JPH06342053A - Three-dimensional positioning system by gps receiver using gps satellite and geostationary satellite - Google Patents
Three-dimensional positioning system by gps receiver using gps satellite and geostationary satelliteInfo
- Publication number
- JPH06342053A JPH06342053A JP33641791A JP33641791A JPH06342053A JP H06342053 A JPH06342053 A JP H06342053A JP 33641791 A JP33641791 A JP 33641791A JP 33641791 A JP33641791 A JP 33641791A JP H06342053 A JPH06342053 A JP H06342053A
- Authority
- JP
- Japan
- Prior art keywords
- satellite
- receiver
- ionosphere
- radio wave
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/421—Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
- G01S19/425—Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between signals derived from different satellite radio beacon positioning systems
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
【発明が解決しようとする課題】本技術では、各瞬間に
おける衛星の位置を監視し、又電離層及び大気ガス層の
状態を常時把握し、衛星の位置の誤差及び電離層・大気
ガス層によつて生じる伝搬誤差をなくし、測距精度の向
上を計ることを目的とする。In the present technology, the position of the satellite at each moment is monitored, and the states of the ionosphere and atmospheric gas layer are constantly grasped. The purpose is to eliminate the propagation error that occurs and improve the accuracy of distance measurement.
【従来の技術】GPS衛星からの電波を地上の受信機で
受信して、三次元位置を決定する単独測位では、衛星の
軌道情報、電波伝搬路(電離層と大気ガス層)、受信機
とともに衛星上の時計の誤差により、C/Aコードによ
る場合は100m、Pコードでは16mの公称精度であ
ると言われている。又、GPS衛星からの電波を複数の
受信機で測定して、受信点間の相対的な位置関係を求め
る相対測位においては、数cmから数m程度の精度で、
単独測位に比較して精度は著しく向上するが、15分以
上2時間程度の測定記録時間を必要として、短時間に結
果を得られないという欠点がある。2. Description of the Related Art In a single positioning in which radio waves from GPS satellites are received by a receiver on the ground to determine a three-dimensional position, satellite orbit information, radio wave propagation paths (ionosphere and atmospheric gas layer), a satellite together with a receiver. Due to the error of the above clock, it is said that the C / A code has a nominal accuracy of 100 m and the P code has a nominal accuracy of 16 m. Further, in relative positioning in which radio waves from GPS satellites are measured by a plurality of receivers and a relative positional relationship between reception points is obtained, with accuracy of several cm to several m,
Although the accuracy is remarkably improved as compared with the single positioning, there is a disadvantage that the measurement recording time of 15 minutes or more and about 2 hours is required, and the result cannot be obtained in a short time.
1. 船舶・自動車・列車・航空機の位置決め 2. 測地測量への応用 3. 大規模土木工事への応用 4. 構造物の変形、移動の監視への応用 5. 科学観測(地震・火山噴火予知、プレートテクニ
クスの移動)への応用 6. 海洋観測・宇宙での観測への応用 本技術の開発により、三次元位置測定が瞬時に、且つ測
距精度mmのレベルで可能となり、将来現在の測量シス
テムは本技術を用いた測位システムに全面的に置き換え
られるであろう。1. Positioning of ships, cars, trains, and aircraft 2. Application to geodetic survey 3. Application to large-scale civil engineering 4. Application to monitoring deformation and movement of structures 5. Application to scientific observation (earthquake / volcanic eruption prediction, movement of plate technics) 6. Application to ocean observation and observation in space With the development of this technology, three-dimensional position measurement can be performed instantaneously and at the level of distance measurement accuracy mm. Will be replaced.
【問題を解決するための手段】・[Means for solving problems]
【作用】緯度、経度、高さが確定している地点に、パラ
ボラアンテナ付き大型地上局の受信機を置く。その受信
機の時計は、グリニッジ標準時、日曜午前0時に同期し
ている。又、衛星からの電波を受信し、その受信データ
の第一サブフレームの先頭を読み取った時から、その第
二サブフレームの先頭を読み取った時までの時間を測定
する。その測定時間と6秒との差を検出し、この検出値
をこの受信機の時計のずれとして、補正する。GPS衛
星からのC/Aコードのパターンは、各衛星によって固
有であり、1.023MBPSである。GPS衛星から
の電波を1ビットから数ビットから成るパルス信号と考
えて、各パルスの受信機での受信時刻を測定する。各パ
ルス信号に番号を付け、図3の様に1、2、・・・iと
して、各パルス信号の受信時刻をTA1、TA2、・・
・・・、TAiとする。パルス信号1の受信時刻を正確
に測定すれば、他のパルス信号2、・・・・、iの受信
時刻は、おのずと確定する。従って、1000個のパル
ス信号を受信するのに要する時間は、 (1/1.023×106)×1000〜(5/1.023×106 )×1000 (s) 10−3〜5×10−3 (s) 又、各パルスの受信機アンテナ到達時の仰角を測定す
る。各パルス信号の受信機アンテナ到達時の仰角を各α
11、α21、・・・・、αi1とする。パルス信号の
仰角α11を正確に測定すれば、残りの仰角α21、・
・・・、αi1も、正確に測定される。これにより、大
気ガス層(電離層を含める。)の衛星と受信機間の電波
経路近傍の受信機の位置を通る水平面に平行な厚さh
(1km)の平行平面層の屈折率が求まる。尚、詳細
は、特願平3−128489(提出平成3年4月30
日、補正書提出平成3年8月20日「電波伝搬を利用し
た大気ガスの屈折率の測定」参照のこと。従って、4個
の衛星と地表面上の受信機とを結ぶ電波経路近傍の大気
ガス層(電離層を含める。)の厚さh(1km)の平行
平面層の屈折率が、 (10−3+τ×u)×4〜(5×10−3)+τ×u) (s ) 以内に測定できる。(但し、τは10O0元一次連立方
程式の一回の計算時間、uは1000元一次連立方程式
の計算回数) 電波経路近傍の大気ガス層(電離層を含める。)の屈折
率を求め終えたら、緯度、経度、高さが確定している地
点にGPS受信機を置く。この受信機で、衛星からの電
波を受信し、その受信データの第一サブフレームの先頭
を読み取った時から、その第二サブフレームの先頭を読
み取った時までの時間を測定する。その測定時間と6秒
との差を検出し、この検出値をこの受信機の時計のずれ
として、補正する。又、この受信機の時計は外部接続の
形をとり、グリニッジ標準時、日曜午前0時に同期して
いる。4個の衛星からの電波を受信して、この電波のこ
の受信機における到達時刻を検出し、各衛星からの伝搬
時間を測定する。これにより、各衛星のある時刻におけ
る位置か確定する。尚、詳細は、特願平3−12320
5(提出平成3年3月4日、補正書提出平成3年8月2
0日「通信衛星による三次元位置測定」参照のこと。こ
の様にして、ある一定時間間隔の衛星の位置を確定し、
これら位置データを赤道上空36000kmの位置にあ
る静止衛星経由、全国に送信する。各測量者は、GPS
受信機を測定点に置く。このGPS受信機の時計は、衛
星からの電波を受信して、その第一サブフレームの先頭
を読み取った時から、第二サブフレームの先頭を読み取
るまでのの時間を測定し、その測定時間と6秒を検出
し、この検出値をこの時計のずれとして補正する。次
に、GPS衛星からの電波(C/Aコード)を、1ビッ
トから数ビットより成るパルス信号と考えて、各パルス
のGPS受信機での受信時刻を測定し、測定点と各衛星
を結ぶ電波経路近傍の大気ガス層(電離層を含める。)
の屈折率を、1分以内に測定する。これにより、測定点
から各衛星までの水平・垂直距離が求まる。しかるに各
衛星の位置は既に確定しているから、測定点の位置が求
まる。従って、この様にして求めた測定点は一致するは
ずてであるか、GPS受信機の時計の誤差の為、一致し
ない。いま、各衛星の位置を(xi,yi,zi),測
定点の位置を(x0,y0,z0)、各衛星と測定点と
の間の直線距離をri、GPS受信機の時計の誤差の間
に進む距離をsとすると、 (xi−x0)2+(yi−y0)2+(zi−z0)
2=(ri+s)2 但し、媒体は真空であるとする。これにより、GPS受
信機の時計等の誤差を補正した測定点の真の位置が求ま
る。 ◆1 電離層及び大気ガス層の電波屈折率の測定 地球の周囲を大気ガス層、電離層および電波直進層とに
分ける。大気ガス層、電離層は個別に取り扱わず、一括
して、大気ガス層(電離層を含める。)の呼称で取り扱
う。大気ガス層(電離層を含める。)は地表面より10
00kmまでの領域とし、これより高い領域を電波直進
層とする。大気ガス層(電離層を含める。)を地表面上
の受信機を通る水平面に平行な厚さh(1km)の平行
平面層に分割する。(図2参照) 時刻TPiのとき、衛星の位置Piから地表面上の受信
機に向け放射された電波が伝搬して、時刻TAiのと
き、受信機の位置Aiに到達したとする(以後、この電
波を電波;Pi→Aiと称する。)。電波;Pi→Ai
が電波直進層と大気ガス層(電離層を含める。)の界面
へ突入したときの電波;Pi→Aiの入射角をαi0、
点Aiの大気ガス屈折率をn1、点Aiの大気圧をp、
気温をT、そして蒸気圧をeとすると、 尚、式についての詳細は、特願平3−123205
「4 仰角の決定」参照のこと。 点Aiにおける電波;Pi→Aiの仰角をαi1とする
と、スネルの法則から、 式からn1は確定する。n0は真空中の電波の屈折率
である。又、αi1は測定値であるから、COSi1は
確定し、式よりCOSαi0も確定する。又は、◆4
の方法によりcosαi0を確定する。式を変形し
て、 とすると、式の右辺は確定する。以上の操作をn回繰
り返す事により、次のn元一次連立方程式が成立する。 尚、本連立方程式の成立の詳細については、特願平3−
128489(提出平成3年4月30日、補正書提出平
成3年8月20日「電波伝搬を利用した大気ガスの屈折
率の測定」参照のこと。又、屈折係数;kijは、 大気ガス層(電離層を含める。)の各平行平面層の屈折
率の初期値は、測定点における天頂方向の大気ガス層
(電離層を含める。)のUSA標準大気モデルの屈折率
とする。又、屈折係数;kijは、式のnjに、測定
点における天頂方向の大気ガス層(電離層を含める。)
のUSA標準大気モデルの屈折率を代入して、その初期
値とする。これらの値をn元一次連立方程式へ代入し
て、解く。この解が、衛星と受信機間の電波経路近傍の
大気ガス層(電離層を含める。)の屈折率の第一次近似
値である。この屈折率の第一次近似値を、式へ代入し
て、衛星と受信機間の電波経路近傍の大気ガス層(電離
層を含める。)の屈折係数の第一次近似値とする。この
屈折係数から成るn元一次連立方程式を解き、この解を
屈折率の第二近似値とする。この屈折率の第二近似値を
式へ代入して、屈折係数の第二近似値とする。以上の
操作を何回か繰り返し、衛星と受信機間の電波経路近傍
の大気ガス層(電離層を含める。)の屈折率を求める。 ◆2 衛星の位置決定 時刻TPのときの衛星の位置をPとし、その座標をP
(X,Y,Z)とする。衛星の位置Pから、時刻TPの
とき放射された電波が、地表面上の受信機に到達した時
刻をTA,TBとし、このときの受信機の位置をそれぞ
れA、Bとする。点Pからxy−平面に下ろした垂線の
足をQとする。(但し、点A、Bにある受信機は同一の
ものである。図2参照) 衛星と受信機間を結ぶ電波経路近傍の大気ガス層(電離
層を含める。)の厚さ1kmの平行平面層の屈折率;n
i(i=1〜1000)は、確定している(◆電離層及
び大気ガス層の電波屈折率の測定参照)。衛星の位置P
から放射され、受信機の位置Aに到達した電波(電波P
→Aと呼称する。)が電波直進層と大気ガス層(電離層
を含める。)の界面へ突入したときの入射角をα0、衛
星の位置Pから放射され、受信機の位置Bに到達した電
波(電波P→Bと呼称する。)が電波直進層と大気ガス
層(電離層を含める。)の界面へ突入したときの入射角
をβ0とする。 電波P→Aの電波経路長は、 電波P→Bの電波経路長は、 但し、Lは衛星のxy−平面からの高さで確定済みであ
る。式、から、 とおく。式、▲11▼から、 式、▲12▼から、 式▲14▼に式▲10▼、▲13▼を代入する。 式▲15▼において、 c;電波の伝搬速度 v;地球の自転速度 p;電波P→Aの伝搬速度 h;受信機の位置を通る水平面に平行な大気ガス(電離
層を含める。) の平行平面層の厚さで1kmである。 ki;電波P→Aの経路近傍の屈折率で、 ni;電波P→Aの経路近傍の屈折率 L;衛星のxy−平面からの高さ から、全て確定済みであるから、cosβ0が確定す
る。従って、β0も確定する。尚、地球の自転方向はy
軸に平行であるとする。直線AQ、BQとx軸とのなす
角度を、おのおのγ、δとすると(図2参照) 但し、αi、βiは受信機の位置A及びBを通るxy−
平面に平行な厚さh(1km)の大気ガス層(電離層を
含める。)の平行平面層を通過する電波の屈折角であ
る。 とすると、A、B、Cは確定する。 尚、詳細は、特願平3−123205(提出平成3年3
月4日、補正書提出平成3年8月20日「通信衛星によ
る三次元位置測定の”6 方位角の測定”参照のこと)
従って、γ、δも確定する。 故に、点Pの位置は確定する。 ◆3 位置の確定している衛星を利用して、衛星とGP
S受信機を結ぶ電波経路近傍の大気ガス層(電離層を含
める。)の屈折率の測定方法(受信電波の仰角を測定せ
ずに、屈折率を求める方法。)。 時刻TP1のときの衛星の位置をP1とする。点P1か
ら放射された電波が、時刻TA1のときGPS受信機に
到達し、このときのGPS受信機の位置をA1とする。
GPS受信機が受信した電波から、この電波を放射した
衛星の位置データが判る。この位置の判っている各衛星
から電波を受信することにより、GPS受信機の大体の
位置が判明する。このGPS受信機の位置を原点とし
て、いま、そのうちの1個の衛星の位置座標を(Lx,
Ly,Lz)とすると、 但し、p=TA1−TP1 式▲17▼から、 式▲18▼を式▲16▼へ代入して、 求まるこのような操作を1000回繰り返すことによ
り、1000個のcosαiおよび伝搬時間piが求ま
る。これらにより、◆1 電離層及び大気ガス層の電波
屈折率の測定の方法により、衛星と測定点を結ぶ電波経
路近傍の大気ガス層(電離層を含める。)の屈折率の第
一次近似値か求まる。従って、測定点を原点とする衛星
までの水平距離及び垂直距離か求まる。衛星の位置は確
定済みであるから、測定点の位置が判る。この屈折率の
第一次近似値から、cosαiの第二近似値が求まり、
更に屈折率の第二近似値が求まり、次第に屈折率の真の
値に近ずく。 ◆4 大体の位置が判っている衛星を利用して、衛星と
GPS受信機を結ぶ電波経路近傍の大気ガス層(電離層
を含める。)の屈折率の測定法。(受信電波の仰角を測
定せすに、屈折率を求める方法。) 上空にある4個の衛星からの電波を受信し、GPS受信
機の置いてある大体の位置を確定する。このGPS受信
機の位置を原点として、上空にある一個の衛星までの垂
直距離をLzとすると、 上二式の成立の詳細については、特願平3−12320
5(提出平成3年3月4日、補正書提出平成3年8月2
0日「通信衛星による三次元位置測定」”3 大気屈折
率による衛星の位置誤差の補正”、”4 仰角の測定”
参照のこと)上二式より、 hΣi=1 nkiは、cosα0の関数として近似的に
表示されるから、式▲20▼より、cosα0が求まる
このような操作を1000回繰り返すことにより、10
00個のcosαiおよび伝搬時間piが求まる。これ
らにより、◆1 電離層及び大気ガス層の電波屈折率の
測定の方法により、衛星と測定点を結ぶ電波経路近傍の
大気ガス層(電離層を含める。)の屈折率の第一次近似
値が求まる。従って、測定点を原点とする衛星までの水
平距離及び垂直距離が求まる。測定点の位置は確定済み
であるから、衛星の位置が判る。この屈折率の第一次近
似値からcosαiの第二近似値が求まり、更に屈折率
の第二近似値が求まり、次第に屈折率の真の値に近ず
く。[Operation] A large ground station receiver with a parabolic antenna is placed at a location where the latitude, longitude, and height are fixed. The receiver's clock is synchronized with Greenwich Mean Time, Sunday midnight. Also, the time from when the head of the first sub-frame of the received data is read to when the head of the second sub-frame is read is measured by receiving the radio wave from the satellite. The difference between the measurement time and 6 seconds is detected, and the detected value is corrected as the clock shift of the receiver. The pattern of C / A codes from GPS satellites is unique to each satellite and is 1.023 MBPS. Radio waves from GPS satellites are considered as pulse signals consisting of one bit to several bits, and the reception time of each pulse at the receiver is measured. Each pulse signal is numbered, and as shown in FIG. 3, 1, 2, ... i, and the reception time of each pulse signal is T A1 , T A2 , ...
..., T Ai . If the reception time of the pulse signal 1 is accurately measured, the reception times of the other pulse signals 2, ..., I are naturally determined. Therefore, the time required to receive 1000 pulse signals is (1 / 1.023 × 10 6 ) × 1000 to (5 / 1.023 × 10 6 ) × 1000 (s) 10 −3 to 5 × 10 −3 (s) Further, the elevation angle of each pulse when it reaches the receiver antenna is measured. The elevation angle of each pulse signal when it reaches the receiver antenna is
11, α 21, ····, and α i1. If the elevation angle α 11 of the pulse signal is accurately measured, the remaining elevation angle α 21 ,
..., α i1 is also accurately measured. As a result, the thickness h parallel to the horizontal plane passing through the position of the receiver near the radio path between the satellite and the receiver of the atmospheric gas layer (including the ionosphere).
The refractive index of the parallel plane layer of (1 km) is obtained. For details, refer to Japanese Patent Application No. 3-128489 (submitted April 30, 1991).
Date, submission of amendment See August 20, 1991, "Measurement of Refractive Index of Atmospheric Gas Using Radio Wave Propagation". Therefore, the refractive index of the parallel plane layer of the thickness h (1 km) of the atmospheric gas layer (including the ionosphere) near the radio path connecting the four satellites and the receiver on the ground surface is (10 −3 + τ). Xu) × 4 to (5 × 10 −3 ) + τ × u) (s). (However, τ is a calculation time of one simultaneous equation of 100 yuan and u is the number of times of simultaneous equations of 1000 yuan is calculated.) When the refractive index of the atmospheric gas layer (including the ionosphere) near the radio wave path is calculated, the latitude is calculated. Place a GPS receiver at the point where the longitude, height, and height are fixed. This receiver receives the radio wave from the satellite and measures the time from when the head of the first sub-frame of the received data is read to when the head of the second sub-frame is read. The difference between the measurement time and 6 seconds is detected, and the detected value is corrected as the clock shift of the receiver. Also, the clock of this receiver is in the form of an external connection and is synchronized with Greenwich Mean Time, midnight Sunday. Radio waves from four satellites are received, the arrival time of this radio wave at this receiver is detected, and the propagation time from each satellite is measured. As a result, the position of each satellite at a certain time is determined. For details, see Japanese Patent Application No. 3-12320.
5 (Submit March 4, 1991, submit amendment August 2, 1991
See "3D position measurement by communication satellite" on the 0th. In this way, the position of the satellite at a fixed time interval is fixed,
These position data are transmitted nationwide via a geostationary satellite located 36000 km above the equator. Each surveyor has a GPS
Place the receiver at the measuring point. The clock of this GPS receiver measures the time from when the radio wave from the satellite is received and the beginning of the first sub-frame is read to when the beginning of the second sub-frame is read. Six seconds is detected, and the detected value is corrected as the clock shift. Next, the radio wave (C / A code) from the GPS satellite is considered as a pulse signal consisting of one bit to several bits, the reception time of each pulse at the GPS receiver is measured, and the measurement point and each satellite are connected. Atmospheric gas layer near the radio path (including the ionosphere)
The refractive index of is measured within 1 minute. With this, the horizontal and vertical distances from the measurement point to each satellite can be obtained. However, since the position of each satellite has already been determined, the position of the measurement point can be obtained. Therefore, the measurement points thus obtained are supposed to match, or do not match because of an error in the clock of the GPS receiver. Now, the position of each satellite is (x i , y i , z i ), the position of the measurement point is (x 0 , y 0 , z 0 ), the linear distance between each satellite and the measurement point is r i , GPS Assuming that the distance traveled between the errors of the receiver clock is s, (x i −x 0 ) 2 + (y i −y 0 ) 2 + (z i −z 0 )
2 = (r i + s) 2 However, the medium is assumed to be vacuum. As a result, the true position of the measurement point in which the error of the clock or the like of the GPS receiver is corrected can be obtained. ◆ 1 Measurement of Radio Refractive Index of Ionosphere and Atmospheric Gas Layer The atmosphere around the earth is divided into atmospheric gas layer, ionosphere and radio wave straight layer. The atmospheric gas layer and the ionosphere are not treated individually, but are collectively referred to as the atmospheric gas layer (including the ionosphere). Atmospheric gas layer (including ionosphere) is 10 from the ground surface
The area up to 00 km is set, and the area higher than this is set as the radio wave straight traveling layer. The atmospheric gas layer (including the ionosphere) is divided into parallel plane layers of thickness h (1 km) parallel to the horizontal plane passing through the receiver on the ground surface. (See FIG. 2) At time T Pi , the radio wave radiated from the satellite position Pi toward the receiver on the ground surface propagates and reaches the receiver position Ai at time T Ai ( Hereinafter, this radio wave is referred to as radio wave; Pi → Ai). Radio wave; Pi → Ai
Is a radio wave when it enters the interface between the radio wave rectilinear layer and the atmospheric gas layer (including the ionosphere); the incident angle of Pi → Ai is α i0 ,
The atmospheric gas refractive index at the point Ai is n 1 , the atmospheric pressure at the point Ai is p,
If the temperature is T and the vapor pressure is e, For details of the formula, see Japanese Patent Application No. 3-123205.
See "4. Elevation angle determination". Radio wave at point Ai; if the elevation angle of Pi → Ai is α i1 , then Snell's law From the formula, n 1 is determined. n 0 is the refractive index of a radio wave in vacuum. Since α i1 is a measured value, COS i1 is determined, and COS α i0 is also determined from the equation. Or ◆ 4
Method to determine cos α i0 . Transform the expression, Then, the right side of the formula is fixed. By repeating the above operation n times, the following n-ary simultaneous simultaneous equations are established. For details of the establishment of this simultaneous equation, see Japanese Patent Application No. 3-
128489 (Submitted April 30, 1991, Submitted amendment August 20, 1991 See "Measurement of Refractive Index of Atmospheric Gas Using Radio Wave Propagation". Refractive coefficient; k ij is The initial value of the refractive index of each parallel plane layer of the atmospheric gas layer (including the ionosphere) is the refractive index of the USA standard atmospheric model of the atmospheric gas layer (including the ionosphere) in the zenith direction at the measurement point. Further, the refractive index; k ij is the atmospheric gas layer in the zenith direction at the measurement point (including the ionosphere) in n j of the equation.
Substituting the refractive index of the USA standard atmosphere model of, the initial value. These values are substituted into the n-ary simultaneous equations to solve. This solution is the first approximation of the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path between the satellite and the receiver. The first-order approximation value of this refractive index is substituted into the equation to obtain the first-order approximation value of the refraction coefficient of the atmospheric gas layer (including the ionosphere) near the radio path between the satellite and the receiver. An n-ary simultaneous equations consisting of this refractive index is solved, and this solution is used as the second approximate value of the refractive index. The second approximate value of the refractive index is substituted into the formula to obtain the second approximate value of the refractive index. The above operation is repeated several times to obtain the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path between the satellite and the receiver. ◆ 2 Position determination of satellite Let P be the position of satellite at time T P , and its coordinate be P
(X, Y, Z). Times at which the radio waves radiated from the satellite position P at time T P reach the receiver on the ground surface are designated as T A and T B, and the positions of the receiver at this time are designated as A and B, respectively. Let Q be a foot of a perpendicular line drawn from the point P to the xy-plane. (However, the receivers at points A and B are the same. See Fig. 2.) A parallel plane layer with a thickness of 1 km of the atmospheric gas layer (including the ionosphere) near the radio path connecting the satellite and the receiver. Refractive index of n
i ( i = 1 to 1000 ) has been determined (refer to ◆ measurement of radio wave refractive index of ionosphere and atmospheric gas layer). Satellite position P
Radio waves radiated from the antenna and reaching position A of the receiver (radio wave P
→ Called A. ) Enters the interface between the radio wave straight layer and the atmospheric gas layer (including the ionosphere), the incident angle is α 0 , the radio wave radiated from the satellite position P and reaching the receiver position B (radio wave P → B .) When it enters the interface between the radio wave rectilinear layer and the atmospheric gas layer (including the ionosphere) is β 0 . The radio path length of radio wave P → A is The radio path length from radio wave P to B is However, L is the height from the xy-plane of the satellite and has been determined. From, far. From the formula, (11), From the formula, (12), Substituting equations (10) and (13) into equation (14). In equation (15), c: propagation velocity of radio wave v: rotation velocity of earth p: propagation velocity of radio wave P → A h: parallel plane of atmospheric gas (including ionosphere) parallel to horizontal plane passing through receiver position The layer thickness is 1 km. k i : refractive index near the path of the radio wave P → A, n i : Refractive index in the vicinity of the path of the radio wave P → A L: Height from the xy-plane of the satellite Since all have been determined, cos β 0 is determined. Therefore, β 0 is also determined. The rotation direction of the earth is y
It is assumed to be parallel to the axis. Let γ and δ be the angles formed by the straight lines AQ and BQ and the x axis (see FIG. 2). However, α i and β i are xy− passing through the positions A and B of the receiver.
It is a refraction angle of a radio wave passing through a parallel plane layer of an atmospheric gas layer (including an ionosphere) having a thickness h (1 km) parallel to the plane. Then, A, B and C are determined. For details, refer to Japanese Patent Application No. 3-123205 (submitted 1991 March).
April 4, submission of amendment August 20, 1991 "Refer to" 6 azimuth measurement "of 3D position measurement by communication satellite"
Therefore, γ and δ are also determined. Therefore, the position of the point P is fixed. ◆ Using satellites with 3 fixed positions, satellite and GP
S A method for measuring the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path that connects the receiver (a method for obtaining the refractive index without measuring the elevation angle of the received radio wave). The position of the satellite at time T P1 is P1. The radio wave radiated from the point P1 reaches the GPS receiver at time T A1 , and the position of the GPS receiver at this time is A1.
From the radio wave received by the GPS receiver, the position data of the satellite that radiated this radio wave can be known. By receiving radio waves from each satellite whose position is known, the approximate position of the GPS receiver can be determined. With the position of this GPS receiver as the origin, the position coordinate of one of the satellites is now (Lx,
Ly, Lz), However, from p = T A1 −T P1 formula (17), Substituting equation (18) into equation (16), By repeating such an operation to be obtained 1000 times, 1000 pieces of cos α i and propagation time p i are obtained. From these, ◆ 1 The first-order approximation of the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path connecting the satellite and the measurement point can be obtained by the method of measuring the radio refractive index of the ionosphere and atmospheric gas layer. . Therefore, the horizontal distance and the vertical distance from the measurement point to the satellite can be obtained. Since the position of the satellite has been fixed, the position of the measurement point can be known. From the first-order approximation value of this refractive index, the second approximation value of cos α i is obtained,
Further, the second approximate value of the refractive index is obtained, and gradually approaches the true value of the refractive index. ◆ 4 A method of measuring the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path connecting the satellite and the GPS receiver, using a satellite whose position is known. (A method of obtaining the refractive index by measuring the elevation angle of the received radio wave.) Radio waves from four satellites in the sky are received, and the approximate position where the GPS receiver is placed is determined. With the position of this GPS receiver as the origin, and the vertical distance to one satellite in the sky is L z , For details of the establishment of the above two formulas, see Japanese Patent Application No. 3-12320.
5 (Submit March 4, 1991, submit amendment August 2, 1991
0th day “Three-dimensional position measurement by communication satellite” “3 Correction of satellite position error due to atmospheric refractive index”, “4 Measurement of elevation angle”
From the above two equations, hΣ i = 1 n k i, since being approximately as a function of cos [alpha] 0, the equation ▲ 20 ▼, by repeating 1000 times such an operation that cos [alpha] 0 is obtained, 10
The 00 cos α i and the propagation time p i are obtained. From these, ◆ 1 The first-order approximation of the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path connecting the satellite and the measurement point can be obtained by the method of measuring the radio refractive index of the ionosphere and atmospheric gas layer. . Therefore, the horizontal distance and the vertical distance from the measurement point to the satellite can be obtained. Since the position of the measurement point has already been determined, the satellite position can be known. The second approximate value of cos α i is obtained from the first approximate value of the refractive index, and the second approximate value of the refractive index is further obtained, and gradually approaches the true value of the refractive index.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成3年11月2日[Submission date] November 2, 1991
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Correction target item name] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【書類名】 明細書[Document name] Statement
【発明の名称】 GPS衛星、静止衛星を用いたGPS
受信機による三次元位置測位システムName of the invention GPS using GPS satellites and geostationary satellites
3D positioning system with receiver
【特許請求の範囲】[Claims]
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明が解決しようとする課題】本技術では、各瞬間に
おける衛星の位置を監視し、又電離層及び大気ガス層の
状態を常時把握し、衛星の位置の誤差及び電離層・大気
ガス層によつて生じる伝搬誤差をなくし、測距精度の向
上を計ることを目的とする。In the present technology, the position of the satellite at each moment is monitored, and the states of the ionosphere and atmospheric gas layer are constantly grasped. The purpose is to eliminate the propagation error that occurs and improve the accuracy of distance measurement.
【0002】[0002]
【従来の技術】GPS衛星からの電波を地上の受信機で
受信して、三次元位置を決定する単独測位では、衛星の
軌道情報、電波伝搬路(電離層と大気ガス層)、受信機
とともに衛星上の時計の誤差により、C/Aコードによ
る場合は100m、Pコードでは16mの公称精度であ
ると言われている。又、GPS衛星からの電波を複数の
受信機で測定して、受信点間の相対的な位置関係を求め
る相対測位においては、数cmから数m程度の精度で、単
独測位に比較して精度は著しく向上するが、15分以上
2時間程度の測定記録時間を必要として、短時間に結果
を得られないという欠点がある。2. Description of the Related Art In a single positioning in which radio waves from GPS satellites are received by a receiver on the ground to determine a three-dimensional position, satellite orbit information, radio wave propagation paths (ionosphere and atmospheric gas layer), a satellite together with a receiver. Due to the error of the above clock, it is said that the C / A code has a nominal accuracy of 100 m and the P code has a nominal accuracy of 16 m. In relative positioning, which measures the radio waves from GPS satellites with multiple receivers and finds the relative positional relationship between the receiving points, the accuracy is about several cm to several meters, which is more accurate than the single positioning. Is remarkably improved, but there is a disadvantage that the measurement recording time of 15 minutes or more and about 2 hours is required, and the result cannot be obtained in a short time.
【0003】[0003]
【産業上の利用分野及び発明の効果】 1. 船舶・自動車・列車・航空機の位置決め 2. 測地測量への応用 3. 大規模土木工事への応用 4. 構造物の変形、移動の監視への応用 5. 科学観測(地震・火山噴火予知、プレートテクニ
クスの移動)への応用 6. 海洋観測・宇宙での観測への応用 本技術の開発により、三次元位置測定が瞬時に、且つ測
距精度mmのレベルで可能となり、将来現在の測量システ
ムは本技術を用いた測位システムに全面的に置き換えら
れるであろう。[Industrial Application Field and Effect of Invention] 1. Positioning of ships, cars, trains, and aircraft 2. Application to geodetic survey 3. Application to large-scale civil engineering 4. Application to monitoring deformation and movement of structures 5. Application to scientific observation (earthquake / volcanic eruption prediction, movement of plate technics) 6. Application to ocean observations and observations in space With the development of this technology, three-dimensional position measurement can be performed instantly and with a range-finding accuracy of mm, and future surveying systems will be fully equipped with positioning systems using this technology. Will be replaced.
【0004】[0004]
【問題を解決するための手段】・[Means for solving problems]
【作用】衛星からの電波の受信機到達時の仰角を測定す
る場合と、仰角を測定しないでやる場合の二つに分け
る。まず、仰角を測定する場合、緯度、経度、高さが確
定している地点に、パラボラアンテナ付き大型地上局の
受信機を置く。又、受信電波の仰角を測定しない場合、
この位置の確定している地点にGPS受信機を置く。そ
の受信機の時計は、グリニッジ標準時、日曜午前0時に
同期している。又、衛星からの電波を受信し、その受信
データの第一サブフレームの先頭を読み取った時から、
その第二サブフレームの先頭を読み取った時までの時間
を測定する。その測定時間と6秒との差を検出し、この
検出値をこの受信機の時計のずれとして、補正する。G
PS衛星からのC/Aコードのパターンは、各衛星によ
って固有であり、1.023MBPS である。GPS衛星からの
電波を1ビットから数ビットより成るパルス信号と考え
て、各パルスの受信機での受信時刻を測定する。各パル
ス信号に番号を付け、図3の様に1、2、・・・iとし
て、各パルス信号の受信時刻をTA1、TA2、・・・・
・、TAiとする。パルス信号1の受信時刻を正確に測定
すれば、他のパルス信号2、・・・・、iの受信時刻
は、おのずと確定する。従って、1000個のパルス信
号を受信するのに要する時間は、 (1/1.023×106)×1000 〜 (5/1.023×106)×1000 (s) 10-3 〜 5×10-3 (s) 又、各パルスの受信機アンテナ到達時の仰角を測定す
る。各パルス信号の受信機アンテナ到達時の仰角を各α
11、α21、・・・・、αi1とする。パルス信号の仰角α
11を正確に測定すれば、残りの仰角α21、・・・・、α
i1も、正確に測定される。これにより、「◆1 電離層
及び大気ガス層の電波屈折率の測定」の方法により大気
ガス層(電離層を含める。)の衛星と受信機間の電波経
路近傍の受信機の位置を通る水平面に平行な厚さh(1
km)の平行平面層の屈折率が求まる。又、各パルスの受
信機アンテナ到達時の仰角を測定しない場合、「◆3
位置の確定している衛星を利用して、衛星とGPS受信
機を結ぶ電波経路近傍の大気ガス層(電離層を含め
る。)の屈折率の測定方法」により、大気ガス層(電離
層を含める。)の衛星と受信機間の電波経路近傍の厚さ
hの平行平面層の屈折率が求まる。尚、詳細は、特願平
3-128489(提出平成3年4月30日、補正書提出平成3
年8月20日「電波伝搬を利用した大気ガスの屈折率の
測定」参照のこと。従って、4個の衛星と地表面上の受
信機とを結ぶ電波経路近傍の大気ガス層(電離層を含め
る。)の厚さh(1km)の平行平面層の屈折率が、 (10-3+τ×u)×4 〜 ((5×10-3)+τ×u)×4 (s) 以内に測定できる。(但し、τは1000元一次連立方
程式の一回の計算時間、uは1000元一次連立方程式
の計算回数) 電波経路近傍の大気ガス層(電離層を含める。)の屈折
率を求め終えたら、緯度、経度、高さが確定している地
点にGPS受信機を置く。この受信機で、衛星からの電
波を受信し、その受信データの第一サブフレームの先頭
を読み取った時から、その第二サブフレームの先頭を読
み取った時までの時間を測定する。その測定時間と6秒
との差を検出し、この検出値をこの受信機の時計のずれ
として、補正する。又、この受信機の時計は外部接続の
形をとり、グリニッジ標準時、日曜午前0時に同期して
いる。4個の衛星からの電波を受信して、この電波のこ
の受信機における到達時刻を検出し、各衛星からの伝搬
時間を測定する。これにより、◆1及び◆2の方法か
ら、各衛星のある時刻における位置が確定する。尚、詳
細は、特願平3-123205(提出平成3年3月4日、補正書
提出平成3年8月20日「通信衛星による三次元位置測
定」参照のこと。この 様にして、ある一定時間間隔の
衛星の位置を確定し、これら位置データを赤道上空 360
00kmの位置にある静止衛星経由、全国に送信する。各測
量者は、GPS受信機を測定点に置く。このGPS受信
機の時計は、衛星からの電波を受信して、その第一サブ
フレームの先頭を読み取った時から、第二サブフレーム
の先頭を読み取るまでのの時間を測定し、その測定時間
と6秒との差を検出し、この検出値をこの時計のずれと
して補正する。次に、GPS衛星からの電波(C/Aコ
ード)を、1ビットから数ビットより成るパルス信号と
考えて、各パルスのGPS受信機での受信時刻を測定
し、測定点と各衛星を結ぶ電波経路近傍の大気ガス層
(電離層を含める。)の屈折率を、1分以内に測定す
る。これにより、測定点から各衛星までの水平・垂直距
離が求まる。しかるに各衛星の位置は、既に正しく確定
しているから、測定点の位置が求まる。従って、この様
にして求めた測定点は一致するはずてであるが、GPS
受信機の時計の誤差の為、一致しない。又、各衛星の位
置が正しく確定していない場合、即ち、各衛星からの航
法メッセージにより、各衛星の位置を確定する場合は、
静止衛星経由、各衛星の時刻対応の位置データを利用す
る場合に比べて、測定精度は1〜2レベル低下する。い
ま、各衛星の位置を(xi,yi,zi),測定点の位置を(x0,y
0,z0)、各衛星と測定点との間の直線距離をri 、GP
S受信機の時計の誤差の間に進む距離をsとすると、 (xi-x0)2+(yi-y0)2+(zi-z0)2=(ri+s)2 これにより、「◆5 GPS受信機の時計等の誤差の補
正の方法」から、GPS受信機の時計等の誤差を補正し
た測定点の真の位置が求まる。[Operation] There are two cases, one is to measure the elevation angle when the radio wave from the satellite reaches the receiver, and the other is to measure it without measuring the elevation angle. First, when measuring the elevation angle, place the receiver of a large ground station equipped with a parabolic antenna at a location where the latitude, longitude, and height are fixed. If you do not measure the elevation angle of the received radio wave,
A GPS receiver is placed at the point where this position is fixed. The receiver's clock is synchronized with Greenwich Mean Time, Sunday midnight. Also, from the time of receiving the radio wave from the satellite and reading the beginning of the first subframe of the received data,
The time until the beginning of the second subframe is read is measured. The difference between the measurement time and 6 seconds is detected, and the detected value is corrected as the clock shift of the receiver. G
The C / A code pattern from the PS satellites is 1.023MBPS, which is unique to each satellite. Radio waves from GPS satellites are considered as pulse signals consisting of one to several bits, and the reception time of each pulse at the receiver is measured. Each pulse signal is numbered, and as shown in FIG. 3, 1, 2, ... i, and the reception time of each pulse signal is T A1 , T A2 , ...
・, T Ai . If the reception time of the pulse signal 1 is accurately measured, the reception times of the other pulse signals 2, ..., I are naturally determined. Therefore, the time required for receiving 1000 pulse signals, (1 / 1.023 × 10 6 ) × 1000 ~ (5 / 1.023 × 10 6) × 1000 (s) 10 - 3 ~ 5 × 10 - 3 ( s) Also, measure the elevation angle of each pulse when it reaches the receiver antenna. The elevation angle of each pulse signal when it reaches the receiver antenna is
11 , α 21 , ..., α i1 . Elevation angle α of pulse signal
If the 11 is measured accurately, the remaining elevation angle α 21 , ..., α
i1 is also accurately measured. As a result, it is parallel to the horizontal plane passing through the position of the receiver near the radio path between the satellite and the receiver of the atmospheric gas layer (including the ionosphere) by the method of "◆ 1 Measurement of radio wave refractive index of ionosphere and atmospheric gas layer". Thickness h (1
The refractive index of the parallel plane layer of (km) can be obtained. If you do not measure the elevation angle of each pulse when it reaches the receiver antenna, see “◆ 3
The atmospheric gas layer (including the ionosphere) is measured by the method of measuring the refractive index of the atmospheric gas layer (including the ionosphere) in the vicinity of the radio path connecting the satellite and the GPS receiver using the satellite whose position is fixed. The refractive index of the parallel-plane layer having the thickness h near the radio wave path between the satellite and the receiver can be obtained. For details, see Japanese Patent Application
3-128489 (Submit April 30, 1991, submit amendment Heisei 3
August 20, 2014, "Measurement of Refractive Index of Atmospheric Gas Using Radio Wave Propagation". Therefore, the refractive index of the parallel plane layer of thickness h (1 km) of the atmospheric gas layer (including the ionosphere) near the radio path connecting the four satellites and the receiver on the ground surface is (10 -3 + It can be measured within τ × u) × 4 ~ ((5 × 10 -3 ) + τ × u) × 4 (s). (However, τ is the calculation time for one-time simultaneous equations of 1000 yuan, u is the number of calculations for simultaneous equations of 1000 yuan) When the refractive index of the atmospheric gas layer (including the ionosphere) near the radio wave path is calculated, the latitude is calculated. Place a GPS receiver at the point where the longitude, height, and height are fixed. This receiver receives the radio wave from the satellite and measures the time from when the head of the first sub-frame of the received data is read to when the head of the second sub-frame is read. The difference between the measurement time and 6 seconds is detected, and the detected value is corrected as the clock shift of the receiver. Also, the clock of this receiver is in the form of an external connection and is synchronized with Greenwich Mean Time, midnight Sunday. Radio waves from four satellites are received, the arrival time of this radio wave at this receiver is detected, and the propagation time from each satellite is measured. As a result, the position of each satellite at a certain time is determined by the methods of ◆ 1 and ◆ 2. For details, refer to Japanese Patent Application No. 3-123205 (submitted March 4, 1991, amendment submitted August 20, 1991, "3D Position Measurement by Communication Satellite". The positions of satellites at fixed time intervals are determined, and these position data are collected over the equator.
It is sent nationwide via a geostationary satellite located at 00km. Each surveyor places a GPS receiver at the measurement point. The clock of this GPS receiver measures the time from when the radio wave from the satellite is received and the beginning of the first sub-frame is read to when the beginning of the second sub-frame is read. The difference from 6 seconds is detected, and this detected value is corrected as the deviation of this clock. Next, the radio wave (C / A code) from the GPS satellite is considered as a pulse signal consisting of one bit to several bits, the reception time of each pulse at the GPS receiver is measured, and the measurement point and each satellite are connected. The refractive index of the atmospheric gas layer (including the ionosphere) near the radio wave path is measured within 1 minute. With this, the horizontal and vertical distances from the measurement point to each satellite can be obtained. However, since the position of each satellite has already been correctly determined, the position of the measurement point can be obtained. Therefore, although the measurement points obtained in this way should match,
It does not match due to an error in the receiver clock. Also, when the position of each satellite is not correctly determined, that is, when the position of each satellite is determined by the navigation message from each satellite,
Compared with the case of using position data corresponding to the time of each satellite via a geostationary satellite, the measurement accuracy is reduced by 1 to 2 levels. Now, the position of each satellite is (x i , y i , z i ), and the position of the measurement point is (x 0 , y
0 , z 0 ), the linear distance between each satellite and the measurement point is r i , GP
Let s be the distance traveled between the errors of the S receiver clock, (x i -x 0 ) 2 + (y i -y 0 ) 2 + (z i -z 0 ) 2 = (r i + s) 2 With this, the true position of the measurement point with the error of the clock of the GPS receiver corrected can be obtained from "◆ 5 Method of correcting the error of clock of the GPS receiver".
【0005】◆1 電離層及び大気ガス層の電波屈折率
の測定 地球の周囲を大気ガス層、電離層および電波直進層とに
分ける。大気ガス層、電離層は個別に取り扱わず、一括
して、大気ガス層(電離層を含める。)の呼称で取り扱
う。大気ガス層(電離層を含める。)は地表面より10
00kmまでの領域とし、これより高い領域を電波直進層
とする。大気ガス層(電離層を含める。)を地表面上の
受信機を通る水平面に平行な厚さh(1km)の平行平面
層に分割する。(図1参照) 時刻TPiのとき、衛星の位置Piから地表面上の受信機
に向け放射された電波が伝搬して、時刻TAiのとき、受
信機の位置Aiに到達したとする(以後、この電波を電
波;Pi→Aiと称する。)。電波;Pi→Aiが電波
直進層と大気ガス層(電離層を含める。)の界面へ突入
したときの電波;Pi→Aiの入射角をαi0、点Aiの
大気ガス屈折率をn1、点Aiの大気圧をp、気温をT、
そして蒸気圧をeとすると、 cosαi0=hΣi,j=1 nkij(1+nj)/{(c±v)・(TAi-TPi)} 尚、式の成立についての詳細は、特願平3-123205
「4 仰角の決定」参照のこと。 n1=1+〔77.6×{p/(T+217.5)}+3.73×105×{e/(T+217.5)2〕×10-6 点Aiにおける電波;Pi→Aiの仰角をαi1とする
と、スネルの法則から、 n1・sin(π/2-αi1)=n0・sinαi0 ∴ sinαi0=(n1/n0)cosαi1 ∴ cosαi0=(1-sin2αi0)1/2={1-(n1/n0)2cos2αi1}1/2 式からn1は確定する。n0は真空中の電波の屈折率で
ある。又、αi1は測定値であるから、COSαi1は確定
し、式よりCOSαi0も確定する。又は、◆4の方法によ
りcosαi0を確定する。式を変形して、 Σi,j=1 nkij(1+nj)=(1/h){(c±v)(TAi-TPi)}・cosαi0 とすると、式の右辺は確定する。以上の操作をn回繰
り返す事により、次のn元一次連立方程式が成立する。 k11n1+k12n2+k13n3+・・・・・・+k1nnn=(1/h){(c±v)(TA1-TP1)}cosα10-Σj=1 nk1j k21n1+k22n2+k23n3+・・・・・・+k2nnn=(1/h){(c±v)(TA2-TP2)}cosα20-Σj=1 nk2j ・・・・・ kn1n1+kn2n2+kn3n3+・・・・・・+knnnn=(1/h){(c±v)(TAn-TPn)}cosαn0-Σj=1 nknj 尚、本連立方程式の成立の詳細については、特願平3-12
8489(提出平成3年4月30日、補正書提出平成3年8
月20日「電波伝搬を利用した大気ガスの屈折率の測
定」参照のこと。又、屈折係数;kijは、 kij={(1-sin2αi0)/(nj 2-sin2αi0)}1/2 大気ガス層(電離層を含める。)の各平行平面層の屈折
率の初期値は、測定点における天頂方向の大気ガス層
(電離層を含める。)のUSA標準大気モデルの屈折率
と標準時の電離層の電子密度から求めた屈折率の和とす
る。又、屈折係数;kijは、式のnjに、測定点にお
ける天頂方向の大気ガス層(電離層を含める。)のUS
A標準大気モデルの屈折率と標準時の電離層の電子密度
から求めた屈折率の和を代入して、その初期値とする。
これらの値をn元一次連立方程式へ代入して、解く。こ
の解が、衛星と受信機間の電波経路近傍の大気ガス層
(電離層を含める。)の屈折率の第一次近似値である。
この屈折率の第一次近似値を、式及びへ代入して、
電波;Pi→Aiが電波直進層と大気ガス層の界面へ突入
したときの電波;Pi→Aiの入射角の余弦の第一次近似
値及び衛星と受信機間の電波経路近傍の大気ガス層(電
離層を含める。)の屈折係数の第一次近似値とする。こ
の屈折係数等から成るn元一次連立方程式を解き、この
解を屈折率の第二近似値とする。この屈折率の第二近似
値を式及びへ代入して、電波;Pi→Aiの入射角の
余弦及び屈折係数の第二近似値とする。以上の操作を何
回か繰り返し、必要な精度で計算が収束したら、計算を
打ち切り、衛星と受信機間の電波経路近傍の大気ガス層
(電離層を含める。)の屈折率を求める。◆ 1 Measurement of Radio Refractive Index of Ionosphere and Atmospheric Gas Layer The circumference of the earth is divided into an atmospheric gas layer, an ionosphere and a radio wave rectilinear layer. The atmospheric gas layer and the ionosphere are not treated individually, but are collectively referred to as the atmospheric gas layer (including the ionosphere). Atmospheric gas layer (including ionosphere) is 10 from the ground surface
The area up to 00 km is set, and the area higher than this is set as the radio wave straight traveling layer. The atmospheric gas layer (including the ionosphere) is divided into parallel plane layers of thickness h (1 km) parallel to the horizontal plane passing through the receiver on the ground surface. (See FIG. 1) At time T Pi , the radio wave radiated from the satellite position Pi toward the receiver on the ground surface propagates and reaches the receiver position Ai at time T Ai ( Hereinafter, this radio wave is referred to as radio wave; Pi → Ai). Radio wave; Radio wave when Pi → Ai rushes into the interface between the radio wave straight layer and the atmospheric gas layer (including the ionosphere); The incident angle of Pi → Ai is α i0 , the atmospheric gas refractive index at point Ai is n 1 , the point The atmospheric pressure of Ai is p, the temperature is T,
If vapor pressure is e, then cosα i0 = hΣ i , j = 1 n k ij (1 + n j ) / {(c ± v) ・ (T Ai -T Pi )} Japanese Patent Application No. 3-123205
See "4. Elevation angle determination". n 1 = 1 + [77.6 × {p / (T + 217.5)} + 3.73 × 10 5 × {e / (T + 217.5) 2 ] × 10 -6 radio waves at Ai; the elevation angle from Pi to Ai is α i1 Then, from Snell's law, n 1・ sin (π / 2-α i1 ) = n 0・ sin α i0 ∴ sin α i0 = (n 1 / n 0 ) cos α i1 ∴ cos α i0 = (1-sin 2 α i0 ) 1/2 = {1- (n 1 / n 0 ) 2 cos 2 α i1 } 1/2 The n 1 is determined from the equation. n 0 is the refractive index of radio waves in a vacuum. Further, since the alpha i1 is measured, cos [alpha] i1 is determined, cos [alpha] i0 also determined from the equation. Or, determine cos α i0 by the method of ◆ 4. When the formula is transformed to Σ i, j = 1 n k ij (1 + n j ) = (1 / h) {(c ± v) (T Ai -T Pi )} ・ cos α i0 , the right side of the formula Is confirmed. By repeating the above operation n times, the following n-ary simultaneous simultaneous equations are established. k 11 n 1 + k 12 n 2 + k 13 n 3 + ・ ・ ・ ・ ・ ・ + k 1n n n = (1 / h) {(c ± v) (T A1 -T P1 )} cos α 10 -Σ j = 1 n k 1j k 21 n 1 + k 22 n 2 + k 23 n 3 + ・ ・ ・ ・ ・ + k 2n n n = (1 / h) {(c ± v) (T A2 -T P2 )} cos α 20 -Σ j = 1 n k 2j・ ・ ・ ・ ・ k n1 n 1 + k n2 n 2 + k n3 n 3 + ・ ・ ・ ・ ・ ・ + k nn n n = (1 / h) { (c ± v) (T An -T Pn )} cos α n0 -Σ j = 1 n k nj For details of the establishment of this simultaneous equation, see Japanese Patent Application No. 3-12.
8489 (Submit April 30, 1991, submit amendment 8 August 1991
See “Measurement of Refractive Index of Atmospheric Gas Using Radio Wave Propagation” on March 20. Also, the refractive index; k ij is k ij = {(1-sin 2 α i0 ) / (n j 2 -sin 2 α i0 )} 1/2 parallel plane layers of the atmospheric gas layer (including the ionosphere) The initial value of the refractive index of is the sum of the refractive index of the atmospheric gas layer (including the ionosphere) in the zenith direction at the measurement point in the USA standard atmospheric model and the refractive index obtained from the electron density of the ionosphere at standard time. The refractive index; k ij is the US of the atmospheric gas layer (including the ionosphere) in the zenith direction at the measurement point in n j of the equation.
A The sum of the refractive index of the standard atmospheric model and the refractive index obtained from the electron density of the ionosphere at the standard time is substituted and used as the initial value.
These values are substituted into the n-ary simultaneous equations to solve. This solution is the first approximation of the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path between the satellite and the receiver.
Substituting the first-order approximation value of this refractive index into the formula and
Radio wave; Radio wave when P i → A i rushes into the interface between the radio wave straight layer and atmospheric gas layer; First approximation of the cosine of the incident angle of P i → A i and the radio wave path between the satellite and the receiver The first-order approximation of the refraction coefficient of the atmospheric gas layer (including the ionosphere). An n-element simultaneous linear equation consisting of this refractive index and the like is solved, and this solution is used as the second approximate value of the refractive index. The second approximate value of the refractive index is substituted into the equations and to obtain the second approximate value of the cosine of the incident angle of the radio wave; P i → A i and the refractive coefficient. When the above operations are repeated several times and the calculation converges with the required accuracy, the calculation is terminated and the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path between the satellite and the receiver is obtained.
【0006】◆2 衛星の位置決定 時刻TP のときの衛星の位置をPとし、その座標をP
(X,Y,Z)とする。衛星の位置Pから、時刻TP の
とき放射された電波が、地表面上の受信機に到達した時
刻をTA,TBとし、このときの受信機の位置をそれぞれ
A、Bとする。点Pからxy−平面に下ろした垂線の足
をQとする。(但し、点A、Bにある受信機は同一のも
のである。図2参照) 衛星と受信機間を結ぶ電波経路近傍の大気ガス層(電離
層を含める。)の厚さ1kmの平行平面層の屈折率;ni
(i=1〜1000)は、確定している(◆1 電離層及び大
気ガス層の電波屈折率の測定参照)。衛星の位置Pから
放射され、受信機の位置Aに到達した電波(電波P→A
と呼称する。)が電波直進層と大気ガス層(電離層を含
める。)の界面へ突入したときの入射角をα0、衛星の
位置Pから放射され、受信機の位置Bに到達した電波
(電波P→Bと呼称する。)が電波直進層と大気ガス層
(電離層を含める。)の界面へ突入したときの入射角を
β0とする。 cosα0={hΣi=1 nki(1+ni)}/{(c±v)(TA-TP)} cosβ0={hΣi=1 nmi(1+ni)}/{(c±v)(TB-TP)} 式、の成立の詳細は、特願平3-123205(提出平成3
年3月4日、補正書提出平成3年8月20日、「通信衛
星による三次元位置測定」”4 仰角の測定”参照のこ
と。電波P→Aの電波経路長は、 hΣi=1 n(1/cosαi)+(L-nh)/cosα0 =hΣi=1 n(cosα0/cosαi)(1/cosα0)+(L-nh)/cosα0 =(hΣi=1 nkini)(1/cosα0)+(L-nh)/cosα0 =(hΣi=1 nkini+L-nh)/cosα0 電波P→Bの電波経路長は、 hΣi=1 n(1/cosβi)+(L-nh)/cosβ0 =(hΣi=1 nmini+L-nh)/cosβ0 但し、Lは衛星のxy−平面からの高さで確定済みであ
る。式、から、 TA-TB={(hΣi=1 nkini+L-nh)/cosα0-(hΣi=1 nmini+L-nh)/cosβ0}(1/c) =(hΣi=1 nkini+L-nh)(1/cosα0-1/cosβ0)(1/c) (10) │ki={(1-sin2α0)/(ni 2-sin2α0)}1/2 ∵│mi={(1-sin2β0)/(ni 2-sin2β0)}1/2 │α0≒β0 │ ki≒mi TA-TP=p (11) TB-TP=p+Δt (12) とおく。式、(11)から、 cosα0={hΣi=1 nki(1+ni)/(c±v)p} (13) 式、(12)から、 cosβ0={hΣi=1 nmi(1+ni)/(c±v)(p+Δt)} (14) 式(14)に式(10)、(13)を代入する。 cosβ0=hΣi=1 nmi(1+ni)/[(c±v)〔p+{-(hΣi=1 nkini+L-nh)/cosα0 +(hΣi=1 nkini+L-nh)/cosβ0}(1/c)〕] (∵ ki≒mi) =hΣi=1 nki(1+ni)/[(c±v)〔p+{-hΣi=1 nkini+L-nh)(c±v)p/hΣi=1 nki(1+ni) +(hΣi=1 nkini+L-nh)/cosβ0}(1/c)〕] (∵ ki≒mi) ∴ (c±v)p・cosβ0-{(hΣi=1 nkini+L-nh)(c±v)2p}/{hcΣi=1 n(1+ni)}・cosβ0 +(c±v)(hΣi=1 nkini+L-nh)/c =hΣi=1 nki(1+ni) ∴ [(c±v)p-{(hΣi=1 nkini+L-nh)(c±v)2p}/{hcΣi=1 nki(1+ni)}]cosβ0 =hΣi=1nki(1+ni)-{(c±v)(hΣi=1nkini+L-nh)}/c ∴ cosβ0=[hΣi=1 nki(1+ni)-{(c±v)(hΣi=1 nkini+L-nh)}/c] /[(c±v)p-{(hΣi=1 nkini+L-nh)(c±v)2p}/{hcΣi=1 nki(1+ni)}] (15) 式(15)において、 c;電波の伝搬速度 v;地球の自転速度 p;電波P→Aの伝搬速度 h;受信機の位置を通る水平面に平行な大気ガス(電離層
を含める。)の平行平面層の厚さで1kmである。 ki;電波P→Aの経路近傍の屈折率で、 ki={(1-sin2α0)/(ni 2-sin2α0)}1/2 ni;電波P→Aの経路近傍の屈折率 L;衛星のxy−平面からの高さ から、全て確定済みであるから、cosβ0が確定する。従
って、β0も確定する。尚、地球の自転方向はy軸に平
行であるとする。直線AQ、BQとx軸とのなす角度
を、おのおのγ、δとすると(図2参照)、 〔-hΣi=1 n tanαi+{c(TA-TP)-hΣi=1 n(1/cosαi)}sinα0〕cosγ =〔-hΣi=1 n tanβi+{c(TB-TP)-hΣi=1 n(1/cosβi)}sinβ0〕cosδ 〔-hΣi=1 n tanαi+{c(TA-TP)-hΣi=1 n(1/cosαi)}sinα0〕sinγ+v(TB-TA) =〔-hΣi=1 n tanβi+{c(TB-TP)-hΣi=1 n(1/cosβi)}sinβ0〕sinδ 但し、αi、βiは受信機の位置A及びBを通るxy−平
面に平行な厚さh(1km)の大気ガス層(電離層を含め
る。)の平行平面層を通過する電波の屈折角である。 -hΣi=1 n tanαi+{c(TA-TP)-hΣi=1 n(1/cosαi)}sinα0
=A -hΣi=i n tanβi+{c(TB-TP)-hΣi=1 n(1/cosβi)}sinβ0
=B v(TB-TA)=C とすると、A、B、Cは確定する。 sinγ=(B2-C2-A2)/2AC sinγ=(B2-A2+C2)/2BC 尚、詳細は、特願平3-123205(提出平成3年3月4日、
補正書提出平成3年8月20日「通信衛星による三次元
位置測定」の”6 方位角の測定”参照のこと)従っ
て、γ、δも確定する。 x=AQcosγ=Acosγ y=AQsinγ=Asinγ z=nh+(cp-hΣi=1 n(1/cosαi))cosα0 故に、点Pの位置は確定する。◆ 2 Satellite Position Determination At the time T P , the satellite position is P, and its coordinates are P
(X, Y, Z). Times at which the radio waves radiated from the satellite position P at time T P reach the receiver on the ground surface are T A and T B, and the positions of the receiver at this time are A and B, respectively. Let Q be a foot of a perpendicular line drawn from the point P to the xy-plane. (However, the receivers at points A and B are the same. See Fig. 2.) A parallel plane layer with a thickness of 1km of the atmospheric gas layer (including the ionosphere) near the radio path connecting the satellite and the receiver. Refractive index of n i
(I = 1 to 1000) has been confirmed (refer to ◆ 1 Measurement of radio wave refractive index of ionosphere and atmospheric gas layer). Radio waves radiated from the satellite position P and reaching the receiver position A (radio waves P → A
I call it. ) Enters the interface between the radio wave rectilinear layer and the atmospheric gas layer (including the ionosphere), the incident angle is α 0 , the radio wave radiated from the satellite position P and reaching the receiver position B (radio wave P → B The angle of incidence when β rushes into the interface between the radio wave rectilinear layer and the atmospheric gas layer (including the ionosphere) is β 0 . cosα 0 = {hΣ i = 1 n k i (1 + n i )} / {(c ± v) (T A -T P )} cosβ 0 = {hΣ i = 1 n m i (1 + n i ) } / {(c ± v) (T B -T P )}, the details of the establishment of the formula, Japanese Patent Application No. 3-123205
March 4, 2014, submission of amendment, August 20, 1991, refer to “3D Position Measurement by Communication Satellite” “4 Elevation Angle Measurement”. Telecommunications path length of the radio wave P → A is, hΣ i = 1 n (1 / cosα i) + (L-nh) / cosα 0 = hΣ i = 1 n (cosα 0 / cosα i) (1 / cosα 0) + (L-nh) / cosα 0 = (hΣ i = 1 n k i n i ) (1 / cosα 0 ) + (L-nh) / cos α 0 = (hΣ i = 1 n k i n i + L-nh ) / cos [alpha] 0 Telecommunications path length of the radio wave P → B is, hΣ i = 1 n (1 / cosβ i) + (L-nh) / cosβ 0 = (hΣ i = 1 n m i n i + L-nh) / cosβ 0 However, L is already determined by the height from the xy-plane of the satellite. From, T A -T B = ((hΣ i = 1 n k i n i + L-nh) / cos α 0- (hΣ i = 1 n m i n i + L-nh) / cos β 0 } ( 1 / c) = (hΣ i = 1 n k i n i + L-nh) (1 / cosα 0 -1 / cosβ 0 ) (1 / c) (10) │k i = ((1-sin 2 α 0 ) / (n i 2 -sin 2 α 0 )} 1/2 ∵│m i = {(1-sin 2 β 0 ) / (n i 2 -sin 2 β 0 )} 1/2 │α 0 ≈ Let β 0 │ k i ≈m i T A -T P = p (11) T B -T P = p + Δt (12). From equation (11), cosα 0 = {hΣ i = 1 n k i (1 + n i ) / (c ± v) p} (13) From equation (12), cosβ 0 = {hΣ i = 1 n m i (1 + n i ) / (c ± v) (p + Δt)} (14) equation (14) into equation (10), substituting (13). cosβ 0 = hΣ i = 1 n m i (1 + n i ) / [(c ± v) 〔p + {-(hΣ i = 1 n k i n i + L-nh) / cos α 0 + (hΣ i = 1 n k i n i + L -nh) / cosβ 0} (1 / c) ]] (∵ k i ≒ m i ) = hΣ i = 1 n k i (1 + n i) / [(c ± v ) (P + {-hΣ i = 1 n k i n i + L-nh) (c ± v) p / hΣ i = 1 n k i (1 + n i ) + (hΣ i = 1 n k i n i + L-nh) / cosβ 0 } (1 / c) ]] (∵ k i ≒ m i ) ∴ (c ± v) p · cosβ 0 - {(hΣ i = 1 n k i n i + L-nh ) (c ± v) 2 p} / {hcΣ i = 1 n (1 + n i )} ・ cosβ 0 + (c ± v) (hΣ i = 1 n k i n i + L-nh) / c = hΣ i = 1 n k i (1 + n i ) ∴ [(c ± v) p-{(hΣ i = 1 n k i n i + L-nh) (c ± v) 2 p} / {hcΣ i = 1 n k i (1 + n i )}] cos β 0 = hΣ i = 1n k i (1 + n i )-{(c ± v) (hΣ i = 1n k i n i + L-nh)} / c ∴ cosβ 0 = [hΣ i = 1 n k i (1 + n i )-{(c ± v) (hΣ i = 1 n k i n i + L-nh)} / c] / [(c ± v) p-{(hΣ i = 1 n k i n i + L-nh) (c ± v) 2 p} / {hcΣ i = 1 n k i (1 + n i )}] (15) In (15), c: propagation velocity of radio wave v: rotation velocity of earth p: propagation velocity of radio wave P → A h: parallel plane layer of atmospheric gas (including ionosphere) parallel to horizontal plane passing through receiver position The thickness is 1 km. k i ; refractive index in the vicinity of the path of the radio wave P → A, k i = {(1-sin 2 α 0 ) / (n i 2 -sin 2 α 0 )} 1/2 n i ; of the radio wave P → A Refractive index L in the vicinity of the path; cosβ 0 is determined from the height from the xy-plane of the satellite, because it has already been determined. Therefore, β 0 is also determined. The rotation direction of the earth is assumed to be parallel to the y axis. Assuming that the angles formed by the straight lines AQ and BQ and the x-axis are γ and δ, respectively (see FIG. 2), [-hΣ i = 1 n tanα i + {c (T A -T P ) -hΣ i = 1 n (1 / cosα i)} sinα 0 ] cos = [- hΣ i = 1 n tanβ i + {c (T B -T P) -hΣ i = 1 n (1 / cosβ i)} sinβ 0 ] cosδ [- hΣ i = 1 n tanα i + {c (T A -T P) -hΣ i = 1 n (1 / cosα i)} sinα 0 ] sinγ + v (T B -T A ) = [- hΣ i = 1 n tan β i + {c (T B -T P ) -h Σ i = 1 n (1 / cos β i )} sin β 0 ] sin δ where α i and β i are the xy-plane passing through the receiver positions A and B Is the refraction angle of the radio wave passing through the parallel plane layer of the atmospheric gas layer (including the ionosphere) of thickness h (1 km) parallel to. -hΣ i = 1 n tanα i + {c (T A -T P) -hΣ i = 1 n (1 / cosα i)} sinα 0
= A -hΣ i = i n tanβ i + {c (T B -T P) -hΣ i = 1 n (1 / cosβ i)} sinβ 0
= B v (T B -T A ) = C, A, B and C are determined. sinγ = (B 2 -C 2 -A 2 ) / 2AC sinγ = (B 2 -A 2 + C 2 ) / 2BC For details, see Japanese Patent Application No. 3-123205 (submitted March 4, 1991,
Submission of amendment Please refer to "6 azimuth measurement" of "3D position measurement by communication satellite" on August 20, 1991) Therefore, γ and δ are also determined. Thus x = AQcosγ = Acosγ y = AQsinγ = Asinγ z = nh + (cp-hΣ i = 1 n (1 / cosα i)) cosα 0, the position of the point P is determined.
【0007】◆3 位置の確定している衛星を利用し
て、衛星とGPS受信機を結ぶ電波経路近傍の大気ガス
層(電離層を含める。)の屈折率の測定方法(受信電波
の仰角を測定せずに、屈折率を求める方法。)。 時刻TP1のときの衛星の位置をP1とする。点P1から
放射された電波が、時刻TA1のときGPS受信機に到達
し、このときのGPS受信機の位置をA1とする。GP
S受信機が受信したある衛星からの電波から、その衛星
からのこの電波の放射時刻が判る。しかるに、GPS受
信機は、衛星の時間対応の位置データが記録された電波
を静止衛星より受信しているから、この電波を放射した
時刻におけるその衛星の位置データが判る。この位置の
判っている各衛星から電波を受信することにより、GP
S受信機の大体の位置が判明する。このGPS受信機の
位置を原点として、いま、そのうちの1個の衛星の位置
座標を(Lx,Ly,Lz)とすると、 Lz=nh+(cp-hΣi=1 n(1/cosαi))cosα0=nh+cpcosα0-hΣi=1 nkini (16) cosα0=hΣi=1nki(1+ni)/(c±v)p (17) 但し、p=TA1-TP1 式(16)、(17)の成立の詳細については、特願平3-123205
(提出平成3年3月4日、補正書提出平成3年8月20
日、「通信衛星による三次元位置測定」”3 大気屈折
率による衛星の位置誤差の補正”、”4 仰角の測定”
参照のこと。式(17)から、 cosα0(c±v)p=hΣi=1 nki(1+ni) cp・cosα0±vp・cosα0=hΣi=1 nki(1+ni) cp・cosα0=hΣi=1 nki(1+ni) vp・cosα0 (18) 式(18)を式(16)へ代入して、 Lz=nh+hΣi=1 nki(1+ni) vp・cosα0-hΣi=1 nkini =nh+hΣi=1 nki+hΣi=1 nkini vp・cosα0-hΣi=1 nkini =nh+hΣi=1 nki vp・cosα0 (19) hΣi=1nkiは、cosα0の関数として近似的に表示される
から、式(19)より、cosα0が求まる。尚、hΣi=1 nkiの
求め方は、「◆7 大気ガス層(電離層を含める。)の
屈折係数の求め方」を参照のこと。このような操作を1
000回繰り返すことにより、1000個のcosαiおよ
び伝搬時間piが求まる。これらにより、◆1 電離層及
び大気ガス層の電波屈折率の測定の方法により、衛星と
測定点を結ぶ電波経路近傍の大気ガス層(電離層を含め
る。)の屈折率の第一次近似値が求まる。従って、測定
点を原点とする衛星までの水平距離及び垂直距離が求ま
る。衛星の位置は確定済みであるから、測定点の位置が
判る。この屈折率の第一次近似値から、cosαiの第二近
似値が求まり、更に屈折率の第二近似値が求まり、次第
に屈折率の真の値に近ずく。以上の過程を繰り返し、必
要な精度で計算が収束したら、計算を打ち切る。◆ 3 A method of measuring the refractive index of the atmospheric gas layer (including the ionosphere) in the vicinity of the radio wave path connecting the satellite and the GPS receiver using the satellite whose position is fixed (measuring the elevation angle of the received radio wave) Method of determining the refractive index without. The position of the satellite at time T P1 is P1. The radio wave radiated from the point P1 reaches the GPS receiver at time T A1 , and the position of the GPS receiver at this time is A1. GP
From the radio wave from a certain satellite received by the S receiver, the emission time of this radio wave from that satellite can be known. However, since the GPS receiver receives the radio wave in which the position data corresponding to the time of the satellite is recorded from the geostationary satellite, the position data of the satellite at the time when this radio wave is emitted can be known. By receiving radio waves from each satellite whose position is known, GP
The approximate location of the S receiver is known. Letting the position of this GPS receiver be the origin, and the position coordinate of one of the satellites is (L x , L y , L z ), L z = nh + (cp-hΣ i = 1 n (1 / cosα i )) cosα 0 = nh + cp cosα 0 -hΣ i = 1 n k i n i (16) cosα 0 = hΣ i = 1 nk i (1 + n i ) / (c ± v) p (17) , P = T A1 -T P1 For details on the establishment of equations (16) and (17), see Japanese Patent Application No. 3-123205.
(Submission March 4, 1991, submission of amendment August 20, 1991
Japan, "Three-dimensional position measurement by communication satellite""3 Correction of satellite position error due to atmospheric refractive index", "4 Measurement of elevation angle"
See. From equation (17), cos α 0 (c ± v) p = hΣ i = 1 n k i (1 + n i ) cp ・ cos α 0 ± v p ・ cos α 0 = hΣ i = 1 n k i (1 + n i ) cp ・ cos α 0 = hΣ i = 1 n k i (1 + n i ) vp ・ cos α 0 (18) Substituting equation (18) into equation (16), L z = nh + hΣ i = 1 n k i (1 + n i ) vp ・ cosα 0 -hΣ i = 1 n k i n i = nh + hΣ i = 1 n k i + hΣ i = 1 n k i n i vp ・ cos α 0 -hΣ i = 1 n k i n i = nh + hΣ i = 1 n k i vp ・ cosα 0 (19) Since hΣ i = 1n k i is approximately displayed as a function of cosα 0 , from equation (19), cos α 0 is obtained. For how to obtain hΣ i = 1 n k i , see “◆ 7 How to obtain the refractive index of the atmospheric gas layer (including the ionosphere)”. Such operation 1
By repeating 000 times, 1000 pieces of cos α i and propagation time p i can be obtained. From these, ◆ 1 The first-order approximation of the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path connecting the satellite and the measurement point can be obtained by the method of measuring the radio refractive index of the ionosphere and atmospheric gas layer. . Therefore, the horizontal distance and the vertical distance from the measurement point to the satellite can be obtained. Since the position of the satellite has been fixed, the position of the measurement point can be known. From the first-order approximation value of the refractive index, the second approximation value of cos α i is found, and further the second approximation value of the refractive index is found, and gradually approaches the true value of the refractive index. The above process is repeated, and when the calculation converges with the required accuracy, the calculation is terminated.
【0008】◆4 大体の位置が判っている衛星を利用
して、衛星とGPS受信機を結ぶ電波経路近傍の大気ガ
ス層(電離層を含める。)の屈折率の測定法。(受信電
波の仰角を測定せずに、屈折率を求める方法。) 上空にある4個の衛星からの電波を受信し、GPS受信
機の置いてある大体の位置を確定する。従って、これら
衛星とこの受信機との間の大体の垂直距離が定まる。
又、地上の受信機が置かれている位置が定まっていると
き、この受信機が受信したある航法メッセージの内容か
ら、この衛星とこの受信機との間の垂直距離が判明す
る。いま、このGPS受信機の位置を原点として、上空
にある一個の衛星までの垂直距離をLzとすると、 Lz=nh+(cp-hΣi=1 n(1/cosαi))cosα0 cosα0=hΣi=1 nki(1+ni)/(c±v)p 上二式の成立の詳細については、特願平3-123205(提出
平成3年3月4日、補正書提出平成3年8月20日「通
信衛星による三次元位置測定」”3 大気屈折率による
衛星の位置誤差の補正”、”4 仰角の測定”参照のこ
と) 上二式より、 Lz=nh+hΣi=1 nki vpcosα0 (20) hΣi=1 nkiは、cosα0の関数として近似的に表示される
から、式(20)より、cosα0が求まる。尚、hΣi=1 nkiの
求め方は、「◆7 大気ガス層(電離層を含める。)の
屈折係数の求め方」を参照のこと。このような操作を1
000回繰り返すことにより、1000個のcosαiおよ
び伝搬時間piが求まる。これらにより、◆1 電離層及
び大気ガス層の電波屈折率の測定の方法により、衛星と
測定点を結ぶ電波経路近傍の大気ガス層(電離層を含め
る。)の屈折率の第一次近似値が求まる。この屈折率の
第一次近似値から、cosαiの第二近似値が求まり、更に
屈折率の第二近似値が求まり、次第に屈折率の真の値に
近ずく。以上の過程を繰り返し、必要な精度出計算が収
束したら、計算を打ち切る。◆ 4 A method for measuring the refractive index of the atmospheric gas layer (including the ionosphere) in the vicinity of the radio path connecting the satellite and the GPS receiver, using a satellite whose position is known. (A method to obtain the refractive index without measuring the elevation angle of the received radio waves.) Receive the radio waves from the four satellites in the sky and determine the approximate position where the GPS receiver is placed. Therefore, the approximate vertical distance between these satellites and this receiver is determined.
Also, when the position of the receiver on the ground is fixed, the vertical distance between this satellite and this receiver is known from the content of a navigation message received by this receiver. Now, as the origin the location of the GPS receiver, the vertical distance to one of the satellites in the sky and L z, L z = nh + (cp-hΣ i = 1 n (1 / cosα i)) cosα 0 cosα 0 = hΣ i = 1 n k i (1 + n i ) / (c ± v) p For details of the establishment of the above two equations, refer to Japanese Patent Application No. 3-123205 (submitted March 4, 1991, amendment Submission August 20, 1991 “3D position measurement by communication satellite” “3. Correction of satellite position error due to atmospheric refractive index”, “4 Measurement of elevation angle”) From the above two equations, L z = nh + hΣ i = 1 n k i vpcosα 0 (20) hΣ i = 1 n k i , since being approximately as a function of cos [alpha] 0, the equation (20), cos [alpha] 0 is obtained. For how to obtain hΣ i = 1 n k i , see “◆ 7 How to obtain the refractive index of the atmospheric gas layer (including the ionosphere)”. Such operation 1
By repeating 000 times, 1000 pieces of cos α i and propagation time p i can be obtained. From these, ◆ 1 The first-order approximation of the refractive index of the atmospheric gas layer (including the ionosphere) near the radio path connecting the satellite and the measurement point can be obtained by the method of measuring the radio refractive index of the ionosphere and atmospheric gas layer. . From the first-order approximation value of the refractive index, the second approximation value of cos α i is found, and further the second approximation value of the refractive index is found, and gradually approaches the true value of the refractive index. The above process is repeated, and when the required accuracy calculation converges, the calculation is terminated.
【0009】◆5 GPS受信機の時計等の誤差の補正 各衛星の位置を(xi,yi,zi)、測定点の位置を(x0,y0,
z0)、各衛星と測定点との間の直線距離をri、GPS受
信機の時計等の誤差の間に電波が進む距離をsとする
と、 (xi-x0)2+(yi-y0)2+(zi-z0)2=(ri+s)2 未知数(x0,y0,z0)をその近似値と補正量の和で表し、式
をその補正値について展開し、補正値は微小であるとし
て、2次以上の項を省略して、式を線形化することにより、
補正値についての連立方程式となる。 得られた補正値を近似値に加え、ひとまず解とする。未知
数をあらためて、いま求めた解と新たな補正値の和と置
きなおし、以上の過程を繰り返し、必要な精度で計算が収
束したら、計算を打ち切る。 これにより、GPS受信機の時計等の誤差を補正した測
定点の真の位置が求まる。5 Correction of error of GPS receiver clock etc. The position of each satellite is (x i , y i , z i ), and the position of the measurement point is (x 0 , y 0 ,).
z 0 ), the linear distance between each satellite and the measurement point is r i , and the distance the radio wave travels between errors of the GPS receiver clock is s, (x i -x 0 ) 2 + (y i -y 0 ) 2 + (z i -z 0 ) 2 = (r i + s) 2 The unknown (x 0 , y 0 , z 0 ) is represented by the sum of its approximate value and the correction amount, and the formula is corrected By expanding the value and assuming that the correction value is minute, omitting terms of the second and higher order and linearizing the equation,
It becomes a simultaneous equation for the correction values. The obtained correction value is added to the approximate value to make a solution for the time being. The unknown value is re-established and replaced with the sum of the solution just obtained and the new correction value, and the above process is repeated. When the calculation converges with the required accuracy, the calculation is terminated. As a result, the true position of the measurement point in which the error of the clock or the like of the GPS receiver is corrected can be obtained.
【0010】◆6 受信機への電波の到達時刻の測定方
法 グリニッジ標準時午前0時のとき、カンターA及びBの
内容は0である。時刻測定コード発生回路は、グリニッ
ジ標準時午前0時に作動し、1000MBPSのコード
信号を出す。そして、この出力されたコード信号のビッ
ト数は、常にカントされ、カンターBにそのビット数が
格納され、この受信機が外部から信号を受信しないかぎ
り、1秒間経過するとカンターBの内容をカンターAの
内容に加えた後、カンターBの内容をリセットする。い
ま、衛星からの電波をこの受信機が受信すると、このと
きのカンターBの内容をカンターAの内容に加え、その
後カンターBの内容をリセットする。このときのカンタ
ーAの内容が、衛星からの電波のこの受信機への到達時
刻を表している。尚、時刻測定コード発生回路はそのま
ま動作し続ける。(図4参照)[6] Method of Measuring Arrival Time of Radio Wave to Receiver At 00:00 am GMT, the contents of the canters A and B are 0. The time measurement code generation circuit operates at midnight GMT and outputs a code signal of 1000 MBPS. Then, the number of bits of the output code signal is always counted, and the number of bits is stored in the canter B. Unless the receiver receives a signal from the outside, the contents of the canter B are counted in one second after one second elapses. After adding to the contents of, the contents of canter B are reset. Now, when this receiver receives the radio wave from the satellite, the contents of the canter B at this time are added to the contents of the canter A, and then the contents of the canter B are reset. The contents of the canter A at this time represent the arrival time of the radio wave from the satellite at this receiver. The time measurement code generation circuit continues to operate as it is. (See Figure 4)
【0011】◆7 大気ガス層(電離層を含める。)の
屈折係数の求め方」 地球の周囲を大気ガス層(電離層を含める。)と電波直
進層に分け、地表面から上空1000kmの領域を大気ガ
ス層(電離層を含める。)とし、それより高い領域を電
波直進層とする。大気ガス層(電離層を含める。)を、
地表面上の電波受信機の位置する点を通る水平面に平行
な厚さh(1km)の平行平面層に分割し、各平行平面層
の電波屈折率をnj、電波屈折係数をkijとする。又、
衛星から放射された電波が、電波直進層と大気ガス層
(電離層を含める。)の界面への入射角をαi0とする
と、 kij={(1-sin2αi0)/(nj-sin2αi0)}1/2 の関係が成立する。いま、njを横軸に、kijを縦軸に
とり、αi0をパラメータとして、図示すると図5の様に
なり、 kij=f(cosαi0)nj 2+g(cosαi0)nj+h(cosαi0) 尚、f(cosαi0)、g(cosαi0)、h(cosαi0)はcosαi0を変
数とする放物線で近似される。従って、 hΣi,j=1 nkij=h{f(cosαi0)Σj=1 nnj 2+g(cosαi0)Σi=j
nnj+hΣi=1 n1} で表され、Σj=1 nnjは、確定しているから、hΣi,j=1 nk
ijはcosαi0の関数として求まる。◆ 7 Determination of Refractive Coefficient of Atmospheric Gas Layer (Including Ionosphere) "The circumference of the earth is divided into an atmospheric gas layer (including ionosphere) and a radio wave rectilinear layer, and the area 1000 km above the ground surface is the atmosphere. The gas layer (including the ionosphere) is used, and the region higher than that is used as the radio wave rectilinear layer. Atmospheric gas layer (including ionosphere)
It is divided into parallel plane layers of thickness h (1 km) parallel to the horizontal plane passing through the point where the radio wave receiver is located on the ground surface, and the radio wave refraction index of each parallel plane layer is n j and the radio wave refraction coefficient is k ij . To do. or,
Letting α i0 be the incident angle of the radio waves emitted from the satellite at the interface between the radio wave rectilinear layer and the atmospheric gas layer (including the ionosphere), k ij = {(1-sin 2 α i0 ) / (n j- The relationship sin 2 α i0 )} 1/2 holds. Now, with n j on the horizontal axis and k ij on the vertical axis, and α i0 as a parameter, as shown in FIG. 5, k ij = f (cosα i0 ) n j 2 + g (cosα i0 ) n j + h (cosα i0 ) Note that f (cosα i0 ), g (cosα i0 ), and h (cosα i0 ) are approximated by a parabola having cosα i0 as a variable. Therefore, hΣ i, j = 1 n k ij = h {f (cosα i0 ) Σ j = 1 n n j 2 + g (cosα i0 ) Σ i = j
It is represented by n n j + hΣ i = 1 n 1}, and Σ j = 1 n n j is fixed, so hΣ i, j = 1 n k
ij is obtained as a function of cosα i0 .
【図面の簡単な説明】 (1)[Brief Description of Drawings] (1)
【図1】の説明 地球の周囲を大気ガス層、電離層および電波直進層とに
分ける。大気ガス層、電離層は個別に取り扱わず、一括
して、大気ガス層(電離層を含める。)の呼称で取り扱
う。大気ガス層(電離層を含める。)は地表面より10
00kmまでの領域とし、これより高い領域を電波直進層
とする。大気ガス層(電離層を含める。)を地表面上の
受信機を通る水平面に平行な厚さh(1km)の平行平面
層に分割する。時刻TPiのとき、衛星の位置Piから地
表面上の受信機に向け放射された電波が伝搬して、時刻
TAiのとき、受信機の位置Aiに到達したときの電波伝
搬の様子を表す。 (2)[Fig. 1] Explanation The circumference of the earth is divided into atmospheric gas layer, ionosphere and radio wave rectilinear layer. The atmospheric gas layer and the ionosphere are not treated individually, but are collectively referred to as the atmospheric gas layer (including the ionosphere). Atmospheric gas layer (including ionosphere) is 10 from the ground surface
The area up to 00 km is set, and the area higher than this is set as the radio wave straight traveling layer. The atmospheric gas layer (including the ionosphere) is divided into parallel plane layers of thickness h (1 km) parallel to the horizontal plane passing through the receiver on the ground surface. At time T Pi , the radio wave radiated from the satellite position Pi to the receiver on the ground surface propagates, and at time T Ai , the radio wave propagation state when reaching the receiver position Ai is shown. . (2)
【図2】の説明 時刻TP のときの衛星の位置をPとし、その座標をP
(X,Y,Z)とする。衛星の位置Pから、時刻TP の
とき放射された電波が、地表面上の受信機に到達した時
刻をTA,TBとし、このときの受信機の位置をそれぞれ
A、Bとする。点Pからxy−平面に下ろした垂線の足
をQとする。(但し、点A、Bにある受信機は同一のも
のである。)このときの衛星と受信機間を結ぶ電波経路
近傍の電波伝搬の様子を表す。 (3)Description of FIG. 2 Let the position of the satellite at time T P be P, and its coordinates be P
(X, Y, Z). Times at which the radio waves radiated from the satellite position P at time T P reach the receiver on the ground surface are T A and T B, and the positions of the receiver at this time are A and B, respectively. Let Q be a foot of a perpendicular line drawn from the point P to the xy-plane. (However, the receivers at the points A and B are the same.) The state of radio wave propagation in the vicinity of the radio wave path connecting the satellite and the receiver at this time is shown. (3)
【図3】の説明 GPS衛星からの電波を1ビットから数ビットより成る
パルス信号と考えて、各パルス信号に番号を付け、1、
2、・・・iとしたときのC/Aコードの波形を表す。 (4)Description of FIG. 3 Considering that the radio wave from the GPS satellite is a pulse signal consisting of 1 bit to several bits, each pulse signal is numbered 1,
2 shows the waveform of the C / A code when i is set. (4)
【図4】の説明 受信機への電波の到達時刻を測定する方法を表す概念図
である。又、同頁下の図はその方法を表す回路略図であ
る。 (5)FIG. 4 is a conceptual diagram showing a method for measuring the arrival time of a radio wave at a receiver. The figure at the bottom of the page is a schematic circuit diagram showing the method. (5)
【図5】の説明 大気ガス層(電離層を含める。)の各平行平面層の屈折
係数と屈折率の関係を表す。FIG. 5 shows the relationship between the refractive index and the refractive index of each parallel plane layer of the atmospheric gas layer (including the ionosphere).
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】全図[Correction target item name] All drawings
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図1】 [Figure 1]
【図2】 [Fig. 2]
【図3】 [Figure 3]
【図4】 [Figure 4]
【図5】 [Figure 5]
Claims (4)
ットより成るパルス信号と考えて、各パルス信号が地上
の受信機に到達する時刻を測定する。先頭のパルス信号
の受信時刻を正確に測定すれば、他のパルス信号の受信
時刻はおのずと確定する。この様にして、1msから数
msの間に1000個以上の衛星からのパルス信号の地
上受信機への到達時刻を測定する。又、各パルス信号の
受信機アンテナ到達時の仰角を測定する。先頭パルス信
号の仰角を正確に測定すれば、他のパルス信号の仰角
も、おのずと正確に測定される。このようにして、電離
層及び大気ガス層を地表面上にある受信機を通る水平面
に平行な厚さh(1km)の平行平面層に分割し、衛星
と受信機を結ぶ電波経路近傍の各平行平面層の電離層・
大気ガス層を通過する電波の屈折率を◆(1)の方法に
より求める。1. A radio wave from a GPS satellite is considered as a pulse signal composed of one bit to several bits, and the time when each pulse signal reaches a receiver on the ground is measured. If the reception time of the leading pulse signal is accurately measured, the reception times of other pulse signals are naturally determined. In this way, the arrival time of pulse signals from 1000 or more satellites to the terrestrial receiver is measured within 1 ms to several ms. Also, the elevation angle of each pulse signal when it reaches the receiver antenna is measured. If the elevation angle of the leading pulse signal is measured accurately, the elevation angles of other pulse signals can be measured naturally. In this way, the ionosphere and atmospheric gas layer are divided into parallel plane layers of thickness h (1 km) parallel to the horizontal plane passing through the receiver on the ground surface, and each parallel plane near the radio path connecting the satellite and the receiver. Plane ionosphere
Obtain the refractive index of the radio wave that passes through the atmospheric gas layer by the method of ◆ (1).
GPS受信機を置き、15秒毎に各衛星からの電波を受
信する。次に、航法メッセージの各サブフレームの先頭
にあるZカントを示すパルス信号の先頭の地上受信機で
の受信時刻を測定し、Zカントが示す時刻に放射された
電波の受信機までの伝搬時間を測定する。Zカントで表
示される時刻に、衛星から放射された電波が、受信機に
到達するまでの電波の伝搬時間は、受信機に到達したパ
ルス信号波形の先頭が受信機に到達した時刻をT1とす
る。受信機に到達したパルス信号波形の先頭ビットから
各サブフレームの先頭にあるZカントの先頭ビットを最
初に読み込んだ時点までのビット数をuとすると、 T1−u×10−6 となる。これにより、各衛星のある時刻における位置を
◆(2)の方法で決定する。このようにして、ある一定
時間間隔の衛星の位置を確定し、これらの時間対応の衛
星の位置データを赤道上空36000kmの位置にある
静止衛星を経由して、全国に送信する。2. A GPS receiver is placed at a position where the latitude, longitude and height are fixed, and radio waves from each satellite are received every 15 seconds. Next, the reception time at the ground receiver at the beginning of the pulse signal indicating the Z cant at the beginning of each subframe of the navigation message is measured, and the propagation time of the radio wave radiated to the receiver at the time indicated by the Z cant is measured. To measure. The propagation time of the radio wave radiated from the satellite to the receiver at the time indicated by Z cant is T 1 when the head of the pulse signal waveform reaching the receiver reaches the receiver. And Letting u be the number of bits from the first bit of the pulse signal waveform that reaches the receiver to the time when the first bit of the Z cant at the beginning of each subframe is first read, then T 1 −u × 10 −6 . With this, the position of each satellite at a certain time is determined by the method of (2). In this way, the positions of satellites at certain fixed time intervals are determined, and the position data of these time-corresponding satellites are transmitted to the whole country via the geostationary satellite located at a position 36000 km above the equator.
く。GPS衛星からの電波(C/Aコード)を1ビット
から数ビットより成るパルス信号と考えて、各パルスの
GPS受信機での受信時刻を測定し、電離層及び大気ガ
ス層を地表面上にある受信機を通る水平面に平行な厚さ
h(1km)の平行平面層に分割し、測定点と各衛星を
結ぶ電波経路近傍の各平行平面層の電離層、大気ガスの
電波の屈折率を◆(3)及び◆(1)の方法で求める。
これにより、測定点から各衛星までの水平距離、垂直距
離が求まる。しかしながら、各衛星の位置は静止衛星経
由全国に送信されているから、このデータを受信するこ
とにより知ることができるから、測定点の位置が求ま
る。ところが、この様にして求めた測定点の位置は、G
PS受信機の時計等の誤差の為、一致しないので◆
(4)の方法で補正する。3. Each surveyor places a GPS receiver at the measurement point. Radio waves (C / A code) from GPS satellites are considered as pulse signals consisting of 1 bit to several bits, and the reception time of each pulse at the GPS receiver is measured, and the ionosphere and atmospheric gas layer are on the ground surface. It is divided into parallel plane layers of thickness h (1 km) parallel to the horizontal plane passing through the receiver, and the ionosphere of each parallel plane layer near the radio path connecting the measurement point and each satellite, the refractive index of the radio wave of atmospheric gas is ◆ ( 3) and ◆ Use the method of (1).
As a result, the horizontal distance and vertical distance from the measurement point to each satellite can be obtained. However, since the position of each satellite is transmitted nationwide via the geostationary satellite, it can be known by receiving this data, so the position of the measurement point can be obtained. However, the position of the measurement point thus obtained is G
Due to the error of the PS receiver clock, etc., it does not match ◆
Correct by the method of (4).
く。上空にある4個の衛星からの電波を、このGPS受
信機で受信し、この測定点の大体の位置を求める。その
内の一個の衛星について、その航法メッセージより、そ
の衛星の位置を知ることができるから、この測定点を原
点とする垂直距離及び水平距離が求める。これより、◆
4の方法により、電波直進層と大気ガス層(電離層を含
める。)の界面への電波の入射角が求める。かかる操作
を1000回繰り返すことにより、大気ガス層(電離層
を含める。)の屈折率の第一次近似値が求める。従っ
て、以上の操作を何回か繰り返すことにより、大気ガス
層(電離層を含める。)の屈折率の真の値に限りなく近
ずいた大気ガス層(電離層を含める。)の屈折率を求め
る。尚、地球の周囲を大気ガス層、電離層および電波直
進層に分け、地表面から1000km以上の領空を電波
直進層と呼ぶ。4. Each surveyor places a GPS receiver at the measurement point. Radio waves from four satellites in the sky are received by this GPS receiver to obtain the approximate position of this measurement point. For one of the satellites, the position of the satellite can be known from the navigation message, so the vertical distance and horizontal distance from this measurement point as the origin are obtained. From this, ◆
By the method of 4, the incident angle of the radio wave on the interface between the radio wave straight traveling layer and the atmospheric gas layer (including the ionosphere) is obtained. By repeating this operation 1000 times, the first-order approximation value of the refractive index of the atmospheric gas layer (including the ionosphere) is obtained. Therefore, by repeating the above operation several times, the refractive index of the atmospheric gas layer (including the ionosphere) that is infinitely close to the true value of the refractive index of the atmospheric gas layer (including the ionosphere) is obtained. In addition, the circumference of the earth is divided into an atmospheric gas layer, an ionosphere, and a radio wave straight-ahead layer, and a space of 1000 km or more from the ground surface is called a radio wave straight-ahead layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33641791A JPH06342053A (en) | 1991-10-21 | 1991-10-21 | Three-dimensional positioning system by gps receiver using gps satellite and geostationary satellite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33641791A JPH06342053A (en) | 1991-10-21 | 1991-10-21 | Three-dimensional positioning system by gps receiver using gps satellite and geostationary satellite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06342053A true JPH06342053A (en) | 1994-12-13 |
Family
ID=18298913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33641791A Pending JPH06342053A (en) | 1991-10-21 | 1991-10-21 | Three-dimensional positioning system by gps receiver using gps satellite and geostationary satellite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06342053A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0766097A1 (en) * | 1995-09-29 | 1997-04-02 | Kabushiki Kaisha Toshiba | GPS overlay system for a geostationary satellite |
CN112578362A (en) * | 2020-12-30 | 2021-03-30 | 成都圭目机器人有限公司 | Three-dimensional ground penetrating radar data positioning method |
-
1991
- 1991-10-21 JP JP33641791A patent/JPH06342053A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0766097A1 (en) * | 1995-09-29 | 1997-04-02 | Kabushiki Kaisha Toshiba | GPS overlay system for a geostationary satellite |
CN112578362A (en) * | 2020-12-30 | 2021-03-30 | 成都圭目机器人有限公司 | Three-dimensional ground penetrating radar data positioning method |
CN112578362B (en) * | 2020-12-30 | 2023-08-29 | 成都圭目机器人有限公司 | Three-dimensional ground penetrating radar data positioning method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dommety et al. | Potential networking applications of global positioning systems (GPS) | |
US7751282B2 (en) | System and method for precision acoustic event detection | |
Dixon | An introduction to the Global Positioning System and some geological applications | |
US6369755B1 (en) | Integrated SATPS total survey station | |
US6356232B1 (en) | High resolution ionospheric technique for regional area high-accuracy global positioning system applications | |
CN102859901A (en) | Geolocation leveraging spot beam overlap | |
US20070085735A1 (en) | Spacecraft position monitoring and control | |
CN107991696B (en) | Satellite navigation signal simulation method for terminal carrier being high orbit satellite | |
WO2011010299A1 (en) | Satellite based positioning system | |
JP5077054B2 (en) | Mobile positioning system | |
RU2152625C1 (en) | Method determining orientation of objects in space, range to them and bearing, position coordinates and components of velocity vector by navigation radio signals of spacecraft of space radio navigation systems | |
US6593877B2 (en) | Method for determining the position of a transmitting beacon | |
US20060227043A1 (en) | Passive geostationary satellite position determination | |
JPH06342053A (en) | Three-dimensional positioning system by gps receiver using gps satellite and geostationary satellite | |
CN104392108B (en) | A kind of long-range positioning system (Loran) and method using iteration difference algorithm | |
Son et al. | Enhancing Coastal Air Navigation: eLoran 3D Positioning and Cycle Slip Mitigation | |
US11714198B2 (en) | Single-epoch pseudo-range positioning under varying ionosphere delays | |
Januszewski | How the ionosphere affects positioning solution using terrestrial and satellite navigation systems? | |
CN100348996C (en) | Method and system for positioning navigation in stratosphere | |
KR101067415B1 (en) | Relative measuring method and relative measuring system using satellite | |
CN115980805A (en) | Navigation constellation earth orientation method | |
Ogaja | GNSS Observation Models | |
Kindervatter | Survey of ionospheric propagation effects and modeling techniques for mitigation of gps error | |
Mourad et al. | Improving navigational systems through establishment of a marine geodetic range | |
Society for Underwater Technology (SUT) et al. | Modern navigation and positioning techniques |