JPH0634447A - Polarization dispersion measuring method and device - Google Patents

Polarization dispersion measuring method and device

Info

Publication number
JPH0634447A
JPH0634447A JP4185542A JP18554292A JPH0634447A JP H0634447 A JPH0634447 A JP H0634447A JP 4185542 A JP4185542 A JP 4185542A JP 18554292 A JP18554292 A JP 18554292A JP H0634447 A JPH0634447 A JP H0634447A
Authority
JP
Japan
Prior art keywords
polarization
optical signal
wavelength
optical
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4185542A
Other languages
Japanese (ja)
Other versions
JP2690049B2 (en
Inventor
Yoshitaka Namihira
宜敬 波平
Toshio Kawasawa
俊夫 川澤
Hiroharu Wakabayashi
博晴 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP18554292A priority Critical patent/JP2690049B2/en
Publication of JPH0634447A publication Critical patent/JPH0634447A/en
Application granted granted Critical
Publication of JP2690049B2 publication Critical patent/JP2690049B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a highly stable polarization dispersion measuring method and device in all polarization states. CONSTITUTION:A light signal L1 of a wavelength variable light source 1 is applied to a measurement target 6 after it is changed into any polarization state and any polarization main axis direction by polarization control means 5. A light signal L3 which is irradiated from the measurement target 6 is analyzed by a polarization analysis means 7 and a group delay time in polarization state where the light signal L3 crosses, namely a polarization variance tau, is obtained from the number N of crests (troughs) between wavelengths where the phase difference of light signal is equal to pi or pi/2 in a period function in cosine wave indicating the fluctuation of the polarization state for the wavelength of the light signal L3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ、光コンポ
ーネント及び光増幅中継伝送システム等で伝送される光
信号の偏波分散を測定する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring polarization dispersion of an optical signal transmitted through an optical fiber, an optical component, an optical amplification repeater transmission system and the like.

【0002】[0002]

【従来の技術】この種従来の技術を図面につき説明す
る。図8は従来の偏波分散測定に用いる装置の構成例を
示すブロック・ダイアグラムである。図中、1は波長可
変光源、2は波長可変光源1の出射光信号L1の波長λ
を制御する温度コントローラ等の波長制御装置、3は光
分岐器、4は波長計、5は光信号の偏波状態を制御する
ための偏波制御装置、6は測定対象、7はストークス・
アナライザや回転型検光子等の偏光解析器、8はコンピ
ュータ等の記録演算処理装置である。
2. Description of the Related Art A conventional technique of this kind will be described with reference to the drawings. FIG. 8 is a block diagram showing a configuration example of a conventional device used for polarization dispersion measurement. In the figure, 1 is a wavelength tunable light source, 2 is a wavelength λ of an output light signal L1 from the wavelength tunable light source 1.
A wavelength controller such as a temperature controller for controlling the light source, 3 an optical branching device, 4 a wavelength meter, 5 a polarization controller for controlling the polarization state of the optical signal, 6 a measurement target, 7 Stokes
A polarization analyzer such as an analyzer or a rotary analyzer, and 8 is a recording / processing device such as a computer.

【0003】従来の偏波分散測定方法を、図8を参照し
て説明する。波長可変光源1の光信号L1出力を光ファ
イバ・カップラ等の光分岐器3で分岐し、一方の光信号
を測定対象6に入力しその偏波分散を測定するための光
信号L1aとし、他方の光信号はその波長(若しくは周
波数。周波数は波長の逆数として表示する事が可能であ
るため、以下の従来方法の説明では周波数と波長を殆ど
同一のものとしている)を波長計4でモニターし記録す
るための光信号L1bとする。
A conventional polarization dispersion measuring method will be described with reference to FIG. The optical signal L1 output of the wavelength tunable light source 1 is branched by an optical branching device 3 such as an optical fiber coupler, one optical signal is input to the measurement target 6 and the optical signal L1a for measuring the polarization dispersion thereof, and the other Of the optical signal is monitored by the wavelength meter 4 for its wavelength (or frequency. Since the frequency can be displayed as the reciprocal of the wavelength, the frequency and the wavelength are almost the same in the following explanation of the conventional method). The optical signal L1b for recording is used.

【0004】次に、測定対象6に入力するための光信号
L1bを偏波制御装置5で任意の偏光状態にし、光ファ
イバや光コンポーネント等の測定対象6に入射し、スト
ークス・アナライザや回転形検光子等の偏光解析器7
で、各波長λ(周波数f)に対する偏光状態をコンピュ
ータ等の記録演算処理装置8に記録し、各波長λ(周波
数f)を変化させて同様に測定を行う。
Then, the optical signal L1b to be input to the measurement object 6 is made into an arbitrary polarization state by the polarization control device 5 and is incident on the measurement object 6 such as an optical fiber or an optical component, and the Stokes analyzer or the rotary type is used. Polarizer 7 such as analyzer
Then, the polarization state for each wavelength λ (frequency f) is recorded in the recording arithmetic processing unit 8 such as a computer, and each wavelength λ (frequency f) is changed, and the same measurement is performed.

【0005】従来の偏波分散測定方法においては、スト
ークス・アナライザや回転形検光子等の偏光解析器7で
求めることの可能なポアンカレ球表示上の、各波長λ
(周波数f)に対する偏光状態(以下、SOPとする)
の軌跡が、図9のように円を描くことより、位相差Δφ
を求め、下記の式(1)を用いて、偏波分散τを求めて
いた。 τ=Δφ/Δω =(Δφ/2π)(1/Δf) =(Δφ/2π)(λ1λn/cΔλ) …(1) 但し、Δλ=|λ1−λn| Δφ:λ1とλnにおける位相差 c:光速
In the conventional polarization dispersion measuring method, each wavelength λ on the Poincare sphere display that can be obtained by the polarization analyzer 7 such as a Stokes analyzer or a rotary analyzer.
Polarization state with respect to (frequency f) (hereinafter referred to as SOP)
By drawing a circle as shown in Fig. 9, the phase difference Δφ
Was calculated, and the polarization dispersion τ was calculated using the following formula (1). τ = Δφ / Δω = (Δφ / 2π) (1 / Δf) = (Δφ / 2π) (λ1λn / cΔλ) (1) where Δλ = | λ1-λn | Δφ: The phase difference between λ1 and λn c: speed of light

【0006】図9に図示するように、ポアンカレ球上の
表現においては、偏光主軸に垂直な平面に、波長λ1
(周波数f1),波長λ2(周波数f2),波長λ3
(周波数f3),....,波長λn(周波数fn)のSO
Pの軌跡は、円を描く。
As shown in FIG. 9, in the representation on the Poincare sphere, the wavelength λ1 is set on the plane perpendicular to the principal axis of polarization.
(Frequency f1), wavelength λ2 (frequency f2), wavelength λ3
(Frequency f3), ..., SO with wavelength λn (frequency fn)
The trajectory of P draws a circle.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、数学的
な事実から、円は任意の3点を結ぶことにより定義され
て描かれるため、測定された結果のうちのどの3点を選
ぶかによって、偏波分散の測定値が散乱するという問題
点があった。
However, from a mathematical fact, a circle is defined and drawn by connecting arbitrary three points, and therefore, depending on which of the three measured results is selected, the deviation can be biased. There is a problem that the measured value of the wave dispersion is scattered.

【0008】前記の散乱の様子を図10(a),
(b),(c)に示す。図10(a)は測定対象6を通
過した後の光信号L3の測定結果が理想的な場合の曲線
を示すグラフ、図10(b)は光信号L3の測定結果が
散乱している場合の曲線を示すグラフ、図10(c)は
測定結果が散乱している場合のポアンカレ球上に描かれ
る軌跡(円)のみを平面上に描いたものである。
The state of the above scattering is shown in FIG.
Shown in (b) and (c). 10A is a graph showing a curve when the measurement result of the optical signal L3 after passing through the measurement target 6 is ideal, and FIG. 10B is a graph showing the case where the measurement result of the optical signal L3 is scattered. FIG. 10C is a graph showing a curve, and only the locus (circle) drawn on the Poincare sphere when the measurement results are scattered is drawn on the plane.

【0009】図10(a)は、測定対象6を通過した後
の光信号L3のSOPの変化を表し、1.0は直線偏光
を表し、0.0は円偏光を表し、その中間はすべて楕円
偏光を表す。もし、測定値が散乱している場合には、図
10(b)及び図10(c)のように幾つかのカーブ及
び円が描けるので測定誤差になる。ここにおいて本発明
は、上記の如き従来技術の問題点を解決するために、全
ての偏光状態における、測定対象の高安定な偏波分散測
定方法及び装置を提供するものである。
FIG. 10 (a) shows a change in the SOP of the optical signal L3 after passing through the object 6 to be measured, 1.0 represents linearly polarized light, 0.0 represents circularly polarized light, and all of the middle thereof are shown. Represents elliptically polarized light. If the measured values are scattered, some curves and circles can be drawn as shown in FIGS. 10 (b) and 10 (c), resulting in a measurement error. In order to solve the above-mentioned problems of the prior art, the present invention provides a highly stable polarization dispersion measuring method and device for a measurement target in all polarization states.

【0010】[0010]

【課題を解決するための手段】前記課題の解決は、本発
明の次に列挙する新規な特徴的構成手法及び手段を採用
することにより達成される。すなわち、本発明方法の第
1の特徴は、波長可変光源の光信号を、偏光制御手段で
任意の偏光状態かつ任意の偏光主軸方向にして、測定対
象に入射し、当該測定対象から出射された光信号を偏光
解析手段で解析して、当該光信号の、波長に対する偏光
状態の変動を示す余弦波状の周期関数の前記光信号の位
相差が所定角となる波長と波長の間の山(谷)の数よ
り、前記光信号の直交する偏光状態の群遅延時間、すな
わち偏波分散を求めてなる偏波分散測定方法である。
The solution of the above problems can be achieved by adopting the novel characteristic construction methods and means listed below the present invention. That is, the first feature of the method of the present invention is that the optical signal of the wavelength tunable light source is made to have an arbitrary polarization state and an arbitrary polarization main axis direction by the polarization control means, is incident on the measurement target, and is emitted from the measurement target. The optical signal is analyzed by polarization analysis means, and the peak (valley) between the wavelength and the wavelength at which the phase difference of the optical signal of the cosine wave-like periodic function showing the variation of the polarization state with respect to the wavelength of the optical signal becomes a predetermined angle. ) Is a group delay time of the orthogonal polarization states of the optical signal, that is, the polarization dispersion is measured.

【0011】本発明方法の第2の特徴は、前記方法の第
1の特徴における前記光信号の波長に対する偏光状態の
変動を示す余弦波状の周期関数において前記光信号の位
相差の所定角が、π又はπ/2となる波長と波長の間の
山(谷)の数より、偏波分散を求めてなる偏波分散測定
方法である。
A second feature of the method of the present invention is that the predetermined angle of the phase difference of the optical signal in a cosine wave-like periodic function showing the variation of the polarization state with respect to the wavelength of the optical signal in the first feature of the method is: This is a polarization dispersion measurement method in which polarization dispersion is obtained from the number of peaks (valleys) between wavelengths that are π or π / 2.

【0012】本発明方法の第3の特徴は、波長可変光源
の光信号を、偏光制御手段で任意の偏光状態かつ任意の
偏光主軸方向にして、測定対象に入射し、当該測定対象
から出射された光信号を偏光解析手段で解析して、偏光
解析手段で得られた、光信号の波長に対する偏光状態の
余弦波状の周期関数が、当該光信号の波長領域から周波
数領域に変換され、さらに、当該光信号の周波数領域に
対する偏光状態の周期関数を逆フーリエ変換することに
より時間領域に変換されてなり、当該時間領域に変換さ
れて得られた光信号の半値幅より、偏波分散が求められ
てなる偏波分散測定方法である。
A third feature of the method of the present invention is that the optical signal of the wavelength tunable light source is made to have an arbitrary polarization state and an arbitrary polarization main axis direction by the polarization control means, is made incident on the measuring object, and is emitted from the measuring object. Analyzing the optical signal with the polarization analysis means, obtained by the polarization analysis means, the cosine wave periodic function of the polarization state with respect to the wavelength of the optical signal is converted from the wavelength region of the optical signal to the frequency region, further, It is converted into the time domain by inverse Fourier transforming the periodic function of the polarization state with respect to the frequency domain of the optical signal, and the polarization dispersion is obtained from the half width of the optical signal obtained by the conversion into the time domain. This is a polarization dispersion measurement method.

【0013】本発明方法の第4の特徴は、前記方法の第
1,第2又は第3の特徴における波長可変光源が、変調
した光源光を出射する変調手段を備え、偏光解析手段
が、同期検波可能な偏光解析手段である偏波分散測定方
法である。
A fourth feature of the method of the present invention is that the wavelength tunable light source according to the first, second or third feature of the method comprises a modulation means for emitting modulated light source light, and the polarization analysis means is synchronized. This is a polarization dispersion measuring method which is a polarization analyzing means capable of detection.

【0014】本発明方法の第5の特徴は、前記方法の第
1,第2,第3又は第4の特徴における偏光解析手段
が、ストークス・アナライザ又は回転型検光子を使用し
た偏光解析器である偏波分散測定方法である。
A fifth feature of the method of the present invention is that the polarization analyzing means in the first, second, third or fourth feature of the method is a polarization analyzer using a Stokes analyzer or a rotary analyzer. It is a certain polarization dispersion measurement method.

【0015】本発明装置の第1の特徴は、出力する光信
号の波長を変化させることが可能である波長可変光源
と、当該波長可変光源から出力される光信号を2つに分
岐する光分岐手段と、当該光分岐手段からの光信号の一
方を入力して、当該光信号の偏光状態を、任意の偏波状
態に変換自在でかつ当該光信号の偏波主軸を任意の方向
に制御自在として測定対象に入力する偏波制御手段と、
前記光分岐手段からの光信号の他方をモニタする監視手
段と、前記偏波制御手段から出力されて測定対象を通過
した光信号を解析して電気信号を出力する偏光解析手段
と、解析された光信号において、波長に対する偏光状態
の変動を示す余弦波状の周期関数において前記光信号の
位相差が所定角となる波長と波長の間の山(谷)の数よ
り偏波分散を求める記録演算処理手段とを具備してなる
偏波分散測定装置である。
The first feature of the device of the present invention is that the wavelength tunable light source capable of changing the wavelength of the output optical signal and the optical branching for branching the optical signal output from the wavelength tunable light source into two. Means and one of the optical signals from the optical branching means, the polarization state of the optical signal can be converted into any polarization state, and the polarization main axis of the optical signal can be controlled in any direction. Polarization control means input to the measurement target as
Monitoring means for monitoring the other of the optical signals from the optical branching means, polarization analysis means for analyzing the optical signal output from the polarization control means and passing through the measurement object, and outputting an electrical signal, analyzed In the optical signal, a recording calculation process for obtaining the polarization dispersion from the number of peaks (valleys) between wavelengths at which the phase difference of the optical signal has a predetermined angle in a cosine wave-like periodic function showing the variation of the polarization state with respect to the wavelength. A polarization dispersion measuring apparatus comprising:

【0016】本発明装置の第2の特徴は、出力する光信
号の波長を変化させることが可能である波長可変光源
と、当該波長可変光源から出力される光信号を2つに分
岐する光分岐手段と、当該光分岐手段からの光信号の一
方を入力して、当該光信号の偏光状態を、任意の偏波状
態に変換自在でかつ当該光信号の偏波主軸を任意の方向
に制御自在として測定対象に入力する偏波制御手段と、
前記光分岐手段からの光信号の他方をモニタする監視手
段と、前記偏波制御手段から出力されて測定対象を通過
した光信号を解析して電気信号を出力する偏光解析手段
と、当該偏光解析手段で得られた光信号の波長に対する
偏光状態の余弦波上の周期関数を光信号の当該光信号の
波長領域から周波数領域に変換し、さらに周波数領域か
ら逆フーリエ変換により時間領域に変換する記録演算処
理手段とを具備してなる偏波分散測定装置である。
The second feature of the device of the present invention is that the wavelength tunable light source capable of changing the wavelength of the output optical signal and the optical branching for branching the optical signal output from the wavelength tunable light source into two. Means and one of the optical signals from the optical branching means, the polarization state of the optical signal can be converted into any polarization state, and the polarization main axis of the optical signal can be controlled in any direction. Polarization control means input to the measurement target as
Monitoring means for monitoring the other of the optical signals from the optical branching means, polarization analysis means for analyzing the optical signal output from the polarization control means and passing through the measurement object and outputting an electrical signal, and the polarization analysis. A record obtained by converting the periodic function on the cosine wave of the polarization state with respect to the wavelength of the optical signal obtained by the means from the wavelength domain of the optical signal of the optical signal to the frequency domain, and from the frequency domain to the time domain by the inverse Fourier transform. A polarization dispersion measuring apparatus comprising an arithmetic processing means.

【0017】本発明装置の第3の特徴は、前記装置の第
1又は第2の特徴における波長可変光源が、変調した光
源光を出射する変調手段を備え、偏光解析手段が、同期
検波可能な偏光解析手段である偏波分散測定装置であ
る。
A third feature of the device of the present invention is that the wavelength tunable light source according to the first or second feature of the device comprises a modulation means for emitting modulated light source light, and the polarization analysis means is capable of synchronous detection. It is a polarization dispersion measuring device which is a polarization analyzing means.

【0018】本発明装置の第4の特徴は、前記装置の第
1,第2又は第3の特徴における偏光解析手段が、スト
ークス・アナライザ又は回転型検光子を使用した偏光解
析器である偏波分散測定装置である。
A fourth feature of the device of the present invention is that the polarization analyzing means in the first, second or third feature of the device is a polarization analyzer using a Stokes analyzer or a rotary analyzer. It is a dispersion measuring device.

【0019】[0019]

【作用】本発明は、前記のような手段及び手法を採用す
るので、従来方法に於いてはポアンカレ球上の2波長間
の位相差Δφより偏波分散を求めていたものを、本発明
方法に於いては、偏光状態の測定に関して周期関数状の
位相差Δφがπ(又はπ/2)になる山(谷)の数と山
(谷)と山(谷)の間の間隔より求めるか、あるいはS
OPの周期関数状になる周波数の関数を逆フーリエ変換
することにより偏波分散τを求めるので、安定した偏波
分散測定方法及び装置を提供することができる。
Since the present invention employs the means and methods described above, the method of the present invention is one in which the polarization dispersion is obtained from the phase difference Δφ between two wavelengths on the Poincare sphere in the conventional method. In regard to the measurement of the polarization state, is it calculated from the number of peaks (valleys) where the phase difference Δφ of the periodic function is π (or π / 2) and the interval between the peaks (valleys)? , Or S
Since the polarization dispersion τ is obtained by performing an inverse Fourier transform on the function of the frequency that becomes a periodic function of OP, it is possible to provide a stable polarization dispersion measurement method and device.

【0020】[0020]

【実施例】【Example】

(装置例)本発明の装置例を図面につき説明する。図1
は本装置例の偏波分散測定装置の構成例を示すブロック
・ダイアグラムである。図中、9は波長可変光源1の出
射光信号S1を変調する変調器である。なお、前記従来
例と同一の部材には同一の符号を付した。
(Example of Device) An example of the device of the present invention will be described with reference to the drawings. Figure 1
2 is a block diagram showing a configuration example of a polarization dispersion measuring apparatus of this apparatus example. In the figure, 9 is a modulator that modulates the outgoing light signal S1 of the variable wavelength light source 1. The same members as those in the conventional example are designated by the same reference numerals.

【0021】(方法例)本発明方法を図面につき詳説す
る。図2(a),(b),(c)は、本発明方法を実施
していく上での過程を概念的に説明するグラフである。
ここでもう一度、従来方法の問題点を述べる。従来方法
においては、少なくとも3つの波長(周波数)で、ポア
ンカレ球上に外接円を描き、それより偏波分散を求めて
いたが、サンプル数が少ないため測定再現性が悪かっ
た。
(Example of Method) The method of the present invention will be described in detail with reference to the drawings. 2 (a), (b), and (c) are graphs conceptually explaining the process of carrying out the method of the present invention.
Here again, the problems of the conventional method will be described. In the conventional method, a circumscribing circle was drawn on a Poincare sphere with at least three wavelengths (frequency) and polarization dispersion was obtained from it, but the reproducibility of measurement was poor because the number of samples was small.

【0022】本発明方法においては、前記従来方法の問
題点を考慮した上で、以下の方法を採用した。本発明方
法は、図2(a)に示す様に、少なくとも波長に対する
偏光状態の余弦波状の周期関数の位相差がπ[山(谷)
から山(谷)]又はπ/2[山(谷)から谷(山)]に
なる波長λ1からλnまでの山あるいは谷の数N(位相
差π)の測定を行い、これらの波長差より直交する偏光
状態の群遅延時間(偏波分散τ)を求めることを特徴と
する測定方法である。偏波分散τは、下記の式(2)で
求められる。 τ=(N/2)(1/Δf) =(N/2)(λ1λn/cΔλ) …(2) 但し、N:λ1〜λnまでの山(谷)の数(位相差がπ
に相当する)
In the method of the present invention, the following method was adopted in consideration of the problems of the conventional method. In the method of the present invention, as shown in FIG. 2A, the phase difference of the cosine wave-like periodic function of the polarization state with respect to at least the wavelength is π [peak (valley)].
To the peak (valley)] or π / 2 [peak (valley) to valley (peak)], the number N (phase difference π) of peaks or troughs from wavelength λ1 to λn is measured, and the wavelength difference is calculated from these wavelength differences. This is a measuring method characterized by obtaining a group delay time (polarization dispersion τ) of orthogonal polarization states. The polarization dispersion τ is calculated by the following equation (2). τ = (N / 2) (1 / Δf) = (N / 2) (λ1λn / cΔλ) (2) where N: the number of peaks (valleys) from λ1 to λn (the phase difference is π
Equivalent to)

【0023】しかしこの方法でも、どの山または谷を選
ぶかによって測定再現性が悪くなる。例えば、図2
(a)で例を挙げると、λ1とλ2の間隔はΔλ1であ
るが、λ5とλ4の間隔はΔλ4であり、明らかにΔλ
4の方が間隔的には広い。そのため、ポアンカレ球上で
は、Δλ4の測定結果を採用した場合には、当然、半径
の大きな円が描かれ、Δλ1の測定結果を採用した場合
には、Δλ4を採用した場合よりも半径の小さな円が描
かれることになる。
However, even in this method, the reproducibility of measurement is deteriorated depending on which peak or valley is selected. For example, in FIG.
To give an example in (a), the distance between λ1 and λ2 is Δλ1, but the distance between λ5 and λ4 is Δλ4, clearly Δλ
4 is wider in terms of intervals. Therefore, on the Poincare sphere, when a measurement result of Δλ4 is adopted, a circle with a large radius is naturally drawn, and when a measurement result of Δλ1 is adopted, a circle with a smaller radius than that when Δλ4 is adopted. Will be drawn.

【0024】そこで、図2(b)に示すように、まず、
偏光解析器7の光信号S3の測定で得られた波長に対す
る偏光状態の余弦波状の周期関数を、周波数領域の余弦
波状の周期関数に変換する。
Therefore, as shown in FIG. 2B, first,
The cosine wave-shaped periodic function of the polarization state with respect to the wavelength obtained by the measurement of the optical signal S3 of the polarization analyzer 7 is converted into the cosine wave-shaped periodic function of the frequency domain.

【0025】そして、図2(b)に示す周波数に対する
偏光状態の周期関数を、図2(c)に示すように逆フー
リエ変換することより、時間領域に変換して、その半値
幅dから、直交する偏光状態の群遅延時間(偏波分散の
半分:位相差がπであるため)を求める。これが本発明
方法のもう一つの大きな特徴である。
Then, the periodic function of the polarization state with respect to the frequency shown in FIG. 2 (b) is transformed into the time domain by inverse Fourier transform as shown in FIG. 2 (c), and from its half-value width d, The group delay time (half the polarization dispersion: the phase difference is π) of orthogonal polarization states is calculated. This is another major feature of the method of the present invention.

【0026】図1における偏光解析器7としては、スト
ークス・アナライザ又は簡易な回転型検光子を利用した
偏光解析器があり、それぞれの構成例を図3及び図4に
示す。図3は本発明に用いる偏光解析器7としてのスト
ークス・アナライザの構成例を示す図、図4は本発明方
法に用いる偏光解析器7として回転型検光子を利用した
時の構成を示す図である。
As the polarization analyzer 7 in FIG. 1, there is a Stokes analyzer or a polarization analyzer using a simple rotary analyzer, and respective configuration examples are shown in FIGS. 3 and 4. FIG. 3 is a diagram showing a configuration example of a Stokes analyzer as the polarization analyzer 7 used in the present invention, and FIG. 4 is a diagram showing a configuration when a rotary analyzer is used as the polarization analyzer 7 used in the method of the present invention. is there.

【0027】図中、7aはストークス・アナライザ、7
bは回転型検光子を用いた偏光解析器、10a,10b
はビーム・スプリッタ(BS)、11は偏光ビーム・ス
プリッタ(PBS)、12はλ/4波長板等のπ/2位
相素子、13は検光子、13′は回転型検光子、14は
光検出器、15は光パワー・メータ等の光受信機であ
る。
In the figure, 7a is a Stokes analyzer, 7
b is a polarization analyzer using a rotary analyzer, 10a, 10b
Is a beam splitter (BS), 11 is a polarization beam splitter (PBS), 12 is a π / 2 phase element such as a λ / 4 wave plate, 13 is an analyzer, 13 'is a rotary analyzer, and 14 is light detection. And 15 is an optical receiver such as an optical power meter.

【0028】図5に、ポアンカレ球上における光信号の
偏光状態の解析を示す。ストークス・パラメータS0
(SO),S1(−S1),S2(−S2)及びS3
(−S3)は、偏光状態を表す変数であり、それぞれ光
強度,水平直線偏光成分,45度直線偏光成分及び右円
偏光成分を[( )内に示したものは、それぞれ、光強
度,垂直直線偏光成分,−45度直線偏光成分及び左旋
円直線偏光成分を]示す。
FIG. 5 shows an analysis of the polarization state of the optical signal on the Poincare sphere. Stokes parameter S0
(SO), S1 (-S1), S2 (-S2) and S3
(-S3) is a variable indicating the polarization state, and the light intensity, the horizontal linearly polarized light component, the 45-degree linearly polarized light component, and the right-handed circularly polarized light component are shown in [(), respectively. Linearly polarized light component, -45 degree linearly polarized light component and left-handed circularly polarized light component] are shown.

【0029】一般に、偏光解析器7に入力する光I
(δ,γ,α)は任意の位相板および偏光子の組合せに
よる光強度で表すことができる。方位γの位相板(位相
差δ)と方位αの検光子の組合せで得られる光強度I
(δ,γ,α)は、次式(3)で表される。 I(δ,γ,α)=S0/2 +[(S1cos 2γ+S2sin 2γ)cos 2(γ−α)]/2 +{[(S1sin 2γ−S2cos 2γ)cos δ−S3sin δ] sin 2(γ−α)}/2 …(3)
Generally, the light I input to the ellipsometer 7 is
(Δ, γ, α) can be represented by the light intensity of any combination of the phase plate and the polarizer. Light intensity I obtained by the combination of the azimuth γ phase plate (phase difference δ) and the azimuth α analyzer
(Δ, γ, α) is expressed by the following equation (3). I (δ, γ, α) = S0 / 2 + [(S1cos 2γ + S2sin 2γ) cos 2 (γ−α)] / 2 + {[(S1sin 2γ−S2cos 2γ) cos δ−S3sin δ] sin 2 (γ− α)} / 2 (3)

【0030】ストークス・アナライザの構成例を示す図
3を参照しながら、ストークス・パラメータの測定原理
を示す。測定対象6からの入射光信号S3は、ビーム・
スプリッタ10aにより反射し、λ/4波長板12と方
位45度の検光子13が作用して、光強度I4が光検出
器14で得られる。
The principle of measurement of the Stokes parameters will be described with reference to FIG. 3 showing an example of the structure of the Stokes analyzer. The incident optical signal S3 from the measurement target 6 is
The light is reflected by the splitter 10a, and the λ / 4 wave plate 12 and the analyzer 13 having an azimuth of 45 degrees act on each other, and the light intensity I4 is obtained by the photodetector 14.

【0031】次に、ビーム・スプリッタ10aを透過し
た光信号は、ビーム・スプリッタ10bにより反射させ
られ、方位45度の検光子13が作用し、光検出器13
で光強度I3が得られる。
Next, the optical signal transmitted through the beam splitter 10a is reflected by the beam splitter 10b, and the analyzer 13 having an azimuth of 45 degrees acts on the optical signal to cause the photodetector 13 to be detected.
Thus, the light intensity I3 is obtained.

【0032】次に、ビーム・スプリッタ10bを透過し
た光信号は、偏光ビーム・スプリッタ(PBS)11に
より直交2成分に分岐させられ、垂直偏光成分の光強度
I2及び水平偏光成分の偏光強度I1が得られる。
Next, the optical signal transmitted through the beam splitter 10b is split into two orthogonal components by a polarizing beam splitter (PBS) 11, and a vertical polarization component light intensity I2 and a horizontal polarization component polarization intensity I1 are obtained. can get.

【0033】このように測定されたI1,I2,I3及
びI4より、ストークス・パラメータ(S0,S1,S
2,S3)が下記の式(4)により得られる。 S0=I1+I2 S1=I1−I2 S2=2I3−(I1+I2) S3=2I4−(I1+I2) …(4)
From the thus measured I1, I2, I3 and I4, the Stokes parameters (S0, S1, S
2, S3) is obtained by the following equation (4). S0 = I1 + I2 S1 = I1-I2 S2 = 2I3- (I1 + I2) S3 = 2I4- (I1 + I2) (4)

【0034】式(4)のストークス・パラメータ(S
0,S1,S2,S3)より、それぞれSOP及び楕円
率(消光比)ηが下記の式(5)及び(6)で表され
る。 SOP=|(1−η)/(1+η)| …(5) η =tan [0.5tan −1{S3/(S1+S21/2 }]…(6)
The Stokes parameter (S
0, S1, S2, S3), the SOP and the ellipticity (extinction ratio) η are expressed by the following equations (5) and (6), respectively. SOP = | (1−η 2 ) / (1 + η 2 ) | (5) η = tan [0.5tan −1 {S3 / (S1 2 + S2 2 ) 1/2 }] ... (6)

【0035】図4に示す回転型検光子を用いた偏光解析
器7bを用いてSOPを求めるには、回転型検光子1
3′を回転することにより、楕円偏波面の長軸(最大
値)Imax及び短軸(最小値)Iminを求め、下記
の式(7)により求める。 SOP=(Imax−Imin)/(Imax+Imin) =(1−η)/(1+η) …(7)
To obtain the SOP using the polarization analyzer 7b using the rotary analyzer shown in FIG. 4, the rotary analyzer 1 is used.
By rotating 3 ', the major axis (maximum value) Imax and the minor axis (minimum value) Imin of the elliptical plane of polarization are obtained, and are obtained by the following equation (7). SOP = (Imax−Imin) / (Imax + Imin) = (1−η 2 ) / (1 + η 2 ) ... (7)

【0036】(測定例)図6(a)及び図6(b)に、
本発明を用いて偏波面保存光ファイバ(PMF)の偏波
分散測定を実施した例を示す。図6(a)は、波長差約
3nm(周波数に変換すると約375GHz)変化させ
た場合のポアンカレ球上のSOPの変化を表している。
図6(b)はそれを波長に対するSOPの変化に直した
グラフである。それから、偏波分散τは、約9.873
psであることが理解できる。
(Measurement example) FIGS. 6 (a) and 6 (b)
An example of performing polarization dispersion measurement of a polarization-maintaining optical fiber (PMF) using the present invention is shown. FIG. 6A shows a change in the SOP on the Poincare sphere when the wavelength difference is changed by about 3 nm (converted to a frequency of about 375 GHz).
FIG. 6 (b) is a graph in which it is converted into a change in SOP with respect to wavelength. Then, the polarization dispersion τ is about 9.873.
It can be understood that it is ps.

【0037】(比較例)また、図7の表に従来の方法と
本発明による方法の比較を示す。表中のσは標準偏差を
示す。これより、偏波面保存光ファイバ(PMF)の場
合は、比較的良く一致しているが、通常の光ファイバ
(SMF:通常の1.31μm帯光ファイバ、DSF:
分散シフト光ファイバ)の場合には、本発明の方が安定
した測定結果を示していることが理解できる。
(Comparative Example) The table of FIG. 7 shows a comparison between the conventional method and the method of the present invention. Σ in the table indicates the standard deviation. As a result, in the case of the polarization-maintaining optical fiber (PMF), the agreement is relatively good, but the ordinary optical fiber (SMF: ordinary 1.31 μm band optical fiber, DSF:
It can be understood that the present invention shows more stable measurement results in the case of dispersion-shifted optical fiber).

【0038】[0038]

【発明の効果】かくして、本発明によれば、ストークス
・アナライザで測定した偏波分散の値をSOPに変換
し、かつ逆フーリエ変換することにより、高精度な偏波
分散測定が実現可能となり、偏波分散の小さな光増幅
器、光デバイス及び長距離光増幅中継伝送システムが達
成される等優れた有用性を発揮する。
As described above, according to the present invention, highly accurate polarization dispersion measurement can be realized by converting the polarization dispersion value measured by the Stokes analyzer into SOP and performing inverse Fourier transform. The optical amplifier, the optical device, and the long-distance optical amplification repeater transmission system having a small polarization dispersion are achieved, and the excellent usefulness is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の偏波分散測定方法の実施に使用する測
定装置の構成を示すブロック・ダイアグラムである。
FIG. 1 is a block diagram showing the configuration of a measuring apparatus used for implementing a polarization dispersion measuring method of the present invention.

【図2】本発明の偏波分散測定方法の実施過程を説明す
るグラフである。
FIG. 2 is a graph illustrating an implementation process of the polarization dispersion measuring method of the present invention.

【図3】図1中の偏光解析器の一例である、ストークス
・アナライザの構成を示すブロック・ダイアグラムであ
る。
3 is a block diagram showing a configuration of a Stokes analyzer which is an example of the polarization analyzer in FIG.

【図4】同上、回転型検光子を用いた偏光解析器の構成
を示すブロック・ダイアグラムである。
FIG. 4 is a block diagram showing the configuration of a polarization analyzer using a rotary analyzer.

【図5】ポアンカレ球による偏光解析の概念を示す図で
ある。
FIG. 5 is a diagram showing the concept of polarization analysis using a Poincare sphere.

【図6】本発明方法を実際に使用して測定を行った結果
を示す、(a)はポアンカレ球表示を示す図、(b)は
波長領域のSOPの変化を示すグラフである。
6A and 6B show results of actual measurement using the method of the present invention. FIG. 6A is a diagram showing Poincare sphere display, and FIG. 6B is a graph showing changes in SOP in the wavelength region.

【図7】従来方法と本発明方法による測定結果の比較を
示す表である。
FIG. 7 is a table showing a comparison of measurement results by the conventional method and the method of the present invention.

【図8】従来の偏波分散の測定に用いる装置の構成を示
す図である。
FIG. 8 is a diagram showing a configuration of a conventional device used for measuring polarization dispersion.

【図9】従来方法のポアンカレ球の表示により、偏波分
散を求める様子を表した図である。
FIG. 9 is a diagram showing how a polarization dispersion is obtained by displaying a Poincare sphere according to a conventional method.

【図10】従来方法の問題点を説明する図で、(a)は
比較的測定誤差が少ないときの理想的なグラフ、(b)
は誤差が多い場合のグラフ、(c)は誤差が多い場合に
ポアンカレ球上に描かれる軌跡のみを平面上に描いたも
のである。
FIG. 10 is a diagram for explaining the problems of the conventional method, (a) is an ideal graph when the measurement error is relatively small, (b)
Shows a graph when there are many errors, and (c) shows only the trajectory drawn on the Poincare sphere when there are many errors on a plane.

【符号の説明】[Explanation of symbols]

1…波長可変光源 2…波長制御装置 3…光分岐器 4…波長計 5…偏波制御装置 6…測定対象 7…偏光解析器 7a…ストークス・アナライザ 7b…回転型検光子を用いた偏光解析器 8…記録演算処理装置 9…変調器 10a,10b…ビーム・スプリッタ(BS) 11…偏光ビーム・スプリッタ(PBS) 12…π/2位相素子 13…検光子 13′…回転型検光子 14…光検出器 15…光受信機 1 ... wavelength variable light source 2 ... wavelength control device 3 ... optical branching device 4 ... wavelength meter 5 ... polarization control device 6 ... measurement target 7 ... polarization analyzer 7a ... Stokes analyzer 7b ... polarization analysis using a rotary analyzer Device 8 ... Recording operation processing device 9 ... Modulator 10a, 10b ... Beam splitter (BS) 11 ... Polarization beam splitter (PBS) 12 ... π / 2 phase element 13 ... Analyzer 13 '... Rotating analyzer 14 ... Photodetector 15 ... Optical receiver

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】波長可変光源の光信号を、 偏光制御手段で任意の偏光状態かつ任意の偏光主軸方向
にして、 測定対象に入射し、 当該測定対象から出射された光信号を偏光解析手段で解
析して、 当該光信号の、波長に対する偏光状態の変動を示す余弦
波状の周期関数において前記光信号の位相差が所定角と
なる波長と波長の間の山(谷)の数より、 前記光信号の直交する偏光状態の群遅延時間、すなわち
偏波分散を求めることを特徴とする偏波分散測定方法。
1. An optical signal of a variable wavelength light source is made into an arbitrary polarization state and an arbitrary polarization main axis direction by a polarization control means, is incident on a measurement target, and an optical signal emitted from the measurement target is analyzed by a polarization analysis means. Analyzing, from the number of peaks (valleys) between the wavelength at which the phase difference of the optical signal becomes a predetermined angle in the cosine wave-like periodic function indicating the fluctuation of the polarization state with respect to the wavelength of the optical signal, A polarization dispersion measuring method, characterized in that a group delay time of polarization states of signals orthogonal to each other, that is, polarization dispersion is obtained.
【請求項2】光信号の波長に対する偏光状態の変動を示
す余弦波状の周期関数において前記光信号の位相差の所
定角は、π又はπ/2となる波長と波長の間の山(谷)
の数より、 偏波分散を求めることを特徴とする請求項1記載の偏波
分散測定方法。
2. A cosine wave-shaped periodic function showing a variation of a polarization state with respect to a wavelength of an optical signal, the predetermined angle of the phase difference of the optical signal is π or π / 2, and a peak (valley) between the wavelengths.
The polarization dispersion measuring method according to claim 1, wherein the polarization dispersion is obtained from the number.
【請求項3】波長可変光源の光信号を、 偏光制御手段で任意の偏光状態かつ任意の偏光主軸方向
にして、 測定対象に入射し、 当該測定対象から出射された光信号を偏光解析手段で解
析して、 偏光解析手段で得られた、光信号の波長に対する偏光状
態の余弦波状の周期関数を当該光信号の波長領域から周
波数領域に変換し、 さらに、当該光信号の周波数領域に対する偏光状態の周
期関数を逆フーリエ変換することにより時間領域に変換
し、 当該時間領域に変換して得られた光信号の半値幅より、 偏波分散を求めることを特徴とする偏波分散測定方法。
3. An optical signal of a variable wavelength light source is made into an arbitrary polarization state and an arbitrary polarization main axis direction by a polarization control means, is incident on an object to be measured, and the optical signal emitted from the object is measured by a polarization analyzing means. The cosine wave-shaped periodic function of the polarization state with respect to the wavelength of the optical signal obtained by the polarization analysis means is converted from the wavelength region of the optical signal into the frequency region, and the polarization state of the optical signal with respect to the frequency region is converted. The polarization dispersion measurement method is characterized in that the periodic function of is transformed into the time domain by inverse Fourier transform, and the polarization dispersion is obtained from the half width of the optical signal obtained by the transformation into the time domain.
【請求項4】波長可変光源は、変調した光源光を出射す
る変調手段を備え、 偏光解析手段は、同期検波可能な偏光解析手段であるこ
とを特徴とする請求項1,2又は3記載の偏波分散測定
方法。
4. The variable wavelength light source comprises a modulation means for emitting modulated light source light, and the polarization analysis means is a polarization analysis means capable of synchronous detection. Polarization dispersion measurement method.
【請求項5】偏光解析手段は、ストークス・アナライザ
又は回転型検光子を使用した偏光解析器であることを特
徴とする請求項1,2,3又は4記載の偏波分散測定方
法。
5. The polarization dispersion measuring method according to claim 1, wherein the polarization analyzing means is a polarization analyzer using a Stokes analyzer or a rotary analyzer.
【請求項6】出力する光信号の波長を変化させることが
可能である波長可変光源と、 当該波長可変光源から出力される光信号を2つに分岐す
る光分岐手段と、 当該光分岐手段からの光信号の一方を入力して、当該光
信号の偏光状態を、任意の偏波状態に変換自在でかつ当
該光信号の偏波主軸を任意の方向に制御自在として測定
対象に入力する偏波制御手段と、 前記光分岐手段からの光信号の他方をモニタする監視手
段と、 前記偏波制御手段から出力されて測定対象を通過した光
信号を解析して電気信号を出力する偏光解析手段と、 解析された光信号において、波長に対する偏光状態の変
動を示す余弦波状の周期関数において前記光信号の位相
差が所定角となる波長と波長の間の山(谷)の数より偏
波分散を求める記録演算処理手段とを具備することを特
徴とする偏波分散測定装置。
6. A wavelength tunable light source capable of changing the wavelength of an output optical signal, an optical branching unit for branching an optical signal output from the wavelength tunable light source into two, and an optical branching unit. Polarization that is input to one of the measurement targets by inputting one of the optical signals of the optical signal and converting the polarization state of the optical signal into an arbitrary polarization state and controlling the polarization main axis of the optical signal in any direction. Control means, monitoring means for monitoring the other of the optical signals from the optical branching means, and polarization analysis means for analyzing the optical signal output from the polarization control means and passing through the measurement target to output an electrical signal. , In the analyzed optical signal, the polarization dispersion is calculated from the number of peaks (valleys) between the wavelength at which the phase difference of the optical signal becomes a predetermined angle in the cosine wave-like periodic function showing the variation of the polarization state with respect to the wavelength. The required recording calculation processing means Polarization dispersion measuring apparatus, characterized by.
【請求項7】出力する光信号の波長を変化させることが
可能である波長可変光源と、 当該波長可変光源から出力される光信号を2つに分岐す
る光分岐手段と、 当該光分岐手段からの光信号の一方を入力して、当該光
信号の偏光状態を、任意の偏波状態に変換自在でかつ当
該光信号の偏波主軸を任意の方向に制御自在として測定
対象に入力する偏波制御手段と、 前記光分岐手段からの光信号の他方をモニタする監視手
段と、 前記偏波制御手段から出力されて測定対象を通過した光
信号を解析して電気信号を出力する偏光解析手段と、 当該偏光解析手段で得られた光信号の波長に対する偏光
状態の余弦波上の周期関数を光信号の当該光信号の波長
領域から周波数領域に変換し、さらに周波数領域から逆
フーリエ変換により時間領域に変換する記録演算処理手
段とを具備することを特徴とする偏波分散測定装置。
7. A variable wavelength light source capable of changing the wavelength of an optical signal to be output, an optical branching unit for branching an optical signal output from the variable wavelength light source into two, and an optical branching unit. Polarization that is input to one of the measurement targets by inputting one of the optical signals of the optical signal and converting the polarization state of the optical signal into an arbitrary polarization state and controlling the polarization main axis of the optical signal in any direction. Control means, monitoring means for monitoring the other of the optical signals from the optical branching means, and polarization analysis means for analyzing the optical signal output from the polarization control means and passing through the measurement target to output an electrical signal. , The periodic function on the cosine wave of the polarization state for the wavelength of the optical signal obtained by the polarization analysis means is converted from the wavelength region of the optical signal of the optical signal to the frequency domain, and further from the frequency domain to the time domain by the inverse Fourier transform. Convert to Polarization dispersion measuring apparatus characterized by comprising a recording processing means.
【請求項8】波長可変光源は、変調した光源光を出射す
る変調手段を備え、 偏光解析手段は、同期検波可能な偏光解析手段であるこ
とを特徴とする請求項6又は7記載の偏波分散測定装
置。
8. The polarized light according to claim 6, wherein the variable wavelength light source comprises a modulation means for emitting modulated light source light, and the polarization analysis means is a polarization analysis means capable of synchronous detection. Dispersion measuring device.
【請求項9】偏光解析手段は、ストークス・アナライザ
又は回転型検光子を使用した偏光解析器であることを特
徴とする請求項6,7又は8記載の偏波分散測定装置。
9. The polarization dispersion measuring apparatus according to claim 6, wherein the polarization analyzing means is a polarization analyzer using a Stokes analyzer or a rotary analyzer.
JP18554292A 1992-07-13 1992-07-13 Polarization dispersion measuring method and device Expired - Lifetime JP2690049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18554292A JP2690049B2 (en) 1992-07-13 1992-07-13 Polarization dispersion measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18554292A JP2690049B2 (en) 1992-07-13 1992-07-13 Polarization dispersion measuring method and device

Publications (2)

Publication Number Publication Date
JPH0634447A true JPH0634447A (en) 1994-02-08
JP2690049B2 JP2690049B2 (en) 1997-12-10

Family

ID=16172630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18554292A Expired - Lifetime JP2690049B2 (en) 1992-07-13 1992-07-13 Polarization dispersion measuring method and device

Country Status (1)

Country Link
JP (1) JP2690049B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937973A2 (en) * 1998-02-20 1999-08-25 Anritsu Corporation Wavelength dispersion measuring apparatus and polarization dispersion measuring apparatus
WO2001094906A1 (en) * 2000-06-06 2001-12-13 Advantest Corporation Apparatus and method for measuring optical characteristics, recording medium
JP2008512677A (en) * 2004-09-07 2008-04-24 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Method and apparatus based on differential geometry for measuring polarization mode dispersion vectors in optical fibers
CN104006950A (en) * 2014-06-12 2014-08-27 天津大学 Method for measuring birefringence dispersion values of polarization-maintaining fibers
GB2514680A (en) * 2011-11-14 2014-12-03 Tominaga Jyushi Kogyosho Kk Container for raising small animals
US10299461B2 (en) 2012-01-30 2019-05-28 Earth Pet Co., Ltd. Water absorbent sheet retaining mat

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0937973A2 (en) * 1998-02-20 1999-08-25 Anritsu Corporation Wavelength dispersion measuring apparatus and polarization dispersion measuring apparatus
EP0937973A3 (en) * 1998-02-20 2002-07-17 Anritsu Corporation Wavelength dispersion measuring apparatus and polarization dispersion measuring apparatus
WO2001094906A1 (en) * 2000-06-06 2001-12-13 Advantest Corporation Apparatus and method for measuring optical characteristics, recording medium
US6954263B2 (en) 2000-06-06 2005-10-11 Advantest Corporation Optical characteristic measuring apparatus, method and recording medium
JP2008512677A (en) * 2004-09-07 2008-04-24 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Method and apparatus based on differential geometry for measuring polarization mode dispersion vectors in optical fibers
GB2514680A (en) * 2011-11-14 2014-12-03 Tominaga Jyushi Kogyosho Kk Container for raising small animals
US10299461B2 (en) 2012-01-30 2019-05-28 Earth Pet Co., Ltd. Water absorbent sheet retaining mat
CN104006950A (en) * 2014-06-12 2014-08-27 天津大学 Method for measuring birefringence dispersion values of polarization-maintaining fibers

Also Published As

Publication number Publication date
JP2690049B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
JP3131144B2 (en) Polarization mode dispersion measurement device
US9923631B1 (en) Optical signal processing characterization of microwave and electro-optic devices
US6144450A (en) Apparatus and method for improving the accuracy of polarization mode dispersion measurements
US4176951A (en) Rotating birefringent ellipsometer and its application to photoelasticimetry
JPH041861B2 (en)
JP2005221500A (en) Heterodyne optical network analysis using signal modulation
CN104767562A (en) Microwave source phase noise measuring device and method based on microwave photon technology
US4076423A (en) Optical coherence measuring device
US4575247A (en) Phase-measuring interferometer
JP2690049B2 (en) Polarization dispersion measuring method and device
EP1231455A2 (en) Method and system for optical spectrum analysis with a depolarized local oscillator signal
Xue et al. Large dynamic range optical vector analyzer based on optical single-sideband modulation and Hilbert transform
JPH0618332A (en) Measuring method and device for stokes parameter
JP3880360B2 (en) Polarization mode dispersion measuring apparatus, method, and recording medium
US20080205884A1 (en) Polarization Controlled Interferometric Chirp Characterization
JPS63241440A (en) Method and device for measuring frequency response of optical detector
Thorman et al. A photoelastic-modulator-based motional Stark effect polarimeter for ITER that is insensitive to polarized broadband background reflections
US20020171829A1 (en) Apparatus and method of measuring polarization mode dispersion, and recording medium
JPH08201175A (en) Polarization analyzer and polarization mode dispersion measuring instrument
JPH08278202A (en) Optical device for polarization analysis and polarization analyzer using the device
US7106450B2 (en) Determination of a device signal response characteristic using multiple varied signals
JPH06331495A (en) Device and method for measuring zero dispersion wavelength
CN109668621B (en) Interference type distributed optical fiber vibration sensor
Hyuk Yim et al. Two-frequency interferometer for a displacement measurement
El-Saba et al. Dynamic acousto-optic photopolarimeter/spectrophotopolarimeter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 15

EXPY Cancellation because of completion of term