JPH06342100A - X-ray exposure device - Google Patents

X-ray exposure device

Info

Publication number
JPH06342100A
JPH06342100A JP5132011A JP13201193A JPH06342100A JP H06342100 A JPH06342100 A JP H06342100A JP 5132011 A JP5132011 A JP 5132011A JP 13201193 A JP13201193 A JP 13201193A JP H06342100 A JPH06342100 A JP H06342100A
Authority
JP
Japan
Prior art keywords
optical system
wafer
ray
exposure
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5132011A
Other languages
Japanese (ja)
Inventor
Masayuki Otani
正之 大谷
Hiroshi Nagata
浩 永田
Toshihiko Tanaka
稔彦 田中
Yukihiko Maejima
幸彦 前島
Nobufumi Atoda
伸史 阿刀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Soltec Co Ltd
Original Assignee
Nikon Corp
Soltec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Soltec Co Ltd filed Critical Nikon Corp
Priority to JP5132011A priority Critical patent/JPH06342100A/en
Publication of JPH06342100A publication Critical patent/JPH06342100A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the performance reduction in an optical system accompanies by gas generation and prevent prolonging of exposure time following use by arranging wafer remotely from an X-ray exposure optical system. CONSTITUTION:An X-ray exposure optical system 6 irradiates X-ray 2 generated by an X-ray source on a wafer 7 to project a pattern of a mask 4 on the wafer 7. In order that the material generated from the wafer 7 due to the irradiation of X-ray 2 does not affect the optical system 6, the wafer 7 is arranged remotely from the optical system 6. A pair of exhaust devices 9a, 9b are provided to make vacuum state individually in a space S1 where the optical system 6 is arranged and a space S1 where the wafer 7 is arranged. By this, the gas and resolved products generated from this wafer 7 due to the exposure of the wafer 7 to X-ray 2 is prevented from adhering to the optical system 6. Besides, the lowering of vacuum degree near the optical system 6 because the gas and resolved products is also prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線リソグラフィーな
どに用いられるX線露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray exposure apparatus used for X-ray lithography and the like.

【0002】[0002]

【従来の技術】X線を用いた半導体回路の露光・形成
(X線リソグラフィー)は、近年の半導体装置(LSI
など)の高集積化、高密度化の要求に伴い、高解像度の
露光を可能にするために提案されたものである。
2. Description of the Related Art Exposure and formation of a semiconductor circuit using X-rays (X-ray lithography) has been performed in recent semiconductor devices (LSIs).
It has been proposed to enable high resolution exposure in response to the demand for higher integration and higher density.

【0003】図4は、従来のX線リソグラフィーに用い
られるX線縮小投影露光装置の一例を示す図である。不
図示のシンクロトロン放射光等のX線源で発生したX線
2は、フィルタ3により所望の軟X線領域(一例として
4nm〜15nm)の光線(X線)のみが選択的に通過され、
マスク4に照射される。マスク4には、形成すべき半導
体回路等に対応したパターンが形成されている。マスク
4で反射したX線2は、スリット5により不要な光がカ
ットされ、像の解像度が高められる。スリット5を通過
したX線2は、反射光学系6を介してステージ8上のウ
ェハ7に照射される。反射光学系6は、Å(オングスト
ローム)レベルまで研磨された鏡面に多層膜がコーティ
ングされた凹面鏡、凸面鏡などを有する。多層膜は、上
述の波長領域の軟X線領域のみ反射可能となるようにそ
の材質、寸法等が選択されている。ウェハ7の表面に
は、X線が照射されると化学変化を起こす性質を有する
レジストが塗付されており、マスク4のパターン像がウ
ェハ7の表面に形成されることによりマスク4に対応し
たパターンがレジストに露光される。
FIG. 4 is a diagram showing an example of an X-ray reduction projection exposure apparatus used in conventional X-ray lithography. As for the X-rays 2 generated by an X-ray source such as synchrotron radiation (not shown), only light rays (X-rays) in a desired soft X-ray region (4 nm to 15 nm as an example) are selectively passed by the filter 3,
The mask 4 is irradiated. A pattern corresponding to a semiconductor circuit or the like to be formed is formed on the mask 4. Unnecessary light of the X-ray 2 reflected by the mask 4 is cut by the slit 5 and the resolution of the image is improved. The X-ray 2 that has passed through the slit 5 is irradiated onto the wafer 7 on the stage 8 via the reflection optical system 6. The reflective optical system 6 has a concave mirror, a convex mirror, and the like, in which a mirror surface polished to the level of Å (angstrom) is coated with a multilayer film. The material, dimensions, etc. of the multilayer film are selected so that only the soft X-ray region in the above-mentioned wavelength region can be reflected. The surface of the wafer 7 is coated with a resist having a property of chemically changing when irradiated with X-rays, and a pattern image of the mask 4 is formed on the surface of the wafer 7 to correspond to the mask 4. The pattern is exposed on the resist.

【0004】軟X線は大気に吸収されやすいため、フィ
ルタ3、マスク4、スリット5、反射光学系6、ウェハ
7およびステージ8は真空容器10中に収納され、真空
ポンプ9により真空容器10の内部が排気されることに
より内部空間Sが所定の真空度に維持されている。な
お、図示例は反射型のマスク4であるが、透過型のマス
クが用いられることもある。
Since the soft X-rays are easily absorbed by the atmosphere, the filter 3, the mask 4, the slit 5, the reflection optical system 6, the wafer 7 and the stage 8 are housed in a vacuum container 10 and a vacuum pump 9 is used to remove the vacuum container 10. The interior space S is maintained at a predetermined vacuum degree by exhausting the interior. Note that the illustrated example is the reflective mask 4, but a transmissive mask may also be used.

【0005】図4に示すX線縮小投影露光装置におい
て、可視光を用いた縮小投影露光装置におけるレジスト
を使用した場合、軟X線の波長領域ではレジストの吸収
率が高すぎるためにX線がレジストの表面だけで吸収さ
れてしまい、その表面でしか化学変化が起こらずにレジ
ストに形成されたパターンが十分に深くならず、実用に
供することが難しい。そこで、X線が照射されると分解
されてガス化するものが、X線縮小投影露光装置におけ
るレジストとしては有用である。X線が照射されてその
部分のレジストが分解されてガス化されると、X線が照
射された部分のレジストのみ次第に除去されてパターン
が深くなり、レジストの吸収率が高くても十分な深さの
パターンを得ることができる。この種のレジストとして
は例えばPBS(Poly Butene Sulfone)、PMPS(P
oly Methyl Pentene Sulfone)がある。
In the X-ray reduction projection exposure apparatus shown in FIG. 4, when the resist in the reduction projection exposure apparatus using visible light is used, the X-rays are absorbed in the wavelength region of the soft X-rays because the absorption rate of the resist is too high. It is absorbed only on the surface of the resist, and the chemical change occurs only on that surface, and the pattern formed on the resist is not sufficiently deep, making it difficult to put into practical use. Therefore, what is decomposed and gasified when irradiated with X-rays is useful as a resist in an X-ray reduction projection exposure apparatus. When X-rays are irradiated and the resist in that part is decomposed and gasified, only the resist in the part irradiated with X-rays is gradually removed and the pattern becomes deep, and even if the absorptivity of the resist is high, a sufficient depth is obtained. You can get the pattern of Sasaki. Examples of this type of resist include PBS (Poly Butene Sulfone), PMPS (P
oly Methyl Pentene Sulfone) is available.

【0006】レジストのガス化は、レジストを構成する
高分子間の鎖が軟X線の照射によりほとんど完全に切れ
ることにより説明され、可視光用のレジストが、可視光
の照射により高分子間の鎖が部分的に切れ、あるいは新
たにつながることにより薬品に対する耐溶解性が変化す
ることと対比される。
Gasification of the resist is explained by the fact that the chains between the polymers that make up the resist are almost completely broken by irradiation with soft X-rays. This is in contrast to the change in solubility resistance to chemicals due to partial breakage or reconnection of chains.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
X線縮小投影露光装置にあっては、レジストへ軟X線が
照射、露光されるとこのレジストからガスおよびレジス
トの分解生成物が発生し、このガスあるいは分解生成物
が反射光学系6に付着して反射率の低下、反射率のムラ
等を引き起こすという問題があった。特に、上述のよう
に、反射光学系6はÅレベルという極めて高い鏡面精度
が要求されるため、わずかな付着物が著しい性能低下の
原因となる。また、レジストから発生したガスにより真
空容器10内の真空度が低下し、このガスにより露光光
である軟X線2が吸収されてしまうので、1回の露光に
かかる時間が長くなるという問題もあった。
However, in the conventional X-ray reduction projection exposure apparatus, when the resist is irradiated with soft X-rays and exposed, gas and decomposition products of the resist are generated from this resist, There is a problem that the gas or the decomposition product adheres to the reflective optical system 6 to cause a decrease in reflectance and unevenness in reflectance. In particular, as described above, the reflective optical system 6 is required to have an extremely high mirror surface accuracy of Å level, and therefore a slight amount of attached matter causes a significant deterioration in performance. In addition, the gas generated from the resist lowers the degree of vacuum in the vacuum container 10, and the soft X-rays 2 that are exposure light are absorbed by this gas, so that the time required for one exposure becomes long. there were.

【0008】本発明の目的は、ガス発生に伴う光学系の
性能低下を防止し、かつ、使用に伴う露光時間の長時間
化を防ぐことの可能なX線露光装置を提供することにあ
る。
An object of the present invention is to provide an X-ray exposure apparatus capable of preventing the performance of the optical system from deteriorating due to gas generation and preventing the exposure time from being lengthened due to use.

【0009】[0009]

【課題を解決するための手段】一実施例を示す図1に対
応付けて説明すると、本発明はX線源で発生されたX線
2をウェハ7上に照射してこのウェハ7上にパターンを
投影するX線露光光学系6を備えたX線露光装置に適用
される。そして、上述の目的は、前記X線2の照射によ
り前記ウェハ7から発生する物質が前記X線露光光学系
6に影響を及ぼさないように前記ウェハ7を前記X線露
光光学系6から隔離配置することにより達成される。こ
こで、前記X線露光光学系6が配置される空間S2およ
び前記ウェハ7が配置される空間S1を個別に真空状態
にする一対の排気装置9a、9bを設けてもよい。
The present invention will be described with reference to FIG. 1 showing an embodiment. In the present invention, an X-ray 2 generated by an X-ray source is irradiated onto a wafer 7 to form a pattern on the wafer 7. It is applied to an X-ray exposure apparatus provided with an X-ray exposure optical system 6 for projecting. The above-mentioned object is to dispose the wafer 7 away from the X-ray exposure optical system 6 so that the substance generated from the wafer 7 by the irradiation of the X-rays 2 does not affect the X-ray exposure optical system 6. It is achieved by Here, a pair of exhaust devices 9a and 9b may be provided to individually bring the space S 2 in which the X-ray exposure optical system 6 is arranged and the space S 1 in which the wafer 7 is arranged into a vacuum state.

【0010】[0010]

【作用】ウェハ7がX線露光光学系6から隔離配置され
ているので、X線2によるウェハ7の露光に伴ってこの
ウェハ7から発生するガスや分解生成物がX線露光光学
系6に付着することが防止されるとともに、ガスや分解
生成物によってX線露光光学系6近傍の真空度が低下す
ることが防止される。
Since the wafer 7 is arranged so as to be separated from the X-ray exposure optical system 6, gas and decomposition products generated from the wafer 7 due to the exposure of the wafer 7 by the X-rays 2 are transmitted to the X-ray exposure optical system 6. The adhesion is prevented, and the degree of vacuum in the vicinity of the X-ray exposure optical system 6 is prevented from being lowered by the gas and the decomposition products.

【0011】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for making the present invention easy to understand. It is not limited to.

【0012】[0012]

【実施例】【Example】

−第1実施例− 図1は、本発明によるX線露光装置の第1実施例が適用
されたX線縮小投影露光装置を示す概略図である。な
お、以下の説明において、上述の従来例と同様の構成要
素については同一の符号を付し、相違点を中心に説明す
ることで全体の説明を簡略化する。
First Embodiment FIG. 1 is a schematic diagram showing an X-ray reduction projection exposure apparatus to which the first embodiment of the X-ray exposure apparatus according to the present invention is applied. In the following description, the same components as those in the above-mentioned conventional example are designated by the same reference numerals, and the description will be simplified by focusing on the differences.

【0013】本実施例のX線縮小投影露光装置の特徴
は、真空容器10内の空間Sを仕切板1により試料室S
1および光学系室S2に区画し、試料室S1内に位置する
ウェハ7を、光学系室S2内に配置された残りの構成要
素であるマスク4、反射光学系6等から隔離配置したこ
とである。仕切板1には、反射光学系6からウェハ7へ
のX線2の光路上に形成され、このX線2が通過可能な
大きさを有する開口部1aが形成されている。この開口
部1aの大きさはX線2が通過可能な最低限の大きさと
され、一例として2mm×30mm程度の小孔である。通常、
試料室S1および光学系室S2の大きさは最低でも5m3
程度はあるため、試料室S1および光学系室S2の真空度
が異なっていても開口部1aの存在によりこれら両室S
1、S2の真空度が同じになることはないと考えられる。
また、真空容器10には、試料室S1および光学系室S2
の内部をそれぞれ排気する真空ポンプ9a、9bが設け
られている。
The feature of the X-ray reduction projection exposure apparatus of this embodiment is that the space S in the vacuum container 10 is divided by the partition plate 1 into the sample chamber S.
1 and the optical system chamber S 2 and the wafer 7 located in the sample chamber S 1 is separated from the mask 4, the reflection optical system 6 and the like which are the remaining components arranged in the optical system chamber S 2 . That is what I did. The partition plate 1 has an opening 1a formed on the optical path of the X-ray 2 from the reflective optical system 6 to the wafer 7 and having a size through which the X-ray 2 can pass. The size of the opening 1a is the minimum size through which the X-ray 2 can pass, and is, for example, a small hole of about 2 mm × 30 mm. Normal,
The size of the sample chamber S 1 and the optical system chamber S 2 is at least 5 m 3
Since the sample chamber S 1 and the optical system chamber S 2 have different degrees of vacuum, the presence of the opening 1a prevents both the chamber S 1 and the optical system chamber S 2 from having different degrees of vacuum.
It is considered that the vacuum degrees of 1 and S 2 are not the same.
Further, the vacuum chamber 10 includes a sample chamber S 1 and an optical system chamber S 2
Vacuum pumps 9a and 9b are provided for exhausting the inside of the chamber.

【0014】以上のような構成を有するX線縮小投影露
光装置において、X線2によりウェハ7の表面に塗付さ
れたレジストが露光されると、X線2が照射した部分の
レジストがガス化して取り除かれ、マスク4に対応した
パターンがレジストに形成される。ガス化されたレジス
トおよびレジストの分解生成物は試料室S1内に拡散さ
れるが、仕切板1には微小な開口部1aしか形成されて
いないためにこれらガスおよび分解生成物のうち開口部
1aを通って光学系室S2内へ至るものはほとんどな
い。したがって、ガスおよび分解生成物が光学系室S2
内へ拡散してこの光学系室S2内の真空度が低下するこ
とが防止され、光学系室S2内におけるX線2の吸収が
抑制されて1回の露光時間が長時間になることが防止さ
れる。加えて、ガスおよび分解生成物が反射光学系6に
付着してこの光学系の性能が低下することもない。
In the X-ray reduction projection exposure apparatus having the above structure, when the resist applied to the surface of the wafer 7 is exposed by the X-ray 2, the resist in the portion irradiated by the X-ray 2 is gasified. Then, a pattern corresponding to the mask 4 is formed on the resist. The gasified resist and the decomposition products of the resist are diffused into the sample chamber S 1. However, since only a minute opening 1a is formed in the partition plate 1, the opening of the gas and the decomposition products is formed. There is almost nothing that passes through 1a into the optical system chamber S 2 . Therefore, the gas and the decomposition products are not contained in the optical system chamber S 2
It is prevented that the degree of vacuum inside the optical system chamber S 2 is lowered due to diffusion into the inside of the optical system chamber, the absorption of X-rays 2 in the optical system chamber S 2 is suppressed, and one exposure time becomes long. Is prevented. In addition, the gas and the decomposition products do not adhere to the reflective optical system 6 and the performance of this optical system is not deteriorated.

【0015】また、真空容器10内の空間Sを試料室S
1および光学系室S2に区分することにより、図示のごと
く各室S1、S2に対応して真空ポンプ9a、9bを設け
ることができ、これにより各室S1、S2の真空度を個別
に制御できて合理的かつ経済的制御が可能となる。
Further, the space S in the vacuum container 10 is set to the sample chamber S.
By partitioning to 1 and the optical system chamber S 2, the vacuum pump 9a in correspondence with each chamber S 1, S 2 as shown in the drawing, can be provided 9b, thereby chambers S 1, S 2 of the vacuum Can be controlled individually, and rational and economical control is possible.

【0016】なお、試料室S1内においてはガスおよび
分解生成物が拡散し、X線2が吸収されてその強度が若
干弱められるものの、X線2の全光路に対する試料室S
1内の光路の割合は十分小さいため、真空容器10全体
にガス等が拡散する場合に比較してX線2の吸収割合は
十分低くなる。
Although the gas and the decomposition products are diffused in the sample chamber S 1 and the X-rays 2 are absorbed and the intensity thereof is slightly weakened, the sample chamber S 1 with respect to the entire optical path of the X-rays 2 is absorbed.
Since the ratio of the optical path in 1 is sufficiently small, the absorption ratio of X-rays 2 becomes sufficiently low as compared with the case where gas or the like diffuses throughout the vacuum container 10.

【0017】〔実験例〕図1に示すような構成のX線縮
小投影露光装置を用いてウェハ7の露光を行った。試料
室S1内で発生したガスが極力光学系室S2内に流れない
ように、開口部1aをウェハ7の直前に設置した。レジ
ストにはPBSを用いた。露光装置の真空度は、露光開
始前において光学系室S2内が10ー5Pa、試料室S1内が10
ー2Paであった。試料室S1内の真空度が悪いのは、ウェ
ハ7表面にレジストを塗付した際にこのレジスト内に閉
じ込められた空気が、試料室S1内にウェハ7を配置し
た時から試料室S1内に放出されるためである。
[Experimental Example] The wafer 7 was exposed using the X-ray reduction projection exposure apparatus having the configuration shown in FIG. The opening 1a was placed immediately in front of the wafer 7 so that the gas generated in the sample chamber S 1 did not flow into the optical system chamber S 2 as much as possible. PBS was used for the resist. The degree of vacuum of the exposure apparatus is 10-5 Pa in the optical system chamber S 2 and 10 in the sample chamber S 1 before the exposure is started.
It was 2 Pa. The poor vacuum of the sample chamber S 1, the sample chamber S from the time the air trapped in the resist when subjected coated resist on the wafer 7 surface, was placed wafer 7 into the sample chamber S 1 This is because it is released within 1 .

【0018】露光開始と共に試料室S1内の真空度は10
ー1Paに低下したが、光学系室S2内の真空度は終始一定
であった。つまり、レジストから発生したガスがほとん
ど光学系室S2内に流れなかったことを示している。真
空度の低下は露光光であるX線2の吸収の増加を意味す
るが、真空度が低下しなかったので、1回の露光時間も
終始同時間であった。また、露光を1000時間行った後に
反射光学系6を検査したところ、付着物は見られなかっ
た。
When the exposure is started, the degree of vacuum in the sample chamber S 1 is 10
It dropped to over 1 Pa, but the vacuum degree of the optical system chamber S 2 was throughout constant. That is, almost no gas generated from the resist flows into the optical system chamber S 2 . A decrease in the degree of vacuum means an increase in absorption of X-rays 2 as exposure light, but since the degree of vacuum did not decrease, the exposure time for one exposure was the same throughout. Further, when the reflective optical system 6 was inspected after exposure for 1000 hours, no deposit was found.

【0019】比較のために、仕切板1を取り外し、従来
の方法でも同様の実験を行った。露光開始と共に試料室
1付近の真空度が低下しただけでなく、露光を続ける
に連れて光学系室S2内の真空度も10ー2Paまで低下し
た。この真空度の低下により、X線の吸収が大きくなり
1回の露光時間が徐々に長くなった。実験例および比較
となる従来例における露光時間の変化を図2に示す。ま
た、1000時間の露光を終えた後で反射光学系6を検査し
たところ、光学系の一部に付着物がみられた。
For comparison, the partition plate 1 was removed and the same experiment was conducted by the conventional method. Not only did the degree of vacuum near the sample chamber S 1 drop with the start of exposure, but also the degree of vacuum in the optical system chamber S 2 dropped to 10 −2 Pa as the exposure continued. Due to this decrease in the degree of vacuum, the absorption of X-rays increased and the exposure time for one exposure gradually became longer. FIG. 2 shows changes in the exposure time in the experimental example and the comparative conventional example. Further, when the reflective optical system 6 was inspected after the exposure for 1000 hours, deposits were found on a part of the optical system.

【0020】−第2実施例− 図3は、本発明によるX線露光装置の第2実施例が適用
されたX線縮小投影露光装置を示す概略図である。本実
施例では、揺動ミラー11を介してシンクロトロン放射
光光源から放射光が光学系室S2内に導入されている。
これは、シンクロトロンからの放射光の断面が小さく細
長い形状をしているために大面積の領域を一度に露光す
ることができないので、揺動ミラー11により放射光を
掃引して露光面積を拡大しているためである。揺動ミラ
ー11の揺動によりX線2の光路は所定方向に掃引され
(図3では実線および点線で示す)、ある瞬間では狭い
領域しか露光できないものの、時間平均では大面積の領
域が露光可能となる。
-Second Embodiment- FIG. 3 is a schematic view showing an X-ray reduction projection exposure apparatus to which the second embodiment of the X-ray exposure apparatus according to the present invention is applied. In this embodiment, radiation light is introduced from the synchrotron radiation light source into the optical system chamber S 2 via the oscillating mirror 11.
This is because the radiated light from the synchrotron has a small cross section and has an elongated shape, so that it is not possible to expose a large area at a time, so the oscillating mirror 11 sweeps the radiated light to expand the exposed area. This is because The optical path of the X-ray 2 is swept in a predetermined direction by the swing of the swing mirror 11 (shown by a solid line and a dotted line in FIG. 3), and only a small area can be exposed at a certain moment, but a large area can be exposed on a time average basis. Becomes

【0021】この際、揺動ミラー11によってX線2が
掃引されても仕切板1の開口部1aがX線2の通過を邪
魔しない程度に開口部1aが大きく形成できればよい
が、仕切板1の開口部1aは、各室S1、S2の真空度を
維持し、かつX線2を通過させるという相反する条件を
満足する必要があるため、可能な限り小さいことが好ま
しい。このため、本実施例では、不図示の往復動手段に
より、揺動ミラー11によるX線2の掃引に同期して仕
切板1の開口部1aを図中上下に往復動させることによ
り、開口部1aの大きさを最低限のものに抑えつつX線
2を掃引させて大面積の領域を露光することが可能とな
る。
At this time, it is sufficient if the opening 1a can be formed so large that the opening 1a of the partition plate 1 does not interfere with the passage of the X-ray 2 even if the X-ray 2 is swept by the swing mirror 11. Since it is necessary to satisfy the contradictory conditions of maintaining the degree of vacuum in the chambers S 1 and S 2 and allowing the X-rays 2 to pass through, the opening 1a of 1 is preferably as small as possible. For this reason, in the present embodiment, the opening / closing portion 1a of the partition plate 1 is reciprocally moved up and down in the figure by a reciprocating means (not shown) in synchronism with the sweeping of the X-ray 2 by the oscillating mirror 11. It is possible to expose the large area by sweeping the X-ray 2 while suppressing the size of 1a to the minimum.

【0022】なお、本発明のX線露光装置は、その細部
が上述の各実施例に限定されず、種々の変形が可能であ
る。一例として、上述の各実施例は縮小露光投影装置、
すなわちマスク4のパターンを縮小してウェハ7上に露
光させる構成のものであったが、いわゆるプロキシミテ
ィ露光などマスク4のパターンを等倍率でウェハ7上に
露光させる構成の露光装置にも適用可能である。
The details of the X-ray exposure apparatus of the present invention are not limited to the above-mentioned embodiments, and various modifications are possible. As an example, each of the above-described embodiments is a reduction exposure projection device,
That is, the pattern of the mask 4 is reduced and exposed on the wafer 7, but it is also applicable to an exposure apparatus such as so-called proximity exposure in which the pattern of the mask 4 is exposed on the wafer 7 at an equal magnification. Is.

【0023】[0023]

【発明の効果】以上詳細に説明したように、本発明によ
れば、X線の照射によりウェハから発生するガス、分解
生成物等の物質がX線露光光学系に影響を及ぼさないよ
うにウェハをX線露光光学系から隔離配置したので、こ
の物質によりX線露光光学系近傍の真空度が低下するこ
とが防止され、ウェハからの物質によるX線の吸収が抑
制されて1回の露光時間が長時間になることが防止され
る。これは装置のスループットの向上に結びつき、生産
効率の大幅な改善が可能となる。加えて、ウェハからの
物質がX線露光光学系に付着してこの光学系の性能が低
下することもない。これにより長期間にわたって安定し
て露光を行うことが可能となる。
As described in detail above, according to the present invention, a substance such as a gas or a decomposition product generated from a wafer upon irradiation with X-rays does not affect the X-ray exposure optical system. Is separated from the X-ray exposure optical system, the vacuum degree near the X-ray exposure optical system is prevented from being lowered by this substance, and the absorption of X-rays by the substance from the wafer is suppressed, so that the exposure time of one exposure is reduced. Is prevented from becoming a long time. This leads to an improvement in the throughput of the device, which makes it possible to greatly improve the production efficiency. In addition, the substance from the wafer does not adhere to the X-ray exposure optical system and the performance of this optical system is not deteriorated. This makes it possible to perform stable exposure over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるX線露光装置の第1実施例が適用
されたX線縮小投影露光装置を示す概略図である。
FIG. 1 is a schematic diagram showing an X-ray reduction projection exposure apparatus to which an X-ray exposure apparatus according to a first embodiment of the present invention is applied.

【図2】露光時間とウェハ投入経過時間との関係を示す
図である。
FIG. 2 is a diagram showing a relationship between an exposure time and a wafer loading elapsed time.

【図3】本発明によるX線露光装置の第2実施例が適用
されたX線縮小投影露光装置を示す概略図である。
FIG. 3 is a schematic diagram showing an X-ray reduction projection exposure apparatus to which a second embodiment of the X-ray exposure apparatus according to the present invention is applied.

【図4】従来のX線縮小投影露光装置を示す図である。FIG. 4 is a diagram showing a conventional X-ray reduction projection exposure apparatus.

【符号の説明】[Explanation of symbols]

S 真空空間 S1 試料室 S2 光学系室 1 仕切板 1a 開口部 2 X線 3 フィルター 4 マスク 5 スリット 6 反射光学系 7 ウェハ 8 ステージ 9 真空ポンプ 10 真空容器S Vacuum space S 1 Sample chamber S 2 Optical system chamber 1 Partition plate 1a Opening 2 X-ray 3 Filter 4 Mask 5 Slit 6 Reflective optical system 7 Wafer 8 Stage 9 Vacuum pump 10 Vacuum container

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 稔彦 茨城県つくば市和台16−1 株式会社ソル テック筑波研究所内 (72)発明者 前島 幸彦 茨城県つくば市和台16−1 株式会社ソル テック筑波研究所内 (72)発明者 阿刀田 伸史 茨城県つくば市和台16−1 株式会社ソル テック筑波研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshihiko Tanaka 16-1 Wadai, Tsukuba, Ibaraki Prefecture Sol Tech Tsukuba Research Institute (72) Inventor Yukihiko Maejima 16-1, Wadai, Tsukuba, Ibaraki Sol Tech Co., Ltd. Tsukuba Research Center (72) Inventor Nobufumi Atsuta 16-1 Wadai, Tsukuba City, Ibaraki Prefecture Sol Tech Tsukuba Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 X線源で発生されたX線をウェハ上に照
射してこのウェハ上にパターンを投影するX線露光光学
系を備えたX線露光装置において、 前記X線の照射により前記ウェハから発生する物質が前
記X線露光光学系に影響を及ぼさないように前記ウェハ
を前記X線露光光学系から隔離配置したことを特徴とす
るX線露光装置。
1. An X-ray exposure apparatus equipped with an X-ray exposure optical system for irradiating a wafer with X-rays generated by an X-ray source and projecting a pattern on the wafer, An X-ray exposure apparatus, characterized in that the wafer is separated from the X-ray exposure optical system so that a substance generated from the wafer does not affect the X-ray exposure optical system.
【請求項2】 請求項1に記載のX線露光装置におい
て、 前記X線露光光学系が配置される空間および前記ウェハ
が配置される空間を個別に真空状態にする一対の排気装
置を備えたことを特徴とするX線露光装置。
2. The X-ray exposure apparatus according to claim 1, further comprising a pair of exhaust devices that individually vacuum the space in which the X-ray exposure optical system is arranged and the space in which the wafer is arranged. An X-ray exposure apparatus characterized by the above.
JP5132011A 1993-06-02 1993-06-02 X-ray exposure device Pending JPH06342100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5132011A JPH06342100A (en) 1993-06-02 1993-06-02 X-ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5132011A JPH06342100A (en) 1993-06-02 1993-06-02 X-ray exposure device

Publications (1)

Publication Number Publication Date
JPH06342100A true JPH06342100A (en) 1994-12-13

Family

ID=15071454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5132011A Pending JPH06342100A (en) 1993-06-02 1993-06-02 X-ray exposure device

Country Status (1)

Country Link
JP (1) JPH06342100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287003A (en) * 2005-04-01 2006-10-19 Tohoku Univ Exposure device
JP2010503980A (en) * 2006-09-19 2010-02-04 カール・ツァイス・エスエムティー・アーゲー Optical apparatus, particularly projection exposure apparatus for EUV lithography and reflective optical element with less contamination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287003A (en) * 2005-04-01 2006-10-19 Tohoku Univ Exposure device
JP2010503980A (en) * 2006-09-19 2010-02-04 カール・ツァイス・エスエムティー・アーゲー Optical apparatus, particularly projection exposure apparatus for EUV lithography and reflective optical element with less contamination

Similar Documents

Publication Publication Date Title
KR100718742B1 (en) Lithographic apparatus and device manufacturing method
TWI567788B (en) Resist pattern forming method, resist latent image forming apparatus, resist pattern forming apparatus, and resist material
KR100747779B1 (en) Lithographic apparatus, illumination system and debris trapping system
CN102089713B (en) Optical element for a lithographic apparatus, lithographic apparatus comprising such optical element and method for making the optical element
JP5380285B2 (en) Lithographic apparatus
US7592610B2 (en) Mirror for use in a lithographic apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
CN1322545C (en) Light carving projection device and method for producing device with it and produced device
JP6872484B2 (en) Resist composition, resist pattern forming method, method for producing resist composition, use of perovskite material in lithographic process and substrate coated with resist composition.
KR920006799A (en) Reflective mask and mask manufacturing method and pattern formation method using the same
JP2003188096A (en) Lithographic projection apparatus, device manufacturing method, device manufactured thereby, cleaning unit and method of cleaning contaminated object
KR100718743B1 (en) Optical element, lithographic apparatus comprising such optical element and device manufacturing method
US6385290B1 (en) X-ray apparatus
JP2007067344A (en) Device and method for exposure, and method for manufacturing device
JP2002015970A (en) Method and device for exposure
TW200402086A (en) Lithographic apparatus and device manufacturing method
JPH06342100A (en) X-ray exposure device
KR970063428A (en) Reflective X-ray mask structure, X-ray exposure apparatus, X-ray exposure method and device fabricated using this planar X-ray mask structure
US20030210458A1 (en) Method and device for decontaminating optical surfaces
US20160170309A1 (en) Light exposure method, and light exposure apparatus
JP2005332972A (en) Optical element, optical apparatus, and manufacturing method of semiconductor device
JP2012146712A (en) Cleaning method and cleaning device
JP3619157B2 (en) Optical element, exposure apparatus having the optical element, cleaning apparatus, and optical element cleaning method
US6449332B1 (en) Exposure apparatus, and device manufacturing method
EP1329772B1 (en) Lithographic projection apparatus and device manufacturing method
JPS595621A (en) Forming method for thin-film