JPH0634525A - High-speed spectrophotometer - Google Patents

High-speed spectrophotometer

Info

Publication number
JPH0634525A
JPH0634525A JP19419392A JP19419392A JPH0634525A JP H0634525 A JPH0634525 A JP H0634525A JP 19419392 A JP19419392 A JP 19419392A JP 19419392 A JP19419392 A JP 19419392A JP H0634525 A JPH0634525 A JP H0634525A
Authority
JP
Japan
Prior art keywords
dimensional
light
sample
spectral
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19419392A
Other languages
Japanese (ja)
Inventor
Naoshi Kozu
尚士 神津
Akimasa Morita
晃正 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP19419392A priority Critical patent/JPH0634525A/en
Publication of JPH0634525A publication Critical patent/JPH0634525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain a spectrophotometer which can speedily perform spectrophotometry over the entire surface of a specimen. CONSTITUTION:The light from a bar-shaped light source 2 uniformly lights a line-shaped measurement region 6 on the surface of a specimen 4. The measurement region 6 exists in the Y-axis direction and the specimen 4 can be moved in the X-axis direction which crosses in the Y-axis direction. Reflection light from the measurement region 6 passes through a two-dimensional light cutting filter 12 and two-dimensional light is eliminated, thus leading one-dimensional image of the measurement region 6 to a concave-surface diffraction grid 14. The image of light which is separated into its spectral components by the diffraction grid 14 is formed on a two-dimensional photosensor 18. The output of the photosensor 18 is given to a processor 20. The processor 20 analyzes the spectral intensity of each spectral wavelength based on the photosensor output, thus measuring the spectral distribution on the one-dimensional image at one time. Further, the spectral distribution over the entire specimen surface can be measured by moving the specimen 4 in the X-axis direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば液晶ディスプ
レィ用カラーフィルターや液晶素子の分光透過率測定、
半導体の残留レジストや塵埃の蛍光分析解析、膜厚測定
などのための分光測定を高速に実行するための高速分光
測光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, color filters for liquid crystal displays and spectral transmittance measurement of liquid crystal elements,
The present invention relates to a high-speed spectrophotometric device for performing high-speed spectroscopic measurement for residual resist and dust analysis of semiconductors, film thickness measurement, and the like.

【0002】[0002]

【従来の技術】液晶基板等の製造工程では、液晶ディス
プレィ用カラーフィルターや液晶素子の分光透過率測定
がなされている。また、ICウェハなどの半導体デバイ
スの製造工程では、手垢、化粧品、繊維などの塵埃や残
留レジストの検査のための蛍光分析解析、或いは分光測
光による酸化シリコン等の膜厚測定がなされている。
2. Description of the Related Art In the manufacturing process of liquid crystal substrates and the like, the spectral transmittance of color filters for liquid crystal displays and liquid crystal elements is measured. Further, in a manufacturing process of a semiconductor device such as an IC wafer, a fluorescence analysis analysis for inspecting dust such as dust on hands, cosmetics, fibers and residual resist, or film thickness measurement of silicon oxide by spectrophotometry is performed.

【0003】このような測定検査に使用される一般的な
分光測光装置では、光導入部として光学顕微鏡または光
ファイバーが用いられ、受光素子としてフォトマルチプ
ライヤーまたはラインセンサーが用いられている。
In a general spectrophotometric device used for such measurement and inspection, an optical microscope or an optical fiber is used as a light introducing section, and a photomultiplier or a line sensor is used as a light receiving element.

【0004】図5に一般的な分光測光装置の光学系を示
す。超高圧水銀灯などの照明ランプ32より出射された
光は、絞り36を含む照明レンズ系34により適宜な径
にされ、ハーフミラー38で反射し、対物レンズ40に
より標本42の面上の測光ポイント、即ち点状の領域を
落射照明する。
FIG. 5 shows an optical system of a general spectrophotometer. Light emitted from an illumination lamp 32 such as an ultra-high pressure mercury lamp is made to have an appropriate diameter by an illumination lens system 34 including a diaphragm 36, reflected by a half mirror 38, and an objective lens 40 measures light on a surface of a sample 42. That is, the dot-shaped area is illuminated by epi-illumination.

【0005】測光ポイントからの反射光は、測光ポイン
トの様々な情報を含んだ干渉反射光であり、この反射光
は、対物レンズ40、ハーフミラー38、レンズ42、
測光鏡筒部44及び測光絞り46を順次に透過して、二
次光カットフィルタ48により二次元光が除去され、レ
ンズ50を透過して凹面回折格子52に導かれる。回折
格子52で分光された光は、ミラー54で反射してライ
ンセンサー56に検出される。ラインセンサー56は、
検出光の分光強度に応じた信号を演算処理装置(図示せ
ず)へ出力する。演算処理装置が、ラインセンサー56
の出力信号に基づいて、各分光波長の分光強度を解析す
る結果、測光ポイントについての膜厚、塵埃情報等が測
定される。
The reflected light from the photometric point is interference reflected light containing various information of the photometric point, and the reflected light is the objective lens 40, the half mirror 38, the lens 42,
The light is sequentially transmitted through the photometric lens barrel portion 44 and the photometric aperture 46, two-dimensional light is removed by the secondary light cut filter 48, and is transmitted through the lens 50 to be guided to the concave diffraction grating 52. The light dispersed by the diffraction grating 52 is reflected by the mirror 54 and detected by the line sensor 56. The line sensor 56 is
A signal corresponding to the spectral intensity of the detected light is output to an arithmetic processing unit (not shown). The processor is the line sensor 56.
As a result of analyzing the spectral intensity of each spectral wavelength based on the output signal of, the film thickness, dust information, etc. at the photometric point are measured.

【0006】尚、図5において、シャッタ60を含むア
イピース系は、測光範囲を眼視観察するための系であ
り、投影光学系62は、指標を投影するための系であ
り、測光絞り照明系64は、測光絞り46を照明するた
めに照明ランプ66及び回転ミラー68を含む系であ
る。
In FIG. 5, an eyepiece system including a shutter 60 is a system for visually observing a photometric range, a projection optical system 62 is a system for projecting an index, and a photometric aperture illumination system. Reference numeral 64 is a system including an illumination lamp 66 and a rotating mirror 68 for illuminating the photometric diaphragm 46.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
ような分光測光装置では、一度に一ポイントの分光測光
しかできないため、一次元的な長さを持った領域につい
て分光測光を実行するためには、数多くのポイントにつ
いての分光測光を繰り返し実行せねばならない。更に、
二次元的な拡がりを持った領域、例えば標本面全面に亘
る分光測光を実行するためには、例えば数百ポイントも
の分光測光を繰り返す必要がある。その結果、一次元的
または二次元的な領域についての分光測光には、非常に
長い測定時間と膨大な測定労力が要求される。
However, since the spectrophotometric device as described above can perform spectrophotometric measurement of only one point at a time, it is necessary to perform spectrophotometric measurement on a region having a one-dimensional length. , It is necessary to repeat spectrophotometry for many points. Furthermore,
In order to perform spectrophotometry over a region having a two-dimensional spread, for example, the entire surface of a sample, it is necessary to repeat spectrophotometry for several hundred points, for example. As a result, a very long measurement time and enormous measurement labor are required for spectrophotometry in a one-dimensional or two-dimensional area.

【0008】また、分光測光に基づく膜厚測定において
は、膜厚の点測定に基づいて膜厚の二次元分布を推定し
ているため、必ずしも正確な膜厚分布測定がなされてい
ない。
Further, in the film thickness measurement based on spectrophotometry, the two-dimensional distribution of the film thickness is estimated based on the point measurement of the film thickness, so that the film thickness distribution measurement is not always accurate.

【0009】従って、この発明の目的は、一次元的に長
さを持った一次元領域に亘る分光測光を一度に実行で
き、更に、二次元領域に亘る高速な分光測光にも適用可
能な高速分光測光装置を提供することである。
Therefore, an object of the present invention is to perform spectrophotometry over a one-dimensional region having a one-dimensional length at a time, and further, it is applicable to high-speed spectrophotometry over a two-dimensional region at high speed. It is to provide a spectrophotometric device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、この発明の高速分光測光装置は、標本の一面の一次
元領域に向けて光を出射する光源と、一次元領域からの
光から一次元像を分離する分離手段と、分離された一次
元像を分光する分光手段と、分光された一次元像の分光
強度を検出する検出手段と、検出された分光強度に基づ
いて、一次元像上の分光分布を解析する解析手段と、を
備える。
In order to achieve the above object, a high-speed spectrophotometer of the present invention comprises a light source that emits light toward a one-dimensional area on one surface of a sample and a light from the one-dimensional area. Separation means for separating the one-dimensional image, spectroscopic means for separating the separated one-dimensional image, detection means for detecting the spectral intensity of the separated one-dimensional image, and one-dimensional based on the detected spectral intensity Analyzing means for analyzing the spectral distribution on the image.

【0011】この発明の更なる発展では、標本面の二次
元領域に亘る分光測光を高速に実行するために、標本が
載置されるべき移動ステージを備え得る。このステージ
は、標本の表面内で一次元領域に直交する方向に沿って
標本を移動可能である。或いは、光源と分離手段と分光
手段と検出手段とが、標本の表面内で一次元領域に直交
する方向に沿って移動可能であってもよい。
In a further development of the present invention, in order to perform spectrophotometry over a two-dimensional area of the sample surface at high speed, a moving stage on which the sample is to be mounted can be provided. The stage can move the sample along the direction orthogonal to the one-dimensional region within the surface of the sample. Alternatively, the light source, the separating means, the spectroscopic means, and the detecting means may be movable along the direction orthogonal to the one-dimensional region on the surface of the sample.

【0012】[0012]

【作用】この発明の高速分光測光装置によれば、標本上
の点状の領域ではなく、一次元的な長さを持った一次元
領域からの光に対して分光測光を実行するので、点状の
領域について分光測光を実行する場合に比較して、広い
範囲の分光測光を高速に実行できる。
According to the high-speed spectrophotometer of the present invention, spectrophotometry is performed on light from a one-dimensional area having a one-dimensional length, not from a point-like area on a sample. As compared with the case where the spectrophotometry is performed on the region having a circular shape, the spectrophotometry over a wide range can be performed at high speed.

【0013】[0013]

【実施例】図1は、この発明に係る高速分光測光装置を
示す。棒状の光源、例えば水銀ランプ2は、標本4を落
射照明するために、標本4の上方において、標本4から
の反射光を検出するための光路を遮蔽しない位置に配置
されている。この光源2からの光は、標本4の一面上の
線状の測定領域6を均一に照明する。ここで、図1にお
いて、測定領域6の延在方向をY軸方向、標本4の面上
でY軸方向に直交する方向をX軸方向とする。
1 shows a high-speed spectrophotometer according to the present invention. A rod-shaped light source, for example, a mercury lamp 2 is arranged above the sample 4 at a position where an optical path for detecting reflected light from the sample 4 is not shielded in order to illuminate the sample 4 with epi-illumination. The light from the light source 2 uniformly illuminates a linear measurement region 6 on one surface of the sample 4. Here, in FIG. 1, the extending direction of the measurement region 6 is the Y-axis direction, and the direction orthogonal to the Y-axis direction on the surface of the sample 4 is the X-axis direction.

【0014】測定領域6からの反射光は、レンズ8によ
りスリット10上に集光され、二次元光カットフィルタ
ー12を通過して二次元光が除去される。この結果、フ
ィルター12の上方に配置された凹面回折格子14に
は、測定領域6の一次元像が導かれる。回折格子14で
分光された光は、ミラー16で反射して、分光データと
してフォトセンサー、好ましくは二次元フォトセンサー
18上に分光結像される。この分光データは図2に示す
ような強度分布として表される。図2において、X軸は
光の波長、Y軸は一次元像の方向、Z軸は光の強度を表
す。
The reflected light from the measurement area 6 is condensed on the slit 10 by the lens 8, passes through the two-dimensional light cut filter 12, and the two-dimensional light is removed. As a result, the one-dimensional image of the measurement region 6 is guided to the concave diffraction grating 14 arranged above the filter 12. The light split by the diffraction grating 14 is reflected by the mirror 16 and is spectrally imaged as spectral data on a photosensor, preferably a two-dimensional photosensor 18. This spectral data is represented as an intensity distribution as shown in FIG. In FIG. 2, the X axis represents the wavelength of light, the Y axis represents the direction of a one-dimensional image, and the Z axis represents the light intensity.

【0015】二次元フォトセンサー18は、この分光デ
ータをCPUを含む演算処理装置20へ与える。演算処
理装置20が、分光データから各分光波長の分光強度を
解析することにより、一次元像上の分光分布が一度に測
定される。演算処理装置20は、この分光分布に基づい
て、例えば液晶ディスプレィ用カラーフィルターや液晶
素子の分光特性、透過率などを測定することができる。
The two-dimensional photo sensor 18 supplies the spectral data to the arithmetic processing unit 20 including a CPU. The arithmetic processing unit 20 analyzes the spectral intensity of each spectral wavelength from the spectral data, whereby the spectral distribution on the one-dimensional image is measured at one time. The arithmetic processing unit 20 can measure, for example, the spectral characteristics and transmittance of the liquid crystal display color filter and the liquid crystal element based on this spectral distribution.

【0016】また、上記の分光分布に基づいて、演算処
理装置20に薄厚の膜厚dを算出させることも可能であ
る。この場合、演算処理装置20のメモリー(図示せ
ず)には、膜厚dを求めるための式が与えられているも
のとする。
Further, it is possible to cause the arithmetic processing unit 20 to calculate the thin film thickness d based on the above-mentioned spectral distribution. In this case, it is assumed that the memory (not shown) of the arithmetic processing unit 20 is provided with an equation for obtaining the film thickness d.

【0017】この膜厚dを求めるための式について説明
する。空気中から薄膜に入射した光は、その一部が膜の
表面で反射するが、その他、膜を一回通って試料面で反
射して空気中に放出されるものや、または二回、三回と
膜内を通るものなど、様々な光路をたどる反射光が存在
する。実際に観測される反射光は、これらの光が全て足
し合わされたものになる。そして、入射光の波長λを変
化させると、反射光の強度は図3に示すように周期的な
片かを示し、膜厚dに応じてその周期が変化する。一般
に、膜厚dが厚くなるほど周期が短くなる。この場合、
膜厚dは次式で与えられる。
The formula for obtaining the film thickness d will be described. Part of the light incident on the thin film from the air is reflected on the surface of the film, but other light is emitted through the film once after being reflected by the sample surface, or twice or three times. There are reflected lights that follow various optical paths, such as those that pass through the gyrus and the film. The reflected light actually observed is the sum of all these lights. Then, when the wavelength λ of the incident light is changed, the intensity of the reflected light shows whether the intensity is periodical as shown in FIG. 3, and the period changes according to the film thickness d. In general, the thicker the film thickness d, the shorter the cycle. in this case,
The film thickness d is given by the following equation.

【0018】d=4N/4・[(λ1 ・λ2 )/{n
(λ1 )・λ2 −n(λ2 )λ1 }] ここで、λ1 、λ2 は二つの極大または極小値の波長、
nは各波長において予め与えられた膜の屈折率、n(λ
1 )はλ1 での屈折率、n(λ2 )はλ2 での屈折率、
Nはλ1 とλ2 との間に存在する極大極小の数である。
D = 4N / 4 · [(λ 1 · λ 2 ) / {n
1 ) · λ 2 −n (λ 2 ) λ 1 }] where λ 1 and λ 2 are the two maximum or minimum wavelengths,
n is the refractive index of the film given in advance at each wavelength, and n (λ
1 ) is the refractive index at λ 1 , n (λ 2 ) is the refractive index at λ 2 ,
N is the maximum and minimum number existing between λ 1 and λ 2 .

【0019】尚、例えば酸化シリコン、窒化シリコン、
レジスト、ポリシリコンなどの半導体製造プロセスで扱
われる標準的な物質については、その屈折率データを演
算処理装置20のメモリーに記憶させておくことも可能
である。
Incidentally, for example, silicon oxide, silicon nitride,
It is also possible to store the refractive index data of a standard substance used in a semiconductor manufacturing process such as a resist or polysilicon in the memory of the arithmetic processing unit 20.

【0020】或いは、光源2として紫外線ランプを用
い、標本上の蛍光測光を行うことにより、標本面上に存
在する有機物質等の有無の検出及びその物質の同定が行
える。これは、ICウェハなどの半導体デバイスに対す
る手垢、化粧品、繊維などの塵埃や残留レジストの検査
のために有益である。
Alternatively, by using an ultraviolet lamp as the light source 2 and performing fluorescence photometry on the sample, the presence or absence of an organic substance or the like existing on the sample surface can be detected and the substance can be identified. This is useful for inspecting semiconductor devices such as IC wafers for dust, cosmetics, dust such as fibers, and residual resist.

【0021】図1の構成において、標本4が載置される
べき移動ステージ(図示せず)を備えてもよい。この移
動ステージは、標本面内で測定領域6に対して直交する
X軸方向に沿って移動可能である。この場合、標本4面
上の二次元的な領域についての分光測光を高速に実行で
きる。
In the configuration of FIG. 1, a moving stage (not shown) on which the sample 4 is to be placed may be provided. This moving stage is movable in the sample plane along the X-axis direction orthogonal to the measurement region 6. In this case, spectrophotometry for a two-dimensional area on the surface of the sample 4 can be executed at high speed.

【0022】図1における二次元フォトセンサー18
は、測定領域が二次元の場合を示しており、矢印20は
測定領域の走査方向を示す。このように測定領域を二次
元とする際は、線状測定領域6のY軸方向長さが、標本
4の面のY軸方向の長さ全体に亘ることが好ましい。こ
の場合、標本面全面に亘る分光測光が極めて高速に実行
できる。
The two-dimensional photo sensor 18 shown in FIG.
Indicates the case where the measurement region is two-dimensional, and the arrow 20 indicates the scanning direction of the measurement region. When the measurement region is two-dimensional as described above, it is preferable that the length of the linear measurement region 6 in the Y-axis direction extends over the entire length of the surface of the sample 4 in the Y-axis direction. In this case, the spectrophotometry over the entire sample surface can be executed at an extremely high speed.

【0023】標本6の面が、蒸着や塗布等による薄膜を
有する場合、上述のような二次元測定に対応した高速分
光測光装置を膜厚測定に応用することにより、標本面全
面の面膜厚測定、または面膜厚のむらの測定を高速に実
行可能である。また同様に、標本面全面に亘る塵埃測定
も高速に実行可能である。
When the surface of the sample 6 has a thin film formed by vapor deposition or coating, the high-speed spectrophotometer corresponding to the two-dimensional measurement as described above is applied to the film thickness measurement to measure the film thickness of the entire surface of the sample. Alternatively, it is possible to quickly measure the unevenness of the surface film thickness. Similarly, dust measurement over the entire surface of the sample can be executed at high speed.

【0024】図4は、二次元測定に対応した高速分光測
光装置により面膜厚の分布を測定した結果の一例を示
す。図4において、X軸、Y軸は、それぞれ標本のX座
標、Y座標(図1参照)を示し、Z軸は標本の膜厚分布
を示す。
FIG. 4 shows an example of the result of measuring the distribution of the surface film thickness by the high-speed spectrophotometer corresponding to the two-dimensional measurement. In FIG. 4, the X axis and the Y axis indicate the X coordinate and the Y coordinate (see FIG. 1) of the sample, respectively, and the Z axis indicates the film thickness distribution of the sample.

【0025】上記実施例では、落射照明型の高速分光測
光装置を示したが、光源2を標本4の直下に配置するこ
とにより、透過照明型の高速分光測光装置を構成しても
よい。
In the above embodiment, the epi-illumination type high-speed spectrophotometric device is shown. However, by arranging the light source 2 directly below the sample 4, a transillumination type high-speed spectrophotometric device may be constructed.

【0026】また、測定領域を二次元とする場合、移動
ステージを備えるに代えて、高速分光測光装置の光学系
を標本4に対してX軸方向に移動可能としても、同様な
効果が達成される。
When the measurement area is two-dimensional, the same effect can be achieved even if the optical system of the high-speed spectrophotometer is movable in the X-axis direction with respect to the sample 4 instead of providing the moving stage. It

【0027】[0027]

【発明の効果】請求第1項に記載の高速分光測光装置に
よれば、一次元的な長さを持った一次元領域についての
分光測光を実行可能なため、膜厚、塵埃、透過率、分光
特性の一次元的な分布を瞬時に測定できる。
According to the high-speed spectrophotometer described in claim 1, spectrophotometry can be executed for a one-dimensional area having a one-dimensional length, and therefore, the film thickness, dust, transmittance, One-dimensional distribution of spectral characteristics can be measured instantly.

【0028】請求第2項及び第3項に記載の高速分光測
光装置によれば、従来のように多数のポイントの分光測
光を繰り返すことなく、標本面内で一次元領域に直交す
る一方向への移動のみで二次元領域についての分光測光
が可能である。従って、上述の分布測定の測定対象は、
二次元方向の分布についても極めて高速に測定可能であ
る。
According to the high-speed spectrophotometry device described in claims 2 and 3, the spectrophotometry of a large number of points is not repeated as in the prior art, but in one direction orthogonal to the one-dimensional region in the sample plane. It is possible to spectrophotometrically measure a two-dimensional area only by moving. Therefore, the measurement target of the above-mentioned distribution measurement is
It is possible to measure the distribution in the two-dimensional direction at extremely high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の高速分光測光装置を示す斜視図であ
る。
FIG. 1 is a perspective view showing a high-speed spectrophotometric device of the present invention.

【図2】図1の装置のフォトセンサーの入力データを示
す線図である。
FIG. 2 is a diagram showing input data of a photo sensor of the apparatus shown in FIG.

【図3】図1の装置による膜厚の計算のための強度分布
を示す線図である。
3 is a diagram showing an intensity distribution for film thickness calculation by the apparatus of FIG.

【図4】図1の装置による膜厚分布測定の一測定例を示
す線図である。
FIG. 4 is a diagram showing one measurement example of film thickness distribution measurement by the apparatus of FIG.

【図5】従来の分光測光装置を示す模式図である。FIG. 5 is a schematic diagram showing a conventional spectrophotometric device.

【符号の説明】[Explanation of symbols]

2…光源、4…標本、6…線状測定領域(一次元領
域)、12…二次光カットフィルタ(分離手段)、14
…凹面回折格子、18…フォトセンサー(検出手段)、
演算処理装置(解析手段)。
2 ... Light source, 4 ... Specimen, 6 ... Linear measurement area (one-dimensional area), 12 ... Secondary light cut filter (separation means), 14
... concave diffraction grating, 18 ... photo sensor (detection means),
Arithmetic processing device (analyzing means).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 標本の一面上の領域を分光測光するため
の高速分光測光装置であって、 標本の一面の一次元領域に向けて光を出射する光源と、 一次元領域からの光から一次元像を分離する分離手段
と、 分離された一次元像を分光する分光手段と、 分光された一次元像の分光強度を検出する検出手段と、 検出された分光強度に基づいて、一次元像上の分光分布
を解析する解析手段と、を備える高速分光測光装置。
1. A high-speed spectrophotometric device for spectrophotometrically measuring an area on one surface of a sample, the light source emitting light toward a one-dimensional area on one surface of the sample, and a primary light from the light from the one-dimensional area. Separation means for separating the original image, spectroscopic means for separating the separated one-dimensional image, detection means for detecting the spectral intensity of the separated one-dimensional image, and one-dimensional image based on the detected spectral intensity A high-speed spectrophotometric device comprising: an analyzing unit that analyzes the above spectral distribution.
【請求項2】 標本が載置されるべき移動ステージを更
に備え、このステージは、標本の表面内で一次元領域に
直交する方向に沿って移動可能である請求項1記載の高
速分光測光装置。
2. The high-speed spectrophotometer according to claim 1, further comprising a moving stage on which the sample is to be placed, the stage being movable in a direction orthogonal to the one-dimensional region on the surface of the sample. .
【請求項3】 前記光源と分離手段と分光手段と検出手
段とが、標本の表面内で一次元領域に直交する方向に沿
って移動可能である請求項1または2記載の高速分光測
光装置。
3. The high-speed spectrophotometric device according to claim 1, wherein the light source, the separating means, the spectroscopic means, and the detecting means are movable along the direction orthogonal to the one-dimensional region on the surface of the sample.
JP19419392A 1992-07-21 1992-07-21 High-speed spectrophotometer Pending JPH0634525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19419392A JPH0634525A (en) 1992-07-21 1992-07-21 High-speed spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19419392A JPH0634525A (en) 1992-07-21 1992-07-21 High-speed spectrophotometer

Publications (1)

Publication Number Publication Date
JPH0634525A true JPH0634525A (en) 1994-02-08

Family

ID=16320501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19419392A Pending JPH0634525A (en) 1992-07-21 1992-07-21 High-speed spectrophotometer

Country Status (1)

Country Link
JP (1) JPH0634525A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744600A1 (en) * 1995-05-23 1996-11-27 Shimadzu Corporation Spectrophotometer
JP2001343332A (en) * 2000-05-31 2001-12-14 Sharp Corp Method and device for evaluating electronic parts
JP2006170669A (en) * 2004-12-13 2006-06-29 Mitsui Mining & Smelting Co Ltd Quality inspection device of vegetables and fruits
JP6285597B1 (en) * 2017-06-05 2018-02-28 大塚電子株式会社 Optical measuring apparatus and optical measuring method
JP6371926B1 (en) * 2018-01-29 2018-08-08 大塚電子株式会社 Optical measuring apparatus and optical measuring method
JP6918395B1 (en) * 2021-04-19 2021-08-11 のりこ 安間 Imaging device
WO2022224917A1 (en) * 2021-04-19 2022-10-27 のりこ 安間 Three-dimensional image pickup device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744600A1 (en) * 1995-05-23 1996-11-27 Shimadzu Corporation Spectrophotometer
US5592291A (en) * 1995-05-23 1997-01-07 Shimadzu Corporation Spectrophotometer
JP2001343332A (en) * 2000-05-31 2001-12-14 Sharp Corp Method and device for evaluating electronic parts
JP2006170669A (en) * 2004-12-13 2006-06-29 Mitsui Mining & Smelting Co Ltd Quality inspection device of vegetables and fruits
JP2018205132A (en) * 2017-06-05 2018-12-27 大塚電子株式会社 Optical measuring device and optical measuring method
JP6285597B1 (en) * 2017-06-05 2018-02-28 大塚電子株式会社 Optical measuring apparatus and optical measuring method
CN109163666A (en) * 2017-06-05 2019-01-08 大塚电子株式会社 Optical measuring device and measuring method
US10288412B2 (en) 2017-06-05 2019-05-14 Otsuka Electronics Co., Ltd. Optical measurement apparatus and optical measurement method
US10309767B2 (en) 2017-06-05 2019-06-04 Otsuka Electronics Co., Ltd. Optical measurement apparatus and optical measurement method
CN109163666B (en) * 2017-06-05 2021-06-11 大塚电子株式会社 Optical measuring device and optical measuring method
JP6371926B1 (en) * 2018-01-29 2018-08-08 大塚電子株式会社 Optical measuring apparatus and optical measuring method
JP2018205295A (en) * 2018-01-29 2018-12-27 大塚電子株式会社 Optical measuring device and optical measuring method
JP6918395B1 (en) * 2021-04-19 2021-08-11 のりこ 安間 Imaging device
WO2022224917A1 (en) * 2021-04-19 2022-10-27 のりこ 安間 Three-dimensional image pickup device
JP2022165355A (en) * 2021-04-19 2022-10-31 のりこ 安間 Imaging apparatus

Similar Documents

Publication Publication Date Title
US7719677B2 (en) Multi-spectral techniques for defocus detection
US4844617A (en) Confocal measuring microscope with automatic focusing
CN1224829C (en) Differential numerical aperture methods and device
EP0652415B1 (en) A device for measuring the thickness of thin films
AU751246B2 (en) Set-up of measuring instruments for the parallel readout of SPR sensors
TWI756306B (en) Optical characteristic measuring apparatus and optical characteristic measuring method
US20070187606A1 (en) Overlay metrology using the near infra-red spectral range
JP2022533246A (en) Optical diagnosis of semiconductor processes using hyperspectral imaging
EP3206015B1 (en) Spectrophotometer
JPH0634525A (en) High-speed spectrophotometer
US20020154319A1 (en) Film thickness measuring apparatus
JPH1090192A (en) Optical inspection of specimen using multi-channel response from the specimen
CN107329373B (en) A kind of overlay error measuring device and method
CN116429257A (en) Spectrum measurement system and spectrum type thickness measurement system
JP2011021948A (en) Particle size measuring instrument
WO2006050978A2 (en) Optical device for determining the in-focus position of a fourier optics set-up
WO1996003615A1 (en) Film thickness mapping using interferometric spectral imaging
JP4336847B2 (en) Microspectrophotometer
JPH01145504A (en) Optically measuring apparatus
US7355713B2 (en) Method for inspecting a grating biochip
JPH05340869A (en) Thin film measuring instrument
US6804007B2 (en) Apparatus for multiplexing two surface plasma resonance channels onto a single linear scanned array
WO1996000887A1 (en) An improved optical sensor and method
JP3361777B2 (en) Mask inspection method and inspection apparatus
JPH05141924A (en) Film thickness measuring device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020625