production method of functional inorganic particle powder
AU2017243872B2 (en) Conductive composites
JPH06346006A (en) Water-based electrically conductive coating
CN109400924B (en) Preparation method of two-dimensional nano composite dielectric material based on high energy storage efficiency
KR20150099600A (en) Method for producing aluminum flake paste
JPH0394078A (en) Production of electrically conductive particles
JPH0395298A (en) Conductive and magnetic fluid composition and preparation of the same
JP5453789B2 (en) Metal fine particle dispersion, method for producing metal thin film, and metal thin film
JPH07118114A (en) Metallic powder for antimicrobial use and antimicrobial coating composition
JPH07330337A (en) Dispersion of electro-conductive fine powder and its production
JPH0547592B2 (en)
JPH08231760A (en) Surface-modified ground calcium carbonate and vinyl chloride resin composition compounded with the calcium carbonate
JP4046785B2 (en) Non-conductive carbonaceous powder and method for producing the same
JPS6060168A (en) Electrically conductive paint
JP5939386B2 (en) Conductive ink composition
KR100529775B1 (en) Compositon of Conductive Paint for Electro magnetic Interference Shielding
JP2002237214A (en) Conductive coating material composition