JPH06341984A - Estimating method for paint - Google Patents

Estimating method for paint

Info

Publication number
JPH06341984A
JPH06341984A JP5133634A JP13363493A JPH06341984A JP H06341984 A JPH06341984 A JP H06341984A JP 5133634 A JP5133634 A JP 5133634A JP 13363493 A JP13363493 A JP 13363493A JP H06341984 A JPH06341984 A JP H06341984A
Authority
JP
Japan
Prior art keywords
odor
paint
concentration
coefficient
thc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5133634A
Other languages
Japanese (ja)
Inventor
Morimichi Miura
守道 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5133634A priority Critical patent/JPH06341984A/en
Publication of JPH06341984A publication Critical patent/JPH06341984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To provide a paint estimating method which can accurately and reproducibly measure and evaluate the odor itself of a paint without the influence of an external factor. CONSTITUTION:Air is sent toward a paint 8 to collect a paint/air mixed gas in an odor bag 11, and the odor concentration and THC(total hydrocarbon) concentration of the mixed gas collected in the odor bag 11 are measured to obtain an odor coefficient from the above concentration for evaluating the odor of the paint on a basis of the order coefficient. Since the odor coefficient is not influenced by the quantity of sample paint, its temperature, and other external factor, the odor of the paint can be accurately and reproducibly evaluated, and moreover measured through a laboratory scale without using an experimental booth or an actual machine booth. Thus, the measurement becomes simple.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塗料の臭い(臭気)の
評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the odor of a paint.

【0002】[0002]

【従来の技術】車の塗装に使う塗料を新規に採用する場
合、その新規塗料の臭気濃度が高いか低いかを事前に測
定する必要がある。臭気濃度の高い塗料を用いて実際の
塗装を行った場合、工場より排出されるガスの臭気濃度
が高くなり、地域住民より苦情が出て問題となる。臭気
濃度を事前に測定する方法として、実験ブースを用い
てガンで吹く方法、実機ブースで実際に吹く方法、等
がある。の方法では、図15に示すように、実験ブー
ス77にて、作業者75がガン74で塗料を吹いて、排
気ファン72で排出し、臭気袋71で捕集し、それをも
ち帰り、三点比較臭気袋法で、臭気濃度を測定する。こ
の場合、現在使用中の塗料と新規塗料を、たとえば30
分間隔で交互にガンで吹き、その臭気濃度を比較し、採
用可否を検討する。なお、図15中、76はポンプ、7
8は循環水、73はウォータカーテンである。の方法
では、図16に示すように、実機ブースにて新規塗料の
臭気濃度を測定し、比較する。給気ガスはフィルタ80
を通り、給気ファン79にてブースにて均一に供給され
る。作業者82は、新規塗料をワーク81に吹き、その
ときのガスはベンチュリ83を通り排気ファン84にて
フィルタ86を通り屋外へ排気される。新規塗料を使っ
たガスは測定口にて臭気袋85に捕集され、三点臭気袋
法で臭気濃度が測定される。
2. Description of the Related Art When a paint used for painting a car is newly adopted, it is necessary to measure in advance whether the odor concentration of the new paint is high or low. When actual coating is performed using paint with a high odor concentration, the odor concentration of the gas discharged from the factory becomes high, causing complaints from local residents and causing a problem. As a method for measuring the odor concentration in advance, there are a method of blowing with a gun in an experimental booth, a method of actually blowing with an actual machine booth, and the like. 15, in the experiment booth 77, the worker 75 blows the paint with the gun 74, discharges it with the exhaust fan 72, collects it with the odor bag 71, and returns it to the laboratory booth 77, as shown in FIG. Odor concentration is measured by the point comparison odor bag method. In this case, the current paint and new paint, for example, 30
Blow with a gun alternately at minute intervals, compare the odor concentrations, and examine the applicability. In FIG. 15, 76 is a pump, 7
8 is circulating water, and 73 is a water curtain. In this method, as shown in FIG. 16, the odor concentration of the new paint is measured and compared in an actual machine booth. The supply gas is a filter 80
And is uniformly supplied at the booth by the air supply fan 79. The worker 82 blows new paint onto the work 81, and the gas at that time passes through the venturi 83 and the exhaust fan 84 and is exhausted to the outside through the filter 86. The gas using the new paint is collected in the odor bag 85 at the measurement port, and the odor concentration is measured by the three-point odor bag method.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来技術には
次の問題があった。 イ.従来法で新規塗料の臭気濃度を測定しても臭気濃度
にバラツキが大きく、再現性もないため、新規塗料の真
の臭気濃度がわからない。 ロ.測定時に新規塗料の量をどの程度捕集したのかわか
らない。新規塗料の量を多く臭気袋に捕集すれば臭気濃
度は当然高くなるし、少なければ低くなる。 また、実験ブースでテストする場合、他の臭気の影響が
大きく、たとえば塗料を吹かなくても、水が臭く臭気濃
度大の時があり、正しい測定ができない。また、新規塗
料を実機ブースでテストする場合、塗料使用量が非常に
多く、人数も多くなるので、実機ブースの一部でしかテ
ストできない。そのため、タイミングをとるのが難し
く、臭気濃度は常に一定ではなく、時間とともに山型の
カーブをえがく。そのため、最大値で比較する場合があ
るが、点数を多くとらなければ最大値はわからず、測定
法が難しい。たとえ正確に測定条件を同じにしても、2
回測定した場合2つの臭気濃度は同じにならない。本発
明の目的は、外的要因を受けずに対象塗料の臭気そのも
のを、バラツキなく安定して測定でき、しかも実験ブー
スや実機ブースを用いることなく単純な装置で測定でき
る塗料評価方法を提供することにある。
However, the prior art has the following problems. I. Even if the odor concentration of the new paint is measured by the conventional method, the odor concentration of the new paint varies greatly and there is no reproducibility, so the true odor concentration of the new paint is unknown. B. I do not know how much of the new paint was collected during the measurement. If a large amount of new paint is collected in an odor bag, the odor concentration will naturally increase, and if it is small, it will decrease. In addition, when testing in an experimental booth, the influence of other odors is large, and for example, even if the paint is not sprayed, there are times when water is odorous and the odor concentration is high, so correct measurement cannot be performed. Also, when testing a new paint in an actual booth, the amount of paint used is very large and the number of people increases, so it can only be tested in a part of the actual booth. Therefore, it is difficult to set the timing, the odor concentration is not always constant, and a mountain-shaped curve is obscured over time. Therefore, the maximum value may be compared, but unless the number of points is large, the maximum value is unknown and the measurement method is difficult. Even if the measurement conditions are exactly the same, 2
When measured twice, the two odor concentrations are not the same. An object of the present invention is to provide a paint evaluation method capable of stably measuring the odor itself of a target paint without being affected by external factors, without variations, and by using a simple device without using an experiment booth or an actual machine booth. Especially.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の本発明に係わる塗料評価方法は次の方法から成る。す
なわち、塗料を容器に入れ、無臭エアを送って混合さ
せ、塗料とエアとの混合ガスを臭気袋に捕集し、臭気袋
に捕集された塗料とエアとの混合ガスの臭気濃度を測定
するとともに、THC(全炭化水素)濃度をTHC測定
器にて測定し、臭気濃度/THC濃度より該塗料の臭気
係数を求め、臭気係数基準で塗料の臭気を評価する、塗
料評価方法。
A paint evaluation method according to the present invention for achieving the above object comprises the following methods. That is, put the paint in a container, send odorless air to mix, collect the mixed gas of paint and air in an odor bag, and measure the odor concentration of the mixed gas of paint and air collected in the odor bag At the same time, the THC (total hydrocarbon) concentration is measured by a THC measuring device, the odor coefficient of the paint is obtained from the odor concentration / THC concentration, and the odor of the paint is evaluated based on the odor coefficient standard.

【0005】[0005]

【作用】上記本発明の塗料評価方法では、塗料の臭気を
評価するに際し、臭気係数=(臭気濃度)/(THC濃
度)基準で評価するので、単位塗料濃度あたりの塗料の
臭気濃度が比較できる。この場合、臭気濃度測定では臭
気の良し悪しは問題にせず、臭気の強弱が問題とされ
る。また、THC濃度の測定では、塗料の主成分には一
般に溶剤が50wt%以上入っており、キシレン、ベン
ゼン、トルエン、アルコール、エステル等で、これらは
CH+ イオンとなるので、THC測定器で必ず測定で
き、すべての塗料についてTHC濃度を求めることがで
きる。したがって、本評価方法は全ての塗料に有効であ
る。また、実験ブースや実機ブースを用いることなく、
実験室ベース程度の設備を用いて塗料臭気を測定でき、
外的要因を受けない正確な測定ができる。
In the above-mentioned paint evaluation method of the present invention, when the odor of the paint is evaluated, the odor coefficient = (odor concentration) / (THC concentration) is evaluated, so that the odor concentration of the paint per unit paint concentration can be compared. . In this case, in the odor concentration measurement, whether the odor is good or bad is not a problem, and the intensity of the odor is a problem. In addition, in the measurement of THC concentration, the main component of the paint generally contains 50 wt% or more of solvent, which is xylene, benzene, toluene, alcohol, ester, etc., and these become CH + ions. It can be measured and the THC concentration can be determined for all paints. Therefore, this evaluation method is effective for all paints. Also, without using an experimental booth or an actual booth,
It is possible to measure the odor of paints using equipment on the basis of a laboratory.
Accurate measurement that is not affected by external factors.

【0006】[0006]

【実施例】以下に、本発明の望ましい実施例を説明す
る。図1〜図9は本発明の第1実施例を示している。図
1〜図3において、塗料8を一定量、容器(たとえば三
角フラスコ5)に入れて一定温度に保ち、無臭エアを送
って混合させ、この混合ガスを臭気袋11に捕集する。
室内の空気が、とくに臭気が強くない場合、無臭エアに
は室内空気を用い、エアポンプ1にて送る。エア流量
は、2l/min±0.2l/minであり、バルブ3
1で調整する。エアを活性炭2に通し無臭さをより完全
にして、流量計3を通し、その流量をバルブ32にて正
確に調整し、三角フラスコ5に送る。塗料8を入れた三
角フラスコ5は温度がたとえば25°C±2°Cに調整
された恒温水槽12に入っていて、一定温度とされてお
り、サーモスタット7で温度制御し、攪拌モータ4にて
一定温に保たれている。エアは、三角フラスコ5に入っ
た塗料8の液面より下から、ガラス吸収管6の細かい穴
の吹き出し口からバブリングされている。塗料8の量
は、たとえば100cc±10ccでほぼ一定量とされ
ている。塗料とエアとの混合ガスは、テフロンチューブ
36を通り、別の容器(たとえば、フラスコ10)に入
り、バルブ34を通して室外35へ排出される。フラス
コ10は、塗料の粒子が飛んでくる場合があるので、こ
こで液体塗料を除去するための容器である。テストを開
始して約5分程度経過すると、塗料臭気はほぼ均一にな
るので、バルブ34を閉じバルブ33を開け、臭気袋1
1に塗料臭気を入れる。臭気袋が10lの場合、2l/
minの流速で混合ガスを入れると、5分で臭気袋11
は塗料/エア混合ガスで満たされる。
The preferred embodiments of the present invention will be described below. 1 to 9 show a first embodiment of the present invention. 1 to 3, a certain amount of the paint 8 is put in a container (for example, an Erlenmeyer flask 5) and kept at a constant temperature, and odorless air is sent to mix them, and this mixed gas is collected in an odor bag 11.
When the indoor air does not have a particularly strong odor, the indoor air is used as the odorless air and is sent by the air pump 1. The air flow rate is 2 l / min ± 0.2 l / min, and the valve 3
Adjust with 1. Air is passed through the activated carbon 2 to make it more odorless, the flow meter 3 is passed through, the flow rate is accurately adjusted by the valve 32, and the air is sent to the Erlenmeyer flask 5. The Erlenmeyer flask 5 containing the paint 8 is contained in a constant temperature water tank 12 whose temperature is adjusted to, for example, 25 ° C. ± 2 ° C. and is kept at a constant temperature. The temperature is controlled by a thermostat 7 and the stirring motor 4 is used. It is kept at a constant temperature. Air is bubbled from below the liquid surface of the coating material 8 contained in the Erlenmeyer flask 5 through the outlets of the fine holes of the glass absorption tube 6. The amount of the paint 8 is, for example, 100 cc ± 10 cc, which is a substantially constant amount. The mixed gas of paint and air passes through the Teflon tube 36, enters another container (for example, the flask 10), and is discharged to the outside 35 through the valve 34. The flask 10 is a container for removing the liquid paint here because particles of the paint may fly off. About 5 minutes after starting the test, the odor of the paint becomes almost uniform, so the valve 34 is closed and the valve 33 is opened to remove the odor bag 1.
Add the paint odor to 1. If the odor bag is 10l, 2l /
When mixed gas is added at a flow rate of min, the odor bag 11 is reached in 5 minutes.
Is filled with paint / air mixture.

【0007】つぎに、臭気袋11に捕集された塗料/エ
ア混合ガスの臭気濃度およびTHC(全炭化水素)濃度
を測定する。図2にTHC測定器を示す。臭気袋11に
入った混合ガスは、フィルタ13を通りポンプ14にて
ノズル25より吹き出る。また、水素が、水素ボンベ2
1より圧力計22を通り、ノズル25を通って水素炎1
6となり、炭化水素をイオン化させる。ここに印加電圧
17をかけ、電圧の違いがTHC(全炭化水素のメタン
ガス換算濃度)を測定する。出力は、高抵抗19、エレ
クトロメータ18を通り指示計20にppm濃度として
出力される。また、基準ガス24として、高精度に純粋
なメタンガスを用い、それとの比較でTHC濃度が表示
される。ここで、THC濃度を測定する理由は、THC
測定器がわずか十分程度の暖機運転で使用可能になると
いった使い易さの他、塗料臭気はそのほとんどが炭化水
素(HC)でできており、とくに使用時にはシンナ(シ
ンナの主成分である、トルエン、キシレン、ベンゼンは
HCからできている)で20〜30%さらに薄めて使っ
ていることから、THC濃度の測定が必要と考えられる
からである。
Next, the odor concentration and THC (total hydrocarbon) concentration of the paint / air mixed gas collected in the odor bag 11 are measured. FIG. 2 shows a THC measuring device. The mixed gas contained in the odor bag 11 passes through the filter 13 and is blown from the nozzle 25 by the pump 14. In addition, hydrogen is hydrogen cylinder 2
1 through the pressure gauge 22 and through the nozzle 25 hydrogen flame 1
6, and the hydrocarbon is ionized. The applied voltage 17 is applied here, and THC (methane-equivalent concentration of all hydrocarbons) is measured for the difference in voltage. The output is output as a ppm concentration to the indicator 20 through the high resistance 19 and the electrometer 18. Further, pure methane gas is used with high precision as the reference gas 24, and the THC concentration is displayed by comparison with it. Here, the reason for measuring the THC concentration is THC.
In addition to the ease of use such that the measuring instrument can be used with only a sufficient warm-up operation, most of the paint odor is hydrocarbon (HC), especially when used, thinner (main component of thinner, This is because it is considered necessary to measure the THC concentration because it is diluted with 20 to 30% of (toluene, xylene and benzene are made of HC).

【0008】図3に、三点比較式臭気袋法による臭気濃
度測定結果の一例を示す。三点比較式臭気袋法自体は従
来公知の方法で、3つの袋のうちの1つの袋だけに臭気
混合ガスを希釈して入れておき、測定者が何れの袋のも
のが希釈混合ガスが入ったものかを認識できるかをみて
その臭気の強弱を判定する方法である。たとえば、6人
のパネラA、B……、Fに三点比較式臭気袋法で臭気を
感じるかどうかをテストしてもらう。このうち、臭いに
最も敏感な人(図3ではパネラD)と、最も鈍感な人
(図3ではパネラB)との認識結果は外し、残りのパネ
ラA、C、E、Fの測定結果を用いることにする。図3
の場合、パネラA、C、E、Fの平均の対数値は2.0
と2.5との間にあるので、オーダは2.25と判定
し、102.25=178と演算して、臭気濃度は178と
する。すなわち、178倍に希釈したところから通常の
人は塗料の臭気を感じなくなることを意味し、それより
高い倍数、たとえば500倍に希釈すると臭いは感じな
いし、それより低い倍数、たとえば50倍に希釈したも
のでは臭いを感じるということを意味する。この場合、
臭いの良し悪しは問題とせず、良い臭いであろうが悪い
臭いであろうが、臭気として感じるかどうか、したがっ
て臭気の強さが問題とされる。
FIG. 3 shows an example of odor concentration measurement results by the three-point comparison odor bag method. The three-point comparison type odor bag method itself is a conventionally known method, and the odor mixed gas is diluted and put in only one of the three bags. It is a method of judging the intensity of the odor by checking whether it can be recognized. For example, ask six panelists A, B, ..., F to test whether or not they smell with the three-point comparison odor bag method. Of these, the recognition results of the person most sensitive to odor (Panera D in FIG. 3) and the person most insensitive to odor (Panera B in FIG. 3) were removed, and the measurement results of the remaining panelers A, C, E, and F were removed. I will use it. Figure 3
In the case of, the logarithmic value of the average of Panelers A, C, E and F is 2.0.
Since it is between 2.5 and 2.5, the order is determined to be 2.25 , 10 2.25 = 178 is calculated, and the odor concentration is set to 178. That is, it means that the ordinary person does not feel the odor of the paint from the dilution of 178 times, and when it is diluted to a higher multiple, for example, 500 times, the odor does not feel, and it is diluted to a lower multiple, for example, 50 times. It means that you feel an odor when you do it. in this case,
Whether the odor is good or bad does not matter, and whether the odor is good or bad, whether or not it feels as an odor, and thus the intensity of the odor is a problem.

【0009】つぎに、臭気濃度をTHC濃度で徐して臭
気係数を求め、臭気係数を基準にして塗料の臭気を評価
する。上記の例では、臭気濃度が178であるから、図
2の装置で求めたTHC濃度が100ppmであれば、
臭気係数は178/100=1.78となる。この臭気
係数は、その塗料の単位THC濃度あたりの臭気濃度で
あり、臭気係数が大きければ大きい程、少量でも臭いと
いうことになる。したがって、臭気係数基準で塗料の臭
気を評価でき、しかも塗料間で簡単に臭さを比較できる
ようになった。本発明の塗料臭気評価法を新規塗料の臭
気評価に適用すると、図4または図5に示すようにな
る。図4において、新規塗料をステップ100で開発す
る際に、新規塗料について、ステップ101で臭気濃度
1 を測定し、ステップ102でTHC濃度C2 を測定
し、ステップ103でC1 /C2 から臭気係数Y1 を演
算する。一方、従来臭気上問題なく使用されている塗料
について、ステップ104で臭気濃度C3 を測定し、ス
テップ105でTHC濃度C4 を測定し、ステップ10
6で臭気係数Y2 =C3 /C4 を求める。そして、ステ
ップ107で、新規塗料の臭気係数Y1 を従来塗料の臭
気係数Y2 と比較し、ステップ108でY2≧Y1 なら
ステップ109でその新規塗料は使用可と判断し、ステ
ップ110でもしもY2 <Y1 なら、ステップ111で
使用不可と判断し、ステップ100に戻って新規塗料を
再検討する。図5は、従来塗料の臭気係数Y2 を一度測
定したらステップ106´で記憶しておき、再び測定す
ることなく、新規塗料の臭気評価に使用する場合を示し
ている。すなわち、図4のステップ104〜106が図
5ではステップ106´に置き換えられる。その他は図
4と同じである。
Next, the odor concentration is decremented by the THC concentration to obtain the odor coefficient, and the odor of the paint is evaluated based on the odor coefficient. In the above example, since the odor concentration is 178, if the THC concentration obtained by the device of FIG. 2 is 100 ppm,
The odor coefficient is 178/100 = 1.78. This odor coefficient is the odor concentration per unit THC concentration of the coating material, and the larger the odor coefficient, the more odorous it is. Therefore, the odor of the paint can be evaluated based on the odor coefficient standard, and the odor can be easily compared between the paints. When the paint odor evaluation method of the present invention is applied to the odor evaluation of a novel paint, it becomes as shown in FIG. 4 or FIG. In FIG. 4, when developing a new paint in step 100, the odor concentration C 1 of the new paint is measured in step 101, the THC concentration C 2 is measured in step 102, and from C 1 / C 2 in step 103. The odor coefficient Y 1 is calculated. On the other hand, for a paint which has been conventionally used without any odor problem, the odor concentration C 3 is measured in step 104, the THC concentration C 4 is measured in step 105, and the step 10
In step 6, the odor coefficient Y 2 = C 3 / C 4 is obtained. Then, in step 107, the odor coefficient Y 1 of the new paint is compared with the odor coefficient Y 2 of the conventional paint. If Y 2 ≧ Y 1 in step 108, it is determined in step 109 that the new paint is usable, and in step 110. If Y 2 <Y 1, it is determined in step 111 that it cannot be used, and the process returns to step 100 to reconsider the new paint. FIG. 5 shows a case where the odor coefficient Y 2 of the conventional paint is once measured, stored in step 106 ′, and used for odor evaluation of the new paint without being measured again. That is, steps 104 to 106 in FIG. 4 are replaced with step 106 'in FIG. Others are the same as in FIG.

【0010】つぎに、図6は、上記塗料評価方法におけ
る、塗料の種類の違いによる、臭気濃度とTHC濃度の
関係を示している。Aは上塗用白塗料であり、Bは塗料
希釈用シンナであり、Cはシルバ色のメタリック塗料で
ある。単一塗料であれば、THC濃度と臭気濃度は相関
があり、原点を通る直線関係となる。新規塗料の場合単
一塗料状態であるから、測定によって1点におけるTH
C濃度と臭気濃度がわかれば、その点と原点を通る直線
をひくことにより、臭気濃度/THC濃度特性を求める
ことができる。したがって、単一種類塗料で臭い測定を
しておくことが望ましい。混合塗料の場合は混合の割合
に従って臭いも当然に変化し、臭気係数Y1 の塗料Aを
a%、臭気係数Y2 の塗料Cをc%混合すれば、A+C
の混合塗料はY1 ×a/100+Y2 ×c/100の臭
気係数となる。また、臭気濃度とTHC濃度間にリニア
な関係があるということは、塗料が多ければ多い程、臭
気濃度が高くなることを意味する。すなわち、混合ガス
の塗料濃度が濃くなる程臭いと云える。また、臭気係数
がA>B>Cの順であり、塗料としてはAが一番臭く、
B、Cの順で臭さが低下する。
Next, FIG. 6 shows the relationship between the odor concentration and the THC concentration in the above-mentioned paint evaluation method depending on the type of paint. A is a white paint for top coating, B is a thinner for paint dilution, and C is a silver metallic paint. In the case of a single paint, the THC concentration and the odor concentration have a correlation and have a linear relationship passing through the origin. In the case of new paint, since it is a single paint state, TH at one point is measured.
If the C concentration and the odor concentration are known, the odor concentration / THC concentration characteristic can be obtained by drawing a straight line passing through the point and the origin. Therefore, it is desirable to measure the odor with a single type of paint. In the case of a mixed paint, the odor naturally changes according to the mixing ratio. If a paint A with an odor coefficient Y 1 is mixed by a% and a paint C with an odor coefficient Y 2 is mixed by c%, A + C
The mixed paint of No. 1 has an odor coefficient of Y 1 × a / 100 + Y 2 × c / 100. Further, the linear relationship between the odor concentration and the THC concentration means that the more paint, the higher the odor concentration. That is, it can be said that the thicker the paint concentration of the mixed gas is, the more the odor is. The odor coefficient is in the order of A>B> C, and A is the most odorous paint.
The odor decreases in the order of B and C.

【0011】図7はTHC濃度(ppm)とバブリング
時間の関係を示している。D塗料のように、バブリング
時間に対して急激にTHC濃度が低下する塗料もあれ
ば、E塗料のように比較的バブリング時間に対して安定
している塗料もある。従来法によってイの点とロの点
(イの点より時間が経過した点)で臭気濃度を測定する
と、臭気濃度は異なる。それは、THC濃度が点イ、ロ
で異なるからである。したがって、同じ塗料の臭気を従
来法で測定しても、測定時間が異なれば臭気濃度は変化
し、再現性がないことを意味する。しかし、点イ、ロの
それぞれで、臭気濃度とTHC濃度を共に測定すると、 点イの臭気濃度/点イのTHC濃度= 点ロの臭気濃度/点ロのTHC濃度 の関係が成立し、D塗料の臭気係数は測定時間の変化に
かかわらず、点イ、ロについて同じであり、本発明の方
法では測定時間の影響を受けることなく正確に臭いを測
定でき、再現性があることがわかる。
FIG. 7 shows the relationship between the THC concentration (ppm) and the bubbling time. Some paints, such as D paint, have a rapidly decreasing THC concentration with respect to the bubbling time, and some paints, such as E paint, are relatively stable with respect to the bubbling time. When the odor concentration is measured at the points a and b (the point where time has elapsed from the point a) by the conventional method, the odor concentration is different. This is because the THC concentration differs between points a and b. Therefore, even if the odor of the same paint is measured by the conventional method, the odor concentration changes if the measurement time is different, which means that there is no reproducibility. However, if both the odor concentration and the THC concentration are measured at points a and b, respectively, the relationship of odor concentration at point a / THC concentration at point a = odor concentration at point b / THC concentration at point b is established, and D The odor coefficient of the paint is the same for points a and b regardless of the change in the measurement time, and it can be seen that the method of the present invention can accurately measure the odor without being affected by the measurement time and has reproducibility.

【0012】図8は、THC濃度対バブリング時間特性
において、塗料量を変えた場合の影響を示す。特性13
1はD塗料を50cc容器に入れてバブリングした場合
を示し、特性132は同じくD塗料を10cc入れた場
合を示す。THC濃度の出かたは塗料量の多い方が安定
しているが、塗料量の少ない方は安定せずに時間ととも
に急激に減少している。従来法において、点ハ、ニ、ホ
で臭気濃度を測定していれば同じD塗料にかかわらず臭
気濃度が異なってしまう。しかし、本発明方法では、T
HC濃度も測定することにより、 点ハの臭気濃度/点ハのTHC濃度= 点ニの臭気濃度/点ニのTHC濃度= 点ホの臭気濃度/点ホのTHC濃度 の関係が成り立ち、臭気係数は全て同じとなる。すなわ
ち、塗料量の大小の影響を受けることなく正確に塗料の
臭気係数を求めることができる。ただし、測定の容易さ
からは100cc程度の塗料とするのが望ましい。逆に
いえば、100cc程度の塗料で、塗料の臭気を評価で
きる。
FIG. 8 shows the effect of varying the amount of paint on the THC concentration vs. bubbling time characteristics. Characteristic 13
1 shows the case where the D paint was put in a 50 cc container and bubbling was performed, and the characteristic 132 shows the case where 10 cc of the D paint was put in the same manner. The amount of THC concentration is stable when the amount of paint is large, but is not stable when the amount of paint is small, and decreases rapidly with time. In the conventional method, if the odor concentration is measured at points C, D, and E, the odor concentration will be different regardless of the same D paint. However, in the method of the present invention, T
By also measuring the HC concentration, the relationship between the odor concentration of point c / THC concentration of point c = odor concentration of point d / THC concentration of point d = odor concentration of point e / THC concentration of point e is established, and the odor coefficient Are all the same. That is, the odor coefficient of the paint can be accurately obtained without being affected by the size of the paint. However, for ease of measurement, it is desirable to use a paint of about 100 cc. Conversely speaking, the odor of the paint can be evaluated with a paint of about 100 cc.

【0013】図9は、THC濃度対バブリング時間特性
において、塗料温度を変えた場合の影響を示す。特性1
41はD塗料の温度を25°Cにした場合、特性142
はD塗料の温度を15°Cにした場合を示している。図
9より、同じ塗料でも温度により蒸発速度が変わるた
め、THC濃度が異なることがわかる。ただし、温度が
塗料焼付け温度近傍に高くなり塗料が部分酸化されてア
ルデヒドのように異なる分子になる場合については他の
実施例で検討する。従来法により、点ヘ、ト、チで測定
しておれば、臭気濃度は3点にて大きく異なるが、TH
C濃度を測定していると、 点ヘの臭気濃度/点ヘのTHC濃度= 点トの臭気濃度/点トのTHC濃度= 点チの臭気濃度/点チのTHC濃度 が成り立つ。したがって、塗料の温度が塗料を酸化して
異種の分子の塗料に変える程高くならない範囲において
変化しても、したがって、塗料温度が変化して塗料の蒸
発速度が変化しても、塗料の臭気係数はその影響を受け
ず、高精度の臭気評価が可能になる。たとえば、一般に
塗料の30°Cの蒸気圧は10°Cの蒸気圧に比べて3
〜5倍増加するが、臭気係数はほぼ一定である。しか
し、試験の容易さからは室温近傍、たとえば20°C前
後で塗料評価試験をすることは望ましい。
FIG. 9 shows the effect of changing the paint temperature on the THC concentration vs. bubbling time characteristic. Characteristic 1
41 shows characteristics 142 when the temperature of the D paint is 25 ° C.
Shows the case where the temperature of the D paint is 15 ° C. It can be seen from FIG. 9 that even with the same paint, the THC concentration differs because the evaporation rate changes with temperature. However, the case where the temperature rises near the paint baking temperature and the paint is partially oxidized into different molecules such as aldehyde will be examined in other examples. If the conventional method is used to measure points F, G, and H, the odor concentration will differ greatly at the three points.
When the C concentration is measured, the odor concentration at the point / THC concentration at the point = the odor concentration at the point / THC concentration at the point = the odor concentration at the point / THC concentration at the point is established. Therefore, even if the temperature of the paint changes within a range that is not high enough to oxidize the paint to change it to a paint of different molecules, and thus, even if the paint temperature changes and the evaporation rate of the paint changes, the odor coefficient of the paint Will not be affected by it, enabling highly accurate odor evaluation. For example, in general, the vapor pressure of paint at 30 ° C is 3% higher than that of 10 ° C.
~ 5 times increase, but the odor coefficient is almost constant. However, from the viewpoint of easiness of the test, it is desirable to perform the paint evaluation test at around room temperature, for example, around 20 ° C.

【0014】表1、表2は、吹付け塗料臭の臭気係数評
価の例を示す。上塗、中塗吹付け塗料臭として、通常ア
ルコール、エステルが臭いといわれているが、脂肪酸を
含まない正常塗料と、その中に脂肪酸(たとえばn酪
酸)が入った異常塗料の臭気を、臭気係数基準で比較す
ると下記のようになる。
Tables 1 and 2 show examples of odor coefficient evaluation of spray paint odor. Alcohol and ester are usually said to be odors as top coat and middle coat spray paint odors, but the odors of normal paints that do not contain fatty acids and abnormal paints that contain fatty acids (such as n-butyric acid) are used as odor coefficient standards. The comparison is as follows.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】上表において、(1/閾値)=物質濃度1
00%の臭気濃度、である。上表に示す如く、異常塗料
でn酪酸が20%入っている塗料を臭気係数で比較して
も、明らかに異常塗料の方が大きくなっている。このよ
うに、吹付塗料においても臭気係数で臭気の比較ができ
る。よって、臭気係数基準ですべての吹付塗料の臭気評
価が可能である。
In the above table, (1 / threshold value) = concentration of substance 1
The odor concentration is 00%. As shown in the above table, when comparing the paints containing 20% of n-butyric acid as the abnormal paints by the odor coefficient, the abnormal paints are obviously larger. As described above, the odor can be compared by the odor coefficient even in the spray paint. Therefore, it is possible to evaluate the odor of all sprayed paints on the basis of the odor coefficient.

【0018】図10は本発明の第2実施例を示してい
る。電着塗装は防錆性に優れているため、自動車のボデ
ー、フレームなどの下塗りとして使われている。塗料を
焼き付ける際の電着塗装乾燥炉から排出される排ガスの
臭気が高く問題となる場合がある。この場合、悪臭、臭
気濃度の成分として、塗料が焼付け温度に加熱されたと
きに塗料が酸化してできるアルデヒド類が関係してい
る。とくに、アセトアルデヒド、ブチルアルデヒドが焼
付乾燥炉から多量に排出され、それが問題となる。アセ
トアルデヒド(CH3 CHO)、ブチルアルデヒドは炭
化水素(HC)の酸化物であり、THC測定器で、全炭
化水素として測定できる。また、臭気濃度は別に測定で
きるため、新規塗料の採用の合否を決めるに際し、臭気
係数=臭気強度/THC濃度を、基準として用いること
ができる。すなわち、アセトアルデヒドやブチルアルデ
ヒドは炭化水素の酸化物であるが、その臭気係数は測定
可能であり、第1実施例と同様の方法で臭気を評価でき
る。
FIG. 10 shows a second embodiment of the present invention. Electro-deposition coating has excellent rust resistance and is used as an undercoat for automobile bodies and frames. When the paint is baked, the odor of exhaust gas discharged from the electrodeposition coating drying furnace is high and may cause a problem. In this case, aldehydes formed by oxidation of the paint when the paint is heated to the baking temperature are involved as components of the malodor and odor concentration. Especially, a large amount of acetaldehyde and butyraldehyde is discharged from the baking oven, which becomes a problem. Acetaldehyde (CH 3 CHO) and butyraldehyde are hydrocarbon (HC) oxides and can be measured as total hydrocarbons with a THC measuring instrument. Further, since the odor concentration can be measured separately, the odor coefficient = odor intensity / THC concentration can be used as a reference when deciding whether or not to adopt a new paint. That is, although acetaldehyde and butyraldehyde are hydrocarbon oxides, the odor coefficient thereof can be measured, and the odor can be evaluated by the same method as in the first embodiment.

【0019】さらに詳しくは、図10において、室内の
空気がとくに臭わない場合、エアポンプ51にて室内の
空気を使う。エア流量は2l/min±0.2l/mi
nであり、バルブ52で流量を調整し、活性炭53を通
し、無臭を完全にして供給する。エアは、流量計55を
通し、その流量をバルブ54にて正確に合わせ、加熱炉
58に入れる。加熱炉58には石英ガラス管61が入っ
ており、ヒータ57で加熱する。石英ガラス管61の中
に皿59とその中に塗料60を5g±0.5g入れる。
塗料を塗料焼付け温度(約120°C)に加熱して、塗
料の一部を部分酸化(塗料中のアルコールの酸化)させ
てアルデヒド(HCの酸化物)を生成させる。温度制御
には温度センサ56を用い、温度を120°C±5°C
に制御する。石英ガラス管61にはガラス管62を通
し、塗料(アルデヒド含む)/エアの混合ガスを、ガラ
ス管62、テフロンチューブ63を通して三角フラスコ
64に入れる。フラスコ64は、ゴミ等が次の工程に行
かないようにするための容器として機能する。バルブ6
6を閉じバルブ65を開け、温度が所定の温度に達して
から約5分後、全体に臭気がいきわたって安定したこと
を確かめた後、バルブ65を閉じ、バルブ66を開け
て、臭気袋11に焼付け臭を入れる。次に、第1実施例
と同様に臭気袋11に入ったサンプルは、アルデヒドも
含めてTHC濃度をTHC測定器で計測し、臭気濃度を
三点比較式臭気袋法で測定する。続いて、臭気係数を演
算し、第1実施例と同様に臭気係数基準で塗料の臭気を
評価する。
More specifically, in FIG. 10, if the indoor air does not smell, the air pump 51 uses the indoor air. Air flow rate is 2l / min ± 0.2l / mi
n, the flow rate is adjusted by the valve 52, and the activated carbon 53 is passed through to completely eliminate odor and supply. Air is passed through a flow meter 55, its flow rate is accurately adjusted by a valve 54, and the air is put into a heating furnace 58. A quartz glass tube 61 is contained in the heating furnace 58 and is heated by the heater 57. 5 g ± 0.5 g of the paint 60 is placed in the dish 59 in the quartz glass tube 61.
The paint is heated to a paint baking temperature (about 120 ° C.) to partially oxidize a part of the paint (oxidation of alcohol in the paint) to generate an aldehyde (oxide of HC). The temperature sensor 56 is used for temperature control, and the temperature is 120 ° C ± 5 ° C.
To control. A glass tube 62 is passed through the quartz glass tube 61, and a mixed gas of paint (including aldehyde) / air is introduced into the Erlenmeyer flask 64 through the glass tube 62 and the Teflon tube 63. The flask 64 functions as a container for preventing dust and the like from going to the next step. Valve 6
6 is closed and the valve 65 is opened. About 5 minutes after the temperature reaches a predetermined temperature, it is confirmed that the odor has spread to the whole and is stable, then the valve 65 is closed, the valve 66 is opened, and the odor bag 11 Add the burning odor to. Next, similarly to the first embodiment, the THC concentration of the sample contained in the odor bag 11 including the aldehyde is measured by the THC measuring device, and the odor concentration is measured by the three-point comparison odor bag method. Then, the odor coefficient is calculated, and the odor of the paint is evaluated on the basis of the odor coefficient as in the first embodiment.

【0020】[0020]

【表3】 [Table 3]

【0021】表3に焼付け塗料臭の測定結果例を示す。
サンプルCとサンプルDが三点式臭袋法で、測定され、
THC濃度も同時に、測定されている。このとき、従来
法ではサンプルCの臭気濃度は(960+1200)/
2=1080となり、サンプルDの臭気濃度は(900
+1500)/2=1200となる。そして、CとDの
サンプルの臭気濃度の差は、10%となる。しかしなが
ら、今回のTHC濃度の測定により、臭気係数=(臭気
濃度)/(THC濃度)より、サンプルCは12倍/p
pmサンプルDは、15倍/ppmとなり、20%の違
いがあることがわかる。このように臭気係数にして、計
算すると、三点比較式臭袋法で測定した臭気濃度を正確
に使うことができるのでその臭気濃度が無駄に捨てられ
ることがない。通常、2点とれば臭気係数は、ほとんど
一致するので、一点でも信頼性が高い。
Table 3 shows an example of the measurement results of the baking paint odor.
Sample C and sample D are measured by the three-point odor bag method,
The THC concentration is also measured at the same time. At this time, in the conventional method, the odor concentration of the sample C is (960 + 1200) /
2 = 1080, and the odor concentration of sample D is (900
+1500) / 2 = 1200. The difference between the odor concentrations of the C and D samples is 10%. However, according to the measurement of THC concentration this time, since the odor coefficient = (odor concentration) / (THC concentration), sample C is 12 times / p.
The pm sample D is 15 times / ppm, which shows that there is a difference of 20%. When the odor coefficient is calculated in this way, the odor concentration measured by the three-point comparison odor bag method can be accurately used, and the odor concentration is not wasted. Usually, if two points are given, the odor coefficients are almost the same, so even one point is highly reliable.

【0022】[0022]

【表4】 [Table 4]

【0023】焼付け塗料臭としてエステルやアルコール
が部分酸化したアルデヒドが主成分と言われている。ア
ルデヒド類の中でも表4に示すように、例えばn−ブチ
ルアルデヒド類が閾値が低い。今回の臭気係数の計算に
て、THC濃度で割っているので、例えばn−ブチルア
ルデヒドでは、C=4で閾値を割って比較する必要があ
る。閾値の順位ではnバレリルアルデヒドが一番臭く、
ホルムアルデヒドに向かうにつれ、臭くなくなる。ま
た、閾値/C数の順位も、nバレリルアルデヒドが一番
小さくホルムアルデヒドに向かうにつれて大きくなって
いる。このように、C数で閾値を割っても大きな臭気濃
度の順位が変わるようなことが起きないため、アルデヒ
ドを臭気係数=(臭気濃度)/(THC濃度)で評価し
ても問題なしといえる。よって、臭気係数による焼付け
塗料臭の塗料間の臭気の比較は、できるといえる。さら
に、臭気濃度で評価すると、物質濃度100%の臭気濃
度は1/閾値であることからその(1/閾値)/C数に
て比較した。今回の臭気係数=(臭気濃度)/(THC
濃度)は、この(1/閾値)/C数にあたるので、それ
にて評価できる。(1/閾値)/C数はホルムアルデヒ
ドより、アセトアルデヒドの方が臭く、またn−ブチル
アルデヒド、nバレリルアルデヒドの順に大きくなって
いることから臭気係数で、評価してもよいことがわか
る。このことから、臭気係数による焼付け塗料臭の評価
はできるといえる。
It is said that the main component is an aldehyde obtained by partial oxidation of ester or alcohol as the odor of baked paint. Among the aldehydes, as shown in Table 4, for example, n-butyraldehyde has a low threshold value. In the calculation of the odor coefficient this time, since it is divided by the THC concentration, for n-butyraldehyde, for example, it is necessary to divide the threshold value by C = 4 for comparison. N valeryl aldehyde has the most odor in the order of threshold,
As it goes to formaldehyde, it no longer smells. In addition, the order of the threshold / C number is that n-valeryl aldehyde is the smallest and becomes larger toward formaldehyde. In this way, even if the threshold value is divided by the C number, the order of the large odor concentration does not change, so it can be said that there is no problem even if the aldehyde is evaluated by the odor coefficient = (odor concentration) / (THC concentration). . Therefore, it can be said that it is possible to compare the odor between paints of the baking paint odor by the odor coefficient. Furthermore, when the odor concentration is evaluated, the odor concentration at a substance concentration of 100% is 1 / threshold, and therefore the comparison is made by (1 / threshold) / C number. This odor coefficient = (odor concentration) / (THC
Since the (concentration) corresponds to this (1 / threshold) / C number, it can be evaluated accordingly. As for (1 / threshold value) / C number, acetaldehyde smells more than formaldehyde, and n-butyraldehyde and n-valeryl aldehyde increase in that order. From this, it can be said that the odor of baked paint can be evaluated by the odor coefficient.

【0024】図11〜図14は本発明の第3実施例を示
している。第3実施例では、吹付け塗料に対する評価合
格基準を、臭気濃度/THC濃度で10以下に設定し、
焼付け塗料に対する評価合格基準を、臭気濃度/THC
濃度で50以下に設定する。上記の基準で合格品と評価
された塗料A、B、Cを用いて、車のボデーを行ったと
きの工程、塗料、臭気濃度/THC濃度、臭気成分の関
係を示すと図11のようになる。図11において、塗料
Aには臭気濃度/THC濃度が120°C焼付け時に5
0以下の物性を有するものが選定されており、塗料B、
Cには、臭気濃度/THC濃度が室温(たとえば、25
°C)バブリング時に10以下であり、かつ120°C
焼付け時に50以下の物性を有するものが選定されてい
る。
11 to 14 show a third embodiment of the present invention. In the third embodiment, the evaluation pass criterion for spray paint is set to 10 or less in odor concentration / THC concentration,
Evaluation criteria for baking paint is odor concentration / THC
The concentration is set to 50 or less. Using the paints A, B, and C that were evaluated as acceptable products according to the above criteria, the relationship between the process, paint, odor concentration / THC concentration, and odor component when a car body is performed is shown in Fig. 11. Become. In Fig. 11, paint A has an odor concentration / THC concentration of 5 when baked at 120 ° C.
A paint having a physical property of 0 or less is selected.
C has an odor concentration / THC concentration at room temperature (for example, 25
° C) 10 or less at bubbling and 120 ° C
Those having physical properties of 50 or less at the time of baking are selected.

【0025】乾燥炉ではワーク93は図12に示すよう
に送られ塗装される。すなわち、ワーク93は乾燥炉
(上塗、中塗)97に入り、乾燥される。乾燥炉内の溶
剤濃度が高くなると危険であるため、乾燥炉内排気フー
ド98より排気している。排気は脱臭装置91を通り、
熱交換機90を通り、屋外排気ダクト96を通り、屋外
へ排出される。また、高温のガスを屋外へそのまま排気
するのはコスト大になるので、乾燥炉97内の排気フー
ド92より空気を取り入れ、熱交換機90を通し、吹き
出し口99より吹き出している。また、外気はダクト9
5より熱交換機90を通し、吹き出し口94より吹き出
し、バランスを保っている。この場合、臭気濃度の高い
塗料を使うと脱臭装置91で処理しきれず、大気へ臭気
濃度大のガスが放出されるが、これを防止するために、
吹き付け時の臭気係数が10以下、乾燥時にも臭気係数
が50以下となる塗料を用いる。
In the drying oven, the work 93 is sent and coated as shown in FIG. That is, the work 93 enters the drying oven (top coat, middle coat) 97 and is dried. Since it is dangerous that the solvent concentration in the drying oven becomes high, the exhaust air is exhausted from the exhaust oven 98 in the drying oven. The exhaust gas passes through the deodorizing device 91,
It passes through the heat exchanger 90, passes through the outdoor exhaust duct 96, and is discharged outdoors. Further, since it is costly to exhaust the high temperature gas to the outside as it is, air is taken in from the exhaust hood 92 in the drying furnace 97, passed through the heat exchanger 90, and blown out from the outlet 99. The outside air is duct 9
5 through the heat exchanger 90 and blown out from the blowout port 94 to maintain balance. In this case, if a paint having a high odor concentration is used, the deodorizing device 91 cannot completely process the gas, and a gas having a high odor concentration is released to the atmosphere. In order to prevent this,
A paint having an odor coefficient of 10 or less when sprayed and an odor coefficient of 50 or less when dried is used.

【0026】従来、塗装ブース湿式ベンチュリで用いる
塗料の種類は多く、図13に示すように、あるものは臭
気濃度/THC濃度が10以下であり、あるものは10
を越えていた。しかし、本発明第3実施例では、全ての
中塗り、上塗り塗料に対し臭気濃度/THC濃度で10
以下のものを用い、図13の斜線の領域に入る塗料を用
いる。同様に、従来、電着乾燥炉、上塗りおよび中塗り
乾燥炉で用いる塗料の種類は多く、あるものは臭気係数
/THC濃度が50以下であり、あるものは50を越え
ていた。しかし、本発明第3実施例では、全ての焼付け
塗料に対し、臭気濃度/THC濃度で50以下のものを
用い、図14の斜線の領域に入る塗料を用いる。これに
よって、排気の塗料臭気濃度を下げることができ、周囲
の住民からの、臭いという苦情がなくなる。
Conventionally, there are many kinds of paints used in the coating booth wet venturi, and as shown in FIG. 13, some have an odor concentration / THC concentration of 10 or less, and some have 10
Was over. However, in the third embodiment of the present invention, the odor concentration / THC concentration is 10% for all the intermediate coating and top coating compositions.
The following is used, and the paint in the shaded area in FIG. 13 is used. Similarly, conventionally, there are many kinds of paints used in the electrodeposition drying furnace, the top coat and intermediate coat drying furnaces, some have an odor coefficient / THC concentration of 50 or less, and some have exceeded 50. However, in the third embodiment of the present invention, for all of the baking paints, those having an odor concentration / THC concentration of 50 or less are used, and paints in the shaded area in FIG. 14 are used. As a result, the paint odor concentration in the exhaust can be reduced, and the complaints of odors from the surrounding residents can be eliminated.

【0027】[0027]

【発明の効果】本発明によれば、塗料にエアを送って混
合させ、混合ガスの臭気濃度を測定するとともにTHC
濃度を求め、臭気濃度/THC濃度として臭気係数を求
め、臭気係数基準で塗料の臭気を評価したので、外的要
因を受けずに塗料そのものの臭気を高精度にかつ再現性
をもって測定することができ、しかも実機、実験ブース
によらずに測定でき、高精度でかつ単純な方法で塗料臭
気を評価できる。
EFFECTS OF THE INVENTION According to the present invention, air is sent to the paint to mix it, and the odor concentration of the mixed gas is measured and the THC is reduced.
The odor is calculated as the concentration and the odor coefficient is calculated as the odor concentration / THC concentration, and the odor of the paint is evaluated based on the odor coefficient standard. Therefore, the odor of the paint itself can be measured with high accuracy and reproducibility without receiving external factors. In addition, it can be measured without depending on the actual equipment and the test booth, and the odor of the paint can be evaluated with high accuracy and a simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の塗料評価方法を実施する
装置の系統図である。
FIG. 1 is a systematic diagram of an apparatus for carrying out a paint evaluation method according to a first embodiment of the present invention.

【図2】図1の装置に接続されるTHC測定器の系統図
である。
FIG. 2 is a system diagram of a THC measuring device connected to the apparatus of FIG.

【図3】三点比較式臭気袋法の結果例を示す図である。FIG. 3 is a diagram showing a result example of a three-point comparison type odor bag method.

【図4】新規塗料評価用フローチャートである。FIG. 4 is a flowchart for evaluating a new paint.

【図5】もう一つの、新規塗料評価用フローチャートで
ある。
FIG. 5 is another flowchart for evaluating a new paint.

【図6】臭気濃度対THC濃度図である。FIG. 6 is an odor concentration versus THC concentration diagram.

【図7】THC濃度対バブリング時間図における塗料の
種類の違いによる比較図である。
FIG. 7 is a comparison diagram according to the difference in the type of paint in the THC concentration vs. bubbling time chart.

【図8】THC濃度対バブリング時間図における塗料量
の違いによる比較図である。
FIG. 8 is a comparison diagram according to the difference in the paint amount in the THC concentration vs. bubbling time chart.

【図9】THC濃度対バブリング時間図における温度の
違いによる比較図である。
FIG. 9 is a comparison diagram according to the difference in temperature in the THC concentration vs. bubbling time chart.

【図10】本発明の第2実施例の塗料評価方法を実施す
る装置の系統図である。
FIG. 10 is a systematic diagram of an apparatus for carrying out the paint evaluation method of the second embodiment of the present invention.

【図11】車のボデー塗装工程図である。FIG. 11 is a process drawing of a vehicle body painting process.

【図12】図11のうち乾燥炉内の系統図である。FIG. 12 is a system diagram inside the drying furnace in FIG. 11.

【図13】塗装ブース湿式ベンチュリにおける塗料種類
数対臭気濃度/THC濃度図である。
FIG. 13 is a diagram showing the number of paint types versus odor concentration / THC concentration in a coating booth wet venturi.

【図14】乾燥炉における塗料種類数対臭気濃度/TH
C濃度図である。
FIG. 14: Number of paint types in drying oven vs. odor concentration / TH
It is a C density | concentration figure.

【図15】従来の実験ブースでの塗料臭気測定法を示す
装置の概略断面図である。
FIG. 15 is a schematic sectional view of an apparatus showing a conventional method for measuring paint odor in an experimental booth.

【図16】従来の実機ブースでの塗料臭気測定法を示す
装置の概略断面図である。
FIG. 16 is a schematic cross-sectional view of an apparatus showing a conventional method for measuring paint odor in an actual booth.

【符号の説明】[Explanation of symbols]

1 エアポンプ 5 三角フラスコ 8 塗料 11 臭気袋 12 恒温水槽 16 水素炎 21 水素ボンベ 51 エアポンプ 53 活性炭 57 ヒータ 60 塗料 1 Air Pump 5 Erlenmeyer Flask 8 Paint 11 Odor Bag 12 Constant Temperature Water Tank 16 Hydrogen Flame 21 Hydrogen Cylinder 51 Air Pump 53 Activated Carbon 57 Heater 60 Paint

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月18日[Submission date] August 18, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図10】 [Figure 10]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】つぎに、臭気濃度をTHC濃度で除して臭
気係数を求め、臭気係数を基準にして塗料の臭気を評価
する。上記の例では、臭気濃度が178であるから、図
2の装置で求めたTHC濃度が100ppmであれば、
臭気係数は178/100=1.78となる。この臭気
係数は、その塗料の単位THC濃度あたりの臭気濃度で
あり、臭気係数が大きければ大きい程、少量でも臭いと
いうことになる。したがって、臭気係数基準で塗料の臭
気を評価でき、しかも塗料間で簡単に臭さを比較できる
ようになった。本発明の塗料臭気評価法を新規塗料の臭
気評価に適用すると、図4または図5に示すようにな
る。図4において、新規塗料をステップ100で開発す
る際に、新規塗料について、ステップ101で臭気濃度
1 を測定し、ステップ102でTHC濃度C2 を測定
し、ステップ103でC1 /C2 から臭気係数Y1 を演
算する。一方、従来臭気上問題なく使用されている塗料
について、ステップ104で臭気濃度C3 を測定し、ス
テップ105でTHC濃度C4 を測定し、ステップ10
6で臭気係数Y2 =C3 /C4 を求める。そして、ステ
ップ107で、新規塗料の臭気係数Y1 を従来塗料の臭
気係数Y2 と比較し、ステップ108でY2≧Y1 なら
ステップ109でその新規塗料は使用可と判断し、ステ
ップ110でもしもY2 <Y1 なら、ステップ111で
使用不可と判断し、ステップ100に戻って新規塗料を
再検討する。図5は、従来塗料の臭気係数Y2 を一度測
定したらステップ106´で記憶しておき、再び測定す
ることなく、新規塗料の臭気評価に使用する場合を示し
ている。すなわち、図4のステップ104〜106が図
5ではステップ106´に置き換えられる。その他は図
4と同じである。
Next, the odor concentration is divided by the THC concentration to obtain the odor coefficient, and the odor of the paint is evaluated based on the odor coefficient. In the above example, since the odor concentration is 178, if the THC concentration obtained by the device of FIG. 2 is 100 ppm,
The odor coefficient is 178/100 = 1.78. This odor coefficient is the odor concentration per unit THC concentration of the coating material, and the larger the odor coefficient, the more odorous it is. Therefore, the odor of the paint can be evaluated based on the odor coefficient standard, and the odor can be easily compared between the paints. When the paint odor evaluation method of the present invention is applied to the odor evaluation of a novel paint, it becomes as shown in FIG. 4 or FIG. In FIG. 4, when developing a new paint in step 100, the odor concentration C 1 of the new paint is measured in step 101, the THC concentration C 2 is measured in step 102, and from C 1 / C 2 in step 103. The odor coefficient Y 1 is calculated. On the other hand, for a paint which has been conventionally used without any odor problem, the odor concentration C 3 is measured in step 104, the THC concentration C 4 is measured in step 105, and the step 10
In step 6, the odor coefficient Y 2 = C 3 / C 4 is obtained. Then, in step 107, the odor coefficient Y 1 of the new paint is compared with the odor coefficient Y 2 of the conventional paint. If Y 2 ≧ Y 1 in step 108, it is determined in step 109 that the new paint is usable, and in step 110. If Y 2 <Y 1, it is determined in step 111 that it cannot be used, and the process returns to step 100 to reconsider the new paint. FIG. 5 shows a case where the odor coefficient Y 2 of the conventional paint is once measured, stored in step 106 ′, and used for odor evaluation of the new paint without being measured again. That is, steps 104 to 106 in FIG. 4 are replaced with step 106 'in FIG. Others are the same as in FIG.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塗料を容器に入れ、無臭エアを送って混
合させ、塗料とエアとの混合ガスを臭気袋に捕集し、 臭気袋に捕集された塗料とエアとの混合ガスの臭気濃度
を測定するとともに、THC(全炭化水素)濃度をTH
C測定器にて測定し、 臭気濃度/THC濃度より該塗料の臭気係数を求め、臭
気係数基準で塗料の臭気を評価する、ことを特徴とする
塗料評価方法。
1. The paint is put in a container, and odorless air is sent to mix it, the mixed gas of the paint and air is collected in an odor bag, and the odor of the mixed gas of paint and air collected in the odor bag is collected. The concentration is measured, and the THC (total hydrocarbon) concentration is set to TH
A coating material evaluation method, which comprises: measuring with a C measuring device, obtaining the odor coefficient of the coating material from the odor concentration / THC concentration, and evaluating the odor of the coating material based on the odor coefficient standard.
【請求項2】 塗料とエアとの混合および混合ガスの臭
気袋への捕集工程において、塗料を塗料焼付け温度に加
熱し塗料から揮発した溶剤と、部分酸化により生成され
たアルデヒド類及びその他の全ての分解ガスを捕集し、
THC濃度測定工程においてHC酸化物も含めてTHC
濃度を測定する、請求項1記載の塗料評価方法。
2. A solvent volatilized from the paint by heating the paint to a paint baking temperature in the step of mixing the paint and air and collecting the mixed gas in the odor bag, and aldehydes and other substances produced by partial oxidation. Collects all decomposition gas,
THC including HC oxide in THC concentration measurement process
The paint evaluation method according to claim 1, wherein the concentration is measured.
【請求項3】 臭気係数基準の吹き付け塗料臭気評価工
程において、臭気係数で10以下の塗料を合格と評価す
る請求項1記載の塗料評価方法。
3. The paint evaluation method according to claim 1, wherein a paint having an odor coefficient of 10 or less is evaluated as acceptable in the odor evaluation process of sprayed paint based on the odor coefficient.
【請求項4】 臭気係数基準の焼付け塗料臭気評価工程
において、臭気係数で50以下の焼付け塗料を合格と評
価する請求項2記載の塗料評価方法。
4. The paint evaluation method according to claim 2, wherein a baking paint having an odor coefficient of 50 or less is evaluated as acceptable in the baking paint odor evaluation step based on the odor coefficient.
JP5133634A 1993-06-03 1993-06-03 Estimating method for paint Pending JPH06341984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5133634A JPH06341984A (en) 1993-06-03 1993-06-03 Estimating method for paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5133634A JPH06341984A (en) 1993-06-03 1993-06-03 Estimating method for paint

Publications (1)

Publication Number Publication Date
JPH06341984A true JPH06341984A (en) 1994-12-13

Family

ID=15109413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5133634A Pending JPH06341984A (en) 1993-06-03 1993-06-03 Estimating method for paint

Country Status (1)

Country Link
JP (1) JPH06341984A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192482A (en) * 2008-02-18 2009-08-27 Mitsubishi Materials Corp Method and device for measuring exhaust gas odor of cement manufacturing facility
JP2010151649A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Method and instrument for measuring offensive smell of exhaust gas from cement manufacturing equipment
JP2010151650A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Method and instrument for measuring offensive smell of exhaust gas from cement manufacturing equipment
JP2023516780A (en) * 2020-11-10 2023-04-20 エルジー・ケム・リミテッド gas collector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192482A (en) * 2008-02-18 2009-08-27 Mitsubishi Materials Corp Method and device for measuring exhaust gas odor of cement manufacturing facility
JP4513872B2 (en) * 2008-02-18 2010-07-28 三菱マテリアル株式会社 Method and apparatus for measuring exhaust gas odor of cement manufacturing facility
JP2010151649A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Method and instrument for measuring offensive smell of exhaust gas from cement manufacturing equipment
JP2010151650A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Method and instrument for measuring offensive smell of exhaust gas from cement manufacturing equipment
JP4553051B2 (en) * 2008-12-25 2010-09-29 三菱マテリアル株式会社 Method and apparatus for measuring exhaust gas odor of cement manufacturing facility
JP4553050B2 (en) * 2008-12-25 2010-09-29 三菱マテリアル株式会社 Method and apparatus for measuring exhaust gas odor of cement manufacturing facility
JP2023516780A (en) * 2020-11-10 2023-04-20 エルジー・ケム・リミテッド gas collector

Similar Documents

Publication Publication Date Title
Fenske et al. Human breath emissions of VOCs
Bartzis et al. On organic emissions testing from indoor consumer products’ use
Schramel et al. The determination of metals (antimony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thallium, tin and tungsten) in urine samples by inductively coupled plasma-mass spectrometry
Stirnweis et al. Assessing the influence of NO x concentrations and relative humidity on secondary organic aerosol yields from α-pinene photo-oxidation through smog chamber experiments and modelling calculations
Boelter et al. Ozone generation by indoor, electrostatic air cleaners
Willis et al. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon
KR101519178B1 (en) Method and device for detecting the composition of gas mixtures
Lipfert et al. Air pollution and mortality: the implications of uncertainties in regression modeling and exposure measurement
Knudsen et al. Sensory evaluation of emissions from selected building products exposed to ozone.
US20080034841A1 (en) Process for measuring the concentration of gases
Mulligan et al. Feasibility of the direct analysis of urine by inductively coupled argon plasma mass spectrometry for biological monitoring of exposure to metals
EP2399124A1 (en) Measuring device and method for detecting the hydrocarbon fraction in gases
JPH06341984A (en) Estimating method for paint
Chang et al. Evaluation of low‐VOC latex paints
Nelson et al. Composition of environmental tobacco smoke (ETS) from international cigarettes and determination of ETS-RSP: Particulate marker ratios
JPH07260721A (en) Equivalent circuit of environment sensor, measuring method of odor pressure, standardizing method of odor pressure, detecting device of odor and detecting device of fire
McMurry et al. Photochemical formation of organic aerosols: growth laws and mechanisms
Bisgaard et al. Quantitative determination of formaldehyde in air using the acetylacetone method
JP2006317254A (en) Odor measuring device, method and program thereof
Girman et al. Considerations in evaluating emissions from consumer products
Stanley et al. Spectrophotofluorometric Analysis of Nonfluorescent Compounds on Paper and Thin Layer Chromatograms.
KR20080017179A (en) Unit for measurement of odor and method of measurement of odor and recording media which store the program for measurement of odor
Caffrey et al. In‐cloud oxidation of SO2 by O3 and H2O2: Cloud chamber measurements and modeling of particle growth
Turk et al. Suprathreshold Odlor Measurements by Dynamic Olfactometry: Principles and Practice
JP2818869B2 (en) Odor detector