JPH06343862A - Production of solid base catalyst - Google Patents

Production of solid base catalyst

Info

Publication number
JPH06343862A
JPH06343862A JP5138469A JP13846993A JPH06343862A JP H06343862 A JPH06343862 A JP H06343862A JP 5138469 A JP5138469 A JP 5138469A JP 13846993 A JP13846993 A JP 13846993A JP H06343862 A JPH06343862 A JP H06343862A
Authority
JP
Japan
Prior art keywords
magnesium
sodium
catalyst
solid base
base catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5138469A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakatani
康弘 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5138469A priority Critical patent/JPH06343862A/en
Publication of JPH06343862A publication Critical patent/JPH06343862A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce a solid base catalyst having high efficiency because of its large specific surface area and easy to separate after use in a reaction. CONSTITUTION:The surfaces of particles or granules having 0.02-10mm diameter, e.g. glass beads having 1mm diameter are coated with a soln. contg. at least one kind of magnesium compd. selected among magnesium dialkoxide represented by a general formula Mg(OR)2 (where R is 1-5C alkyl), magnesium nitrate and magnesium chloride, e.g., magnesium dimethoxide and at least one kind of sodium compd. selected among sodium alkoxide represented by a general formula NaOR<1> (where R<1> is 1-5C alkyl), sodium nitrate and sodium chloride, e.g. sodium nitrate. The coated surfaces are dried and fired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学工業で使用される
固体塩基触媒の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a solid base catalyst used in the chemical industry.

【0002】[0002]

【従来の技術】従来、炭化水素化合物の異性化、エステ
ル化、重合等に固体の塩基触媒を使用することが知られ
ている。例えば、講談社発行、田部浩三、野依良治著
「超強酸・超強塩基」115〜125頁(1980年)
には、各種の超強塩基触媒が記載されており、同書12
2頁には、Na−MgO系触媒の調製方法として、Mg
(NO32 の加水分解によって得たMg(OH)2
アルゴン中、550℃で焼成したMgOに金属ナトリウ
ムを接触させ550℃で加熱して0.4〜1.7wt%
のNaを含むMgOが得られたことが記載されている。
2. Description of the Related Art Conventionally, it has been known to use a solid base catalyst for isomerization, esterification, polymerization and the like of hydrocarbon compounds. For example, Kozosha, Kozo Tabe, Ryoji Noyori, "Superacids / bases", pp. 115-125 (1980).
Describes various super strong base catalysts.
On page 2, as a method for preparing a Na-MgO-based catalyst, Mg
Mg (OH) 2 obtained by hydrolysis of (NO 3 ) 2 in argon was heated to 550 ° C., and metallic sodium was brought into contact with MgO to heat at 550 ° C. to 0.4-1.7 wt%.
It is described that MgO containing Na was obtained.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
固体塩基触媒の形態は粉末である。そして、反応性を高
めるため比表面積を大きくしようとして粉末を細かく粉
砕している。このようにして、反応物質と触媒の活性点
との接触割合を高め反応効率を高めている。
The solid base catalyst has a powder form. Then, in order to increase the reactivity, the powder is finely pulverized in order to increase the specific surface area. In this way, the contact ratio between the reactive substance and the active site of the catalyst is increased to enhance the reaction efficiency.

【0004】しかし反面、粉末を細かくすればするほ
ど、反応終了後、触媒を反応物から分離するのが困難に
なる。微粉末の触媒の分離法としては、沈降法や濾過法
があるが、沈降法では時間がかかり、また濾過法でも目
の細かいフイルターを使用するので時間がかかる。特
に、反応溶液の粘度が高いと益々時間がかかり工業生産
には適さないという問題点がある。本発明の目的は、上
記の問題点を解決するものであり、比表面積が大きいた
め触媒としての効率がよく、かつ、反応に使用した後の
触媒の分離が容易である固体塩基触媒の製造方法を提供
することにある。
On the other hand, however, the finer the powder, the more difficult it is to separate the catalyst from the reaction product after the reaction is completed. As a method for separating the fine powder catalyst, there are a sedimentation method and a filtration method. However, the sedimentation method takes time, and the filtration method also requires time because a fine filter is used. In particular, if the viscosity of the reaction solution is high, it takes more time and is not suitable for industrial production. The object of the present invention is to solve the above problems, the efficiency of the catalyst as a large specific surface area is large, and a method for producing a solid base catalyst which is easy to separate the catalyst after use in the reaction. To provide.

【0005】[0005]

【課題を解決するための手段】本発明で使用される粒子
は、粒径0.02〜10mmとされる。粒径が大きくな
ると、反応溶液中に十分分散し難くなり反応効率が悪く
なり、小さくなると分離性が低下する。粒子の形状は、
特に限定されるものではなく、例えば、ボール、ビー
ズ、バルーン等の球状;板状;針状等が挙げられる。粒
子の材質は、反応溶液や処理液で変質せず、触媒製造過
程での熱処理に耐えるものであれば、特に限定されるも
のではなく、例えば、アルミナ、ジルコニア、チタニア
等のセラミックス;ガラス等が挙げられる。
The particles used in the present invention have a particle size of 0.02 to 10 mm. When the particle size is large, it becomes difficult to sufficiently disperse it in the reaction solution and the reaction efficiency is poor, and when it is small, the separability is deteriorated. The shape of the particles is
It is not particularly limited, and examples thereof include spherical shapes such as balls, beads, and balloons; plate shapes; needle shapes. The material of the particles is not particularly limited as long as it does not deteriorate in the reaction solution or the treatment solution and can withstand the heat treatment in the catalyst manufacturing process. For example, ceramics such as alumina, zirconia, titania; Can be mentioned.

【0006】本発明で使用されるマグネシウム化合物
(a)は、一般式Mg(OR)2 で表されるマグネシウ
ムジアルコキシド、硝酸マグネシウムおよび塩化マグネ
シウムからなる群から選ばれる少なくとも1種である。
Rは炭素数1〜5のアルキル基を表すが、炭素数が大き
くなると溶液の安定性が低下して取扱が困難になるの
で、炭素は1〜5に限定される。Rの例としては、メチ
ル基、エチル基、n−プロピル基、iso−プロピル
基、n−ブチル基、sec−ブチル基、tert−ブチ
ル基等が挙げられる。一般式Mg(OR)2 で表される
化合物としては、例えば、マグネシウムジメトキシド、
マグネシウムジエトキシド等が挙げられる。
The magnesium compound (a) used in the present invention is at least one selected from the group consisting of magnesium dialkoxide represented by the general formula Mg (OR) 2 , magnesium nitrate and magnesium chloride.
R represents an alkyl group having 1 to 5 carbon atoms, but the carbon number is limited to 1 to 5 because the stability of the solution decreases and the handling becomes difficult when the carbon number becomes large. Examples of R include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like. Examples of the compound represented by the general formula Mg (OR) 2 include magnesium dimethoxide,
Examples thereof include magnesium diethoxide.

【0007】本発明で使用されるナトリウム化合物
(b)は、一般式NaOR1 で表されるナトリウムアル
コキシド、硝酸ナトリウムおよび塩化ナトリウムからな
る群から選ばれる少なくとも1種である。R1 は炭素数
1〜5のアルキル基を表すが、炭素数が大きくなると溶
液の安定性が低下して取扱が困難になるので、炭素は1
〜5に限定される。R1 の例としては、メチル基、エチ
ル基、n−プロピル基、iso−プロピル基、n−ブチ
ル基、sec−ブチル基、tert−ブチル基等が挙げ
られる。一般式NaOR1 で表される化合物としては、
例えば、ナトリウムメトキシド、ナトリウムエトキシド
等が挙げられる。
The sodium compound (b) used in the present invention is at least one selected from the group consisting of sodium alkoxide represented by the general formula NaOR 1 , sodium nitrate and sodium chloride. R 1 represents an alkyl group having 1 to 5 carbon atoms. However, if the carbon number becomes large, the stability of the solution decreases and the handling becomes difficult.
Limited to ~ 5. Examples of R 1 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like. As the compound represented by the general formula NaOR 1 ,
For example, sodium methoxide, sodium ethoxide and the like can be mentioned.

【0008】本発明の固体塩基触媒の製造方法は、粒径
0.02〜10mmの粒子表面に、上記のマグネシウム
化合物(a)およびナトリウム化合物(b)を含有する
溶液を塗布し、次いで乾燥し、さらに焼成する工程から
なる。
In the method for producing a solid base catalyst of the present invention, a solution containing the above magnesium compound (a) and sodium compound (b) is applied to the surface of particles having a particle size of 0.02 to 10 mm, and then dried. And the step of further firing.

【0009】上記溶液の溶媒としては、水または有機溶
媒が好ましい。有機溶媒としては、上記マグネシウム化
合物(a)およびナトリウム化合物(b)を溶解するも
のであれば特に限定されるものではなく、例えば、メチ
ルアルコール、エチルアルコール、イソプロピルアルコ
ール等のアルコール類が挙げられる。
The solvent for the above solution is preferably water or an organic solvent. The organic solvent is not particularly limited as long as it dissolves the magnesium compound (a) and the sodium compound (b), and examples thereof include alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol.

【0010】前記溶液中のマグネシウム化合物(a)と
ナトリウム化合物(b)のモル比は、マグネシウム化合
物(a)1モルに対して、ナトリウム化合物(b)が
0.1モル以下が好ましい。ナトリウム化合物(b)が
多くなると、触媒としての効率が低下し易くなる。
The molar ratio of the magnesium compound (a) to the sodium compound (b) in the solution is preferably 0.1 mol or less of the sodium compound (b) with respect to 1 mol of the magnesium compound (a). If the amount of the sodium compound (b) increases, the efficiency as a catalyst tends to decrease.

【0011】前記溶液の塗布方法は、既知の任意の方法
が可能であるが、例えば、前記の粒子を溶液中に浸漬し
た後、フイルターで粒子を濾別して粒子表面に溶液を塗
布する方法;粒子に溶液をスプレーで粉霧する方法等が
挙げられる。
The method of applying the solution may be any known method, for example, a method of immersing the particles in the solution, filtering the particles with a filter, and applying the solution to the surface of the particles; A method of atomizing the solution with a spray can be mentioned.

【0012】前記の乾燥の方法は特に限定されないが、
例えば、室温放置で乾燥する方法;公知の装置を使用し
て加熱乾燥する方法が挙げられる。
The method of drying is not particularly limited,
For example, a method of drying at room temperature; a method of heating and drying using a known device can be mentioned.

【0013】前記の焼成方法は特に限定されないが、例
えば、空気または窒素等のガス雰囲気中で350〜80
0℃特に好ましくは350〜650℃で、2〜5時間か
けて行う方法が挙げられる。
The firing method is not particularly limited, but is, for example, 350 to 80 in a gas atmosphere such as air or nitrogen.
A method of performing the treatment at 0 ° C. particularly preferably at 350 to 650 ° C. for 2 to 5 hours can be mentioned.

【0014】[0014]

【作用】本発明で得られる固体塩基触媒は、粒子表面に
単なる溶液が塗布されている触媒と異なり、前記の特定
のマグネシウム化合物(a)およびナトリウム化合物
(b)を含有する溶液が塗布され、乾燥され、焼成され
て得られたものであり、このようなゾル−ゲル工程を経
て触媒が担持されているので、該溶液状態のときに存在
していた溶媒やアルコキシドのアルコキシ基などが飛散
した後にできる孔が触媒層に多数存在する。従って、触
媒層は比表面積の大きい、多孔質の非晶質金属酸化物か
らなっており、このことにより、高い触媒効率が達成さ
れる。さらに、溶媒やアルコキシドのアルコキシ基を選
択することなどにより、上記の孔の径やその分布を制御
することも可能である。
The solid base catalyst obtained by the present invention is different from a catalyst in which a solution is simply applied on the surface of particles, and a solution containing the specific magnesium compound (a) and sodium compound (b) is applied, It was obtained by being dried and calcined, and since the catalyst was supported through such a sol-gel process, the solvent and the alkoxy group of the alkoxide existing in the solution state were scattered. A large number of pores formed later are present in the catalyst layer. Therefore, the catalyst layer is made of a porous amorphous metal oxide having a large specific surface area, which achieves high catalyst efficiency. Further, it is possible to control the diameter and distribution of the pores by selecting the solvent or the alkoxy group of the alkoxide.

【0015】また、本発明で得られる固体塩基触媒は、
粒径0.02〜10mmの粒子表面に触媒成分が担持さ
れており、該粒子の径は触媒成分塗布前の粒径とほぼ同
じであるので、触媒使用後、触媒の分離が容易である。
例えば、沈降によって分離する場合には沈降速度が速
く、濾別する場合には比較的目の粗いフイルターやメッ
シュ等で効率よく分離できる。
The solid base catalyst obtained in the present invention is
A catalyst component is carried on the surface of particles having a particle diameter of 0.02 to 10 mm, and the diameter of the particles is almost the same as the particle diameter before the coating of the catalyst component, so that the catalyst can be easily separated after the use of the catalyst.
For example, in the case of separation by sedimentation, the sedimentation speed is high, and in the case of filtration, separation can be efficiently performed with a relatively coarse filter or mesh.

【0016】[0016]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0017】実施例1 500mlのフラスコにメチルアルコールを300mと
り、マグネシウムジメトキシド30g、硝酸ナトリウム
1.5gを加え1時間攪拌した。次に、粒径1mmのガ
ラスビーズを150g加え2時間攪拌後、ガラスビーズ
を目の開きが850μmのメッシュで濾別した。得られ
たガラスビーズを100℃で24時間乾燥した。乾燥後
のガラスビーズを500℃で3時間焼成して固体塩基触
媒を得た。得られた固体塩基触媒の比表面積はBET法
で測定したところ0.54m2 /gであった。次に、得
られた固体塩基触媒担持ガラスビーズ6gを用いて、1
−ヘキセン10gを異性化した。反応終了後、目の開き
が850μmのメッシュで固体塩基触媒を濾別した。固
体塩基触媒は1分以内に濾別され、容易に触媒を分離で
きた。濾別後の反応液を分析した結果、異性化率は88
%であった。
Example 1 300 ml of methyl alcohol was placed in a 500 ml flask, 30 g of magnesium dimethoxide and 1.5 g of sodium nitrate were added, and the mixture was stirred for 1 hour. Next, 150 g of glass beads having a particle diameter of 1 mm was added and stirred for 2 hours, and then the glass beads were filtered off with a mesh having an opening of 850 μm. The glass beads obtained were dried at 100 ° C. for 24 hours. The dried glass beads were calcined at 500 ° C. for 3 hours to obtain a solid base catalyst. The specific surface area of the obtained solid base catalyst was 0.54 m 2 / g as measured by the BET method. Next, using 6 g of the obtained solid base catalyst-supporting glass beads, 1
10 g of hexene were isomerized. After completion of the reaction, the solid base catalyst was filtered off with a mesh having openings of 850 μm. The solid base catalyst was filtered off within 1 minute and the catalyst could be easily separated. As a result of analyzing the reaction solution after separation by filtration, the isomerization rate was 88.
%Met.

【0018】実施例2 実施例1と同様にして、固体塩基触媒を得た。次に、得
られた固体塩基触媒6gを用いて、1−ぺンテン10g
を異性化した。反応終了後、目の開きが850μmのメ
ッシュで固体塩基触媒を濾別した。固体塩基触媒は1分
以内に濾別され、容易に触媒を分離できた。濾別後の反
応液を分析した結果、異性化率は82%であった。
Example 2 A solid base catalyst was obtained in the same manner as in Example 1. Then, using 6 g of the obtained solid base catalyst, 10 g of 1-pentene
Was isomerized. After completion of the reaction, the solid base catalyst was filtered off with a mesh having openings of 850 μm. The solid base catalyst was filtered off within 1 minute and the catalyst could be easily separated. As a result of analyzing the reaction solution after separation by filtration, the isomerization rate was 82%.

【0019】実施例3 実施例1の硝酸ナトリウムに代えてナトリウムメトキシ
ドを0.8g使用した他は、実施例と同様にして固体塩
基触媒を得た。得られた固体塩基触媒の比表面積はBE
T法で測定したところ1.28m2 /gであった。次
に、得られた固体塩基触媒6gを用いて、実施例1と同
様にして1−ヘキセンを異性化した。反応終了後、目の
開きが850μmのメッシュで固体塩基触媒を濾別し
た。固体塩基触媒は1分以内に濾別され、容易に触媒を
分離できた。濾別後の反応液を分析した結果、異性化率
は89%であった。
Example 3 A solid base catalyst was obtained in the same manner as in Example 1 except that 0.8 g of sodium methoxide was used instead of sodium nitrate in Example 1. The specific surface area of the obtained solid base catalyst is BE
When measured by the T method, it was 1.28 m 2 / g. Next, using 6 g of the obtained solid base catalyst, 1-hexene was isomerized in the same manner as in Example 1. After completion of the reaction, the solid base catalyst was filtered off with a mesh having openings of 850 μm. The solid base catalyst was filtered off within 1 minute and the catalyst could be easily separated. As a result of analyzing the reaction solution after separation by filtration, the isomerization rate was 89%.

【0020】比較例 500mlのフラスコにメチルアルコールを300mと
り、マグネシウムジメトキシド30g、硝酸ナトリウム
3gを加え1時間攪拌した。次に、攪拌下、28重量%
のアンモニア水を徐々に加え沈殿を生成させた。生成し
た沈殿を吸引濾過した。得られた沈殿物を100℃で2
4時間乾燥し、さらに500℃で3時間焼成して固体塩
基触媒を得た。次に、得られた固体塩基触媒1gを用い
て、1−ヘキセン10gを異性化した。反応終了後、触
媒を沈降させて分離しようと試みたが、24時間静置し
ても反応液は懸濁していた。また、同じ反応液をポアー
サイズ5μmの濾紙を使用して吸引濾過したが濾液は懸
濁していた。また、濾過の所要時間は約4時間であっ
た。濾別後の反応液を分析した結果、異性化率は86%
であった。
Comparative Example 300 ml of methyl alcohol was placed in a 500 ml flask, 30 g of magnesium dimethoxide and 3 g of sodium nitrate were added, and the mixture was stirred for 1 hour. Then, with stirring, 28% by weight
Ammonia water was gradually added to form a precipitate. The precipitate formed was suction filtered. The precipitate obtained is heated at 100 ° C for 2
It was dried for 4 hours and then calcined at 500 ° C. for 3 hours to obtain a solid base catalyst. Next, 10 g of 1-hexene was isomerized using 1 g of the obtained solid base catalyst. At the end of the reaction, an attempt was made to settle the catalyst and separate it, but the reaction solution was still suspended after standing for 24 hours. The same reaction solution was suction filtered using a filter paper with a pore size of 5 μm, but the filtrate was suspended. The time required for filtration was about 4 hours. As a result of analyzing the reaction solution after separation by filtration, the isomerization rate is 86%.
Met.

【0021】[0021]

【発明の効果】本発明の固体塩基触媒の製造方法は前記
した通りであり、比表面積が大きいため触媒としての効
率がよく、かつ、反応に使用した後の触媒の分離が容易
である固体塩基触媒を製造することができる。また、本
発明の製造方法によって得られたNa2 O−MgO系触
媒は、異性化、炭化水素のアルキル化、重合反応等の触
媒として効果的に使用でき、特に反応系の粘度が高い場
合に有用である。
The method for producing a solid base catalyst of the present invention is as described above, and the solid base has a large specific surface area and thus is efficient as a catalyst, and the catalyst can be easily separated after being used in the reaction. A catalyst can be produced. Further, the Na 2 O-MgO-based catalyst obtained by the production method of the present invention can be effectively used as a catalyst for isomerization, alkylation of hydrocarbons, polymerization reaction, etc., especially when the viscosity of the reaction system is high. It is useful.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒径0.02〜10mmの粒子表面に、
(a)一般式Mg(OR)2(式中、Rは炭素数1〜5の
アルキル基)で表されるマグネシウムジアルコキシド、
硝酸マグネシウムおよび塩化マグネシウムからなる群か
ら選ばれる少なくとも1種のマグネシウム化合物、およ
び(b)一般式NaOR1 (式中、R1 は炭素数1〜5
のアルキル基)で表されるナトリウムアルコキシド、硝
酸ナトリウムおよび塩化ナトリウムからなる群から選ば
れる少なくとも1種のナトリウム化合物を含有する溶液
を塗布し、次いで乾燥し、さらに焼成することを特徴と
する固体塩基触媒の製造方法。
1. A particle surface having a particle size of 0.02 to 10 mm,
(A) A magnesium dialkoxide represented by the general formula Mg (OR) 2 (wherein R is an alkyl group having 1 to 5 carbon atoms),
At least one magnesium compound selected from the group consisting of magnesium nitrate and magnesium chloride, and (b) the general formula NaOR 1 (wherein R 1 has 1 to 5 carbon atoms).
A base containing at least one sodium compound selected from the group consisting of sodium alkoxide, sodium nitrate and sodium chloride represented by the formula (1) above, then dried and further calcined. Method for producing catalyst.
JP5138469A 1993-06-10 1993-06-10 Production of solid base catalyst Pending JPH06343862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5138469A JPH06343862A (en) 1993-06-10 1993-06-10 Production of solid base catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5138469A JPH06343862A (en) 1993-06-10 1993-06-10 Production of solid base catalyst

Publications (1)

Publication Number Publication Date
JPH06343862A true JPH06343862A (en) 1994-12-20

Family

ID=15222782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5138469A Pending JPH06343862A (en) 1993-06-10 1993-06-10 Production of solid base catalyst

Country Status (1)

Country Link
JP (1) JPH06343862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007468A1 (en) * 1997-08-07 1999-02-18 Chisso Corporation Basic catalysts and process for producing carbonyl compound derivatives
JP2015039663A (en) * 2013-08-21 2015-03-02 株式会社Ihi Method for manufacturing catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007468A1 (en) * 1997-08-07 1999-02-18 Chisso Corporation Basic catalysts and process for producing carbonyl compound derivatives
US6632959B2 (en) 1997-08-07 2003-10-14 Chisso Corporation Basic catalysts and process for producing carbonyl compound derivatives
JP2015039663A (en) * 2013-08-21 2015-03-02 株式会社Ihi Method for manufacturing catalyst

Similar Documents

Publication Publication Date Title
KR880001777B1 (en) Alumina coating compositions for catalyst supports and process for their formulation
JP4374557B2 (en) Method for preparing catalyst usable in conversion reaction of organic compound
US6030599A (en) Process for producing water-dispersible alumina hydrates having a nanocrystalline structure and use thereof
EP0199930A2 (en) Spray-dried inorganic oxides from non-aqueous gels or solutions
US5134107A (en) Single phase metal-alumina made by sol-gel processing
JPS61212329A (en) Preparation of high surface area flocculated substance for catalyst carrier and preparation of monolithic carrier structure containing the same
US5403807A (en) Single phase metal-alumina sol-gel process and material
JP2594879B2 (en) Lanthanum-stabilized alumina and method for producing the same
EP0560074A1 (en) High surface area washcoated substrate and method for making
US5106812A (en) Catalyst carrier for use in high-temperature combustion
Buelna et al. Preparation of spherical alumina and copper oxide coated alumina sorbents by improved sol–gel granulation process
JP4191044B2 (en) Process for preparing oxides based on zirconium and titanium, oxides obtained by this process and the use of these oxides as catalysts
JPH06343862A (en) Production of solid base catalyst
JP2005522318A (en) Monolithic catalyst support coated with in situ theta alumina
JP3038047B2 (en) Production method of high purity mullite
CN108067212B (en) Method for preparing macroporous hollow spherical titanium-aluminum composite oxide material
JP2533703B2 (en) Catalyst for high temperature steam reforming reaction of hydrocarbon and method of using the same
CN1250455C (en) Method for preparing light temperature-resistance high surface area alumina and aluminiferous composite oxide
JPH02102117A (en) Specific surface area control in alumina
JPH0132169B2 (en)
JPH0274522A (en) Production of alumina
JP2668958B2 (en) Method for producing spherical silica porous material
CN1013436B (en) The preparation of cordierite precursor
JPH0543344A (en) Production of alumina-based porous body
JPH11165073A (en) Oxidation catalyst and production thereof