JPH06341965A - Inspection method for deterioration of painted film and its inspection device - Google Patents

Inspection method for deterioration of painted film and its inspection device

Info

Publication number
JPH06341965A
JPH06341965A JP13326993A JP13326993A JPH06341965A JP H06341965 A JPH06341965 A JP H06341965A JP 13326993 A JP13326993 A JP 13326993A JP 13326993 A JP13326993 A JP 13326993A JP H06341965 A JPH06341965 A JP H06341965A
Authority
JP
Japan
Prior art keywords
coating film
infrared
temperature
film
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13326993A
Other languages
Japanese (ja)
Inventor
Hiroki Kuwano
博喜 桑野
Koichi Fujiwara
幸一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13326993A priority Critical patent/JPH06341965A/en
Publication of JPH06341965A publication Critical patent/JPH06341965A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remotely measure the deterioration of a painted film without influence of weather or time by remotely thermally exciting a painted film to be inspected, and measuring its temperature distribution in noncontact state. CONSTITUTION:A deteriorated painted film B is inferior in thermal conductivity to a sound painted film A on account of air lying between the painted film and the surface of a part. Thus, immediately after turning on a heating infrared lamp 3000, the temperature rise of the film B is quicker than that of the film A, and after heating for a long time, the films A, B become the same in their temperatures. When the lamp 3000 is turned off in this state, the temperature of the film A lowers quicker than that of the film B. Temperature difference between the films A, B can therefore be caused by heating the surface of the film 2000 for a short time, and temperature distribution on the surface of the film 2000 can be measured in noncontact state by an InSD infrared detector and the like having detecting wave length in 3 to 6mum band. Heat excitation and measurement of the temperature difference distribution are interlocked in this way, and temperature distribution image is freeze-recorded under a condition where the temperature difference is the maximum, and the lamp 3000 is automatically turned off. The position and area of the deteriorated painted film within a picture plane can be on-linely computed by taking a freeze-image as an object.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、橋梁、タンク、アンテ
ナ鉄塔等の屋外構造物や建築物の塗装劣化を診断する塗
装膜劣化検査方法及び検査装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating film deterioration inspection method and inspection device for diagnosing coating deterioration of outdoor structures such as bridges, tanks, antenna towers and buildings.

【0002】[0002]

【従来の技術】屋外に暴露される塗装膜は紫外線、熱、
雨水等によって劣化し、放置しておくと素地の発錆に至
る。屋外構造物の美観、資産価値を維持するためには、
塗装膜の劣化診断が重要であり、発錆前に塗替える必要
がある。塗替え時期、塗替え範囲の判断は、保守経費の
経済化を図る上で重要である。
2. Description of the Related Art Paint films exposed outdoors are exposed to ultraviolet rays, heat,
It deteriorates due to rainwater, etc., and if left unattended, the base material will rust. To maintain the aesthetics and asset value of outdoor structures,
It is important to diagnose the deterioration of the coating film, and it is necessary to repaint it before rusting. Judgment of the repainting timing and the repainting range is important in order to make maintenance costs economical.

【0003】塗装膜の劣化診断法としては、従来から種
々の方法が提案され、実用されてきた。例えば、劣化度
見本を併用した目視による主観的検査の他に、塗装膜の
厚みを電気化学的に測定する方法、あるいは塗装膜の付
着性を調べるクロスカットテスト等の客観的検査法があ
る。しかしながら、これらの検査法は、被検査対象物の
近くで、あるいは、上記の客観検査法の場合、被検査対
象物に接触して検査しなければならないため、大型の屋
外構造物の塗装膜劣化を遠隔診断することが出来なかっ
た。
As a method for diagnosing the deterioration of a coating film, various methods have been proposed and put into practical use. For example, in addition to a visual inspection using a deterioration degree sample together, there is a method of electrochemically measuring the thickness of the coating film, or an objective inspection method such as a cross-cut test for examining the adhesion of the coating film. However, these inspection methods require inspection near the object to be inspected or, in the case of the above-mentioned objective inspection method, in contact with the object to be inspected. Could not be remotely diagnosed.

【0004】一方、本発明に関わる、赤外線映像装置に
よる建築物の外壁タイルの剥離診断方法は、遠隔的に診
断する方法であり、その原理は、太陽の放射熱によって
温められたタイルの剥離部と健全部におけるタイル表面
の温度差を測定することによって、剥離部を検出する方
法である。すなわち、健全部ではタイル表面の熱はスム
ーズにコンクリートに伝達されるが、剥離部ではその界
面に熱の不良導体である空気層が介在しているため、熱
が逃げにくくなり、健全部に較べタイル表面温度が高く
なる現象を利用している。
On the other hand, the method for diagnosing peeling of an outer wall tile of a building by an infrared image device according to the present invention is a method for diagnosing remotely, and its principle is a peeling part of a tile heated by radiant heat of the sun. And the peeling portion is detected by measuring the temperature difference of the tile surface in the sound portion. That is, the heat of the tile surface is smoothly transferred to the concrete in the sound part, but the peeling part has an air layer, which is a poor heat conductor, at the interface, so it is difficult for the heat to escape, and The phenomenon that the tile surface temperature rises is used.

【0005】[0005]

【発明が解決しようとする課題】従来の赤外線診断法は
太陽を熱源とする受動的検査法であるため、天候、時
間、場所に左右される欠点があった。また、本発明者ら
の研究によれば、太陽を熱源とする方法の場合、塗装膜
は厚さが薄いため、自然状態では、塗装膜表面と素地の
温度差がほとんど生じないことが分かった。そのため、
従来の赤外線診断法は塗装膜の劣化診断には適用できな
かった。
Since the conventional infrared diagnostic method is a passive inspection method using the sun as a heat source, it has a drawback that it is affected by weather, time and place. Further, according to the study by the present inventors, in the case of the method using the sun as a heat source, it is found that the temperature difference between the coating film surface and the substrate hardly occurs in the natural state because the coating film is thin. . for that reason,
The conventional infrared diagnostic method cannot be applied to the deterioration diagnosis of the coating film.

【0006】さらに、従来の赤外線診断法はタイルやモ
ルタル等の大きな対象物の剥離の有無を診断すれば良か
ったが、本発明が対象とする塗装膜の場合、塗装膜の劣
化初期においては、検知すべき膨れ、はがれ、クラック
は塗装膜の狭い範囲で発生しているので、遠隔的に診断
するためには、赤外線映像装置の位置分解能が必要であ
る。
Further, the conventional infrared diagnostic method has only been required to diagnose the presence or absence of peeling of a large object such as a tile or mortar, but in the case of the coating film targeted by the present invention, at the initial stage of deterioration of the coating film, Since blisters, peelings, and cracks to be detected occur in a narrow area of the coating film, the position resolution of the infrared imaging device is necessary for remote diagnosis.

【0007】本発明は上記の事情に鑑みてなされたもの
で、天候、時間に左右されず、遠隔的に塗装膜の劣化を
判定する塗装膜劣化検査方法及び検査装置を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a coating film deterioration inspecting method and an inspection device for remotely judging deterioration of a coating film regardless of weather and time. To do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の塗装膜劣化検査方法は、被検査塗装膜を遠隔
的に熱励起する熱励起工程と、該被検査塗装膜の温度分
布を非接触測定する非接触測定工程と、前記熱励起工程
によって誘起される温度分布から劣化部を判定する劣化
部判定工程とからなることを特徴とするものである。
In order to achieve the above object, a coating film deterioration inspection method of the present invention comprises a thermal excitation step of remotely thermally exciting a coating film to be inspected, and a temperature distribution of the coating film to be inspected. And a deteriorated portion determination step of determining a deteriorated portion from the temperature distribution induced by the thermal excitation step.

【0009】又、前記熱励起工程が、集光された赤外線
ビームを一時的に照射することによってなされることを
特徴とするものである。
The thermal excitation step is performed by temporarily irradiating a focused infrared beam.

【0010】又、前記非接触測定工程が、波長3μmか
ら6μm帯あるいは波長8μmから14μm帯の赤外線
を検知する赤外線映像装置によってなされることを特徴
とするものである。
Further, the non-contact measurement step is performed by an infrared imaging device which detects infrared rays in a wavelength band of 3 μm to 6 μm or a wavelength band of 8 μm to 14 μm.

【0011】又、前記劣化部判定工程が、定められた視
野中の同一赤外線画像における最高温度と最低温度を測
定し、その温度差が予め定められた温度、あるいは該温
度差が最大になる時点の温度分布画像を対象としてなさ
れることを特徴とするものである。
Further, in the deteriorated portion determining step, the maximum temperature and the minimum temperature in the same infrared image in the defined field of view are measured, and the temperature difference is a predetermined temperature or a time point when the temperature difference becomes maximum. It is characterized in that it is performed for the temperature distribution image of.

【0012】又、本発明の塗装膜劣化検査装置は、赤外
線を被検査塗装膜に投光する赤外線投光装置と、前記被
検査塗装膜を捕捉する赤外線用望遠鏡と、前記被検査塗
装膜の温度分布を測定する赤外線映像装置と、前記被検
査塗装膜の温度分布から劣化部を判定する赤外線画像処
理装置とを具備することを特徴とするものである。
Further, the coating film deterioration inspection apparatus of the present invention comprises an infrared projector for projecting infrared rays onto the coating film to be inspected, an infrared telescope for capturing the coating film to be inspected, and the coating film to be inspected. It is characterized by comprising an infrared imaging device for measuring a temperature distribution and an infrared image processing device for judging a deteriorated portion from the temperature distribution of the coating film to be inspected.

【0013】又、前記赤外線投光装置が、前記赤外線用
望遠鏡に組み込まれ、同軸照明であることを特徴とする
ものである。
The infrared projection device is incorporated into the infrared telescope and is a coaxial illumination.

【0014】又、前記赤外線用望遠鏡が、被検査塗装膜
捕捉用の低倍率望遠鏡を具備した反射型望遠鏡であるこ
とを特徴とするものである。
Further, the infrared telescope is a reflection type telescope equipped with a low magnification telescope for capturing a coating film to be inspected.

【0015】又、前記赤外線画像処理装置が、赤外線映
像装置からの映像出力を切り出す測定視野限定回路と、
該測定視野中の最高温度と最低温度を検出する検出回路
を有し、該最高温度と該最低温度の温度差を演算する演
算回路と、予め登録された温度と前記温度差とを比較す
る比較回路と、該比較回路の出力に基づき赤外線画像を
フリーズする回路と、該回路のフリーズ時点を外部に通
知するトリガー出力回路とを具備することを特徴とする
ものである。
Further, the infrared image processing device includes a measurement visual field limiting circuit for cutting out an image output from the infrared image device,
A comparison circuit that has a detection circuit that detects the maximum temperature and the minimum temperature in the measurement field of view, and that calculates the temperature difference between the maximum temperature and the minimum temperature, and that compares the temperature registered in advance with the temperature difference. It is characterized by comprising a circuit, a circuit that freezes an infrared image based on the output of the comparison circuit, and a trigger output circuit that notifies the freeze time of the circuit to the outside.

【0016】又、前記赤外線画像処理装置からのトリガ
ー出力によって前記赤外線投光装置が投光停止する機能
を具備することを特徴とするものである。
Further, the present invention is characterized in that the infrared projection device has a function of stopping the projection of light by a trigger output from the infrared image processing device.

【0017】[0017]

【作用】本発明の塗装膜劣化検査法は、従来の赤外線診
断法の欠点を改良したものであって、被検査塗装膜を能
動的に熱励起することが一つの特徴である。本発明者ら
は、赤外線映像装置を劣化した被検査塗装膜に向け、塗
装膜の劣化診断を試みたが、均一な画像しか得られず、
劣化判定は不可能であった。その理由は、塗装膜のよう
に膜厚が例えば1mm以下の薄い被検査対象体では、通
常太陽熱で定常的に温められているから、塗装膜表面と
下地面の温度はほぼ同じであり、塗装膜が剥離していて
も温度差がつかないためである。
The coating film deterioration inspection method of the present invention is an improvement over the drawbacks of the conventional infrared diagnostic method, and is one of the features of actively thermally exciting the coating film to be inspected. The inventors of the present invention tried to diagnose the deterioration of the coating film by directing the infrared imaging device to the deteriorated coating film to be inspected, but only a uniform image was obtained,
Deterioration judgment was impossible. The reason for this is that in a thin object to be inspected, such as a coating film, having a thickness of, for example, 1 mm or less, the temperature of the coating film surface is almost the same as that of the base surface because the surface temperature of the coating film is almost the same. This is because there is no temperature difference even if the film is peeled off.

【0018】本発明は、塗装膜表面を短時間加熱し、温
度上昇の過渡特性を利用することにより、劣化した塗装
膜と健全な塗装膜を識別するため、天候、時間に左右さ
れず、遠隔的に塗装膜の劣化を判定することができる。
The present invention distinguishes a deteriorated coating film from a healthy coating film by heating the surface of the coating film for a short time and utilizing the transient characteristics of the temperature rise. It is possible to determine the deterioration of the coating film.

【0019】[0019]

【実施例】図3、図4は本発明の塗装膜劣化検査法の原
理を模式的に説明する図であって、図3は塗装したモデ
ル部材の断面図であり、1000は塗装下地、2000
は塗装膜、3000はモデル部材加熱用の赤外ランプで
ある。そして、Aは健全塗装膜部、Bは膨れが生じた劣
化塗装膜部を示す。劣化塗装膜部Bは塗装膜2000と
塗装下地1000の界面に空気が介在しているため、塗
装下地1000方向への熱伝導率は健全塗装膜部Aより
も劣っている。なお、通常、屋外構造物は鋼鉄製である
から、塗装膜2000よりも塗装下地1000の方が熱
伝導率は良い。
EXAMPLES FIGS. 3 and 4 are views for schematically explaining the principle of the coating film deterioration inspection method of the present invention. FIG. 3 is a cross-sectional view of a painted model member, 1000 is a coating base, and 2000 is a coating base.
Is a coating film, and 3000 is an infrared lamp for heating the model member. A indicates a healthy coating film portion, and B indicates a deteriorated coating film portion in which swelling has occurred. In the deteriorated coating film portion B, since air is present at the interface between the coating film 2000 and the coating base 1000, the thermal conductivity in the direction of the coating base 1000 is inferior to that of the sound coating film portion A. Since the outdoor structure is usually made of steel, the coating base 1000 has better thermal conductivity than the coating film 2000.

【0020】図4は健全塗装膜部A、劣化塗装膜部Bの
温度変化の時間依存性であって、図4(a)は赤外ラン
プ消灯時、図4(b)は赤外ランプ点灯直後、図4
(c)は赤外ランプ加熱後に消灯した場合である。な
お、健全塗装膜部A、劣化塗装膜部Bの温度は、市販の
赤外線映像装置を用いれば非接触で求めることが出来
る。図4(a)の赤外ランプ消灯時の場合は、健全塗装
膜部A、劣化塗装膜部Bともに同温度であり、時間依存
性はない。図4(b)の赤外ランプ点灯直後の場合は、
劣化塗装膜部Bの温度上昇が健全塗装膜部Aよりも早い
が、長時間赤外ランプで加熱すると健全塗装膜部A、劣
化塗装膜部B共に同温度になる。そして、この状態で赤
外ランプを切った図4(c)の場合は、健全塗装膜部A
の温度の方が劣化塗装膜部Bよりも早く低下する。
FIG. 4 shows the time dependence of the temperature changes of the sound coating film portion A and the deteriorated coating film portion B. FIG. 4 (a) shows the infrared lamp off, and FIG. 4 (b) shows the infrared lamp on. Immediately after,
(C) is the case where the infrared lamp is turned off after heating. The temperatures of the sound paint film portion A and the deteriorated paint film portion B can be obtained in a non-contact manner by using a commercially available infrared imaging device. When the infrared lamp of FIG. 4A is off, the temperature of the sound coating film portion A and the deterioration coating film portion B are the same, and there is no time dependency. In the case immediately after the infrared lamp of FIG. 4B is turned on,
Although the temperature rise of the deteriorated coating film portion B is faster than that of the normal coating film portion A, both the normal coating film portion A and the deteriorated coating film portion B have the same temperature when heated by an infrared lamp for a long time. Then, in the case of FIG. 4C in which the infrared lamp is turned off in this state, the sound coating film portion A
The temperature is lower than that of the deteriorated coating film portion B.

【0021】このようにして、塗装膜2000表面を短
時間加熱すれば、健全塗装膜部Aと劣化塗装膜部Bの温
度差を人工的に過渡的につくり出すことが出来る。劣化
初期の塗装膜を鋭敏に検出するためには、温度差が最も
大きくなる条件、例えば、図4(b)の場合は矢印で示
した時間後に測定することが望ましい。
In this way, by heating the surface of the coating film 2000 for a short time, the temperature difference between the normal coating film portion A and the deteriorated coating film portion B can be artificially created transiently. In order to detect the coating film in the early stage of deterioration with high sensitivity, it is desirable to measure under the condition where the temperature difference is the largest, for example, after the time indicated by the arrow in the case of FIG. 4B.

【0022】塗装膜2000表面の温度分布測定は、非
接触測定をする必要があるので、検出波長が3μmから
6μm帯のInSb赤外線検出器、あるいは、赤外線固
体撮像素子、8μmから14μm帯のHgCdTe赤外
線検出器が内蔵された赤外線映像装置を用いて行なうこ
とが望ましい。
Since it is necessary to measure the temperature distribution on the surface of the coating film 2000 in a non-contact manner, an InSb infrared detector having a detection wavelength of 3 μm to 6 μm band, an infrared solid-state image pickup device, an HgCdTe infrared ray of 8 μm to 14 μm band is used. It is desirable to do so using an infrared imager with a built-in detector.

【0023】本発明の他の特徴は、健全塗装膜部と劣化
塗装膜部の温度差が最大になる最適条件で被検査膜が自
動検査される点にある。すなわち、上述した、能動的熱
励起と温度差分布の測定が連動して行なわれるようにな
っているから、温度差が最も大きくなる条件で温度分布
画像がフリーズ・録画され、赤外ランプは自動消灯され
る。そして、このフリーズ画像を対象として、オンライ
ンあるいはオフラインで画面中に存在する劣化塗装膜部
の位置、面積等が算出される。このような特徴があるか
ら、検査者は本発明の塗装膜検査装置を被検査膜に向
け、測定開始ボタンを押すだけで検査結果が自動的に表
示される。
Another feature of the present invention is that the film to be inspected is automatically inspected under the optimum conditions in which the temperature difference between the sound coating film portion and the deteriorated coating film portion is maximized. That is, since the active thermal excitation and the measurement of the temperature difference distribution are performed in conjunction with each other as described above, the temperature distribution image is frozen and recorded under the condition where the temperature difference is the largest, and the infrared lamp is automatically operated. It is turned off. Then, for this freeze image, the position, area, etc. of the deteriorated coating film portion existing on the screen are calculated online or offline. Due to such characteristics, the inspector points the coating film inspection device of the present invention to the film to be inspected and simply presses the measurement start button to automatically display the inspection result.

【0024】前述の最適条件を自動的に見つける方法と
しては、例えば次のような方法を取ることができる。す
なわち、塗装膜劣化検査装置の測定開始ボタンを押す
と、被検査膜の熱励起がスタートし、赤外線映像装置の
測定画面中に現われる最高温度と最低温度をリアルタイ
ムで測定し、その温度差の時間依存性を調べる。そし
て、その温度差が最高あるいは予め定められた温度に達
した時点の温度分布画像をフリーズするとともに、熱励
起を停止する。同一画像中の最高温度と最低温度を選ん
だ理由は、最高温度は、劣化塗装膜中で素地との熱伝導
が最も悪い部分において発生し、最低温度は健全塗装膜
部分において見られるからである。
As a method for automatically finding the above-mentioned optimum condition, for example, the following method can be adopted. That is, when the measurement start button of the coating film deterioration inspection device is pressed, the thermal excitation of the film to be inspected starts and the maximum and minimum temperatures appearing in the measurement screen of the infrared imager are measured in real time, and the time difference between the temperatures is measured. Examine the dependencies. Then, the temperature distribution image at the time when the temperature difference reaches the maximum or a predetermined temperature is frozen, and the thermal excitation is stopped. The reason for choosing the highest temperature and the lowest temperature in the same image is that the highest temperature occurs in the part of the deteriorated coating film where the heat conduction with the substrate is the worst, and the lowest temperature is found in the sound coating film part. .

【0025】次に、本発明の他の特徴を説明する。本発
明の塗装膜劣化検査方法によれば、赤外線映像装置は標
準装備の赤外線用望遠鏡によって遠隔地の被検査塗装膜
を、数ミリ程度の分解能で検査することが出来る。該望
遠鏡は、本発明特有の熱励起のための赤外線を同軸照射
できるようになっているから、熱励起領域と測定領域は
自動的にアライメントされている。望遠鏡としては、5
0m遠方の塗装膜を検査するには、例えば、視野角2.
5度以下の超望遠鏡を使用することが望ましい。
Next, another feature of the present invention will be described. According to the coating film deterioration inspection method of the present invention, the infrared imaging device can inspect the coating film to be inspected at a remote place with a resolution of about several millimeters by the infrared telescope equipped as standard. Since the telescope is capable of coaxially irradiating infrared rays for thermal excitation peculiar to the present invention, the thermal excitation region and the measurement region are automatically aligned. 5 for a telescope
To inspect a coating film at a distance of 0 m, for example, a viewing angle of 2.
It is desirable to use a super telescope of 5 degrees or less.

【0026】以下に図面を参照して本発明をより具体的
に記述するが、以下に示すものは本発明の一実施例にす
ぎず、本発明の技術的範囲を何等制限するものではな
い。
The present invention will be described in more detail below with reference to the drawings, but the following is only an example of the present invention and does not limit the technical scope of the present invention.

【0027】図1は本発明の第1の実施例を示す塗装膜
劣化検査装置の概略説明図であって、赤外線投光装置1
00、赤外線用望遠鏡200、赤外線映像装置300、
赤外線画像処理装置400から構成されている。赤外線
投光装置100は、赤外ランプ1、集光鏡2、電源3、
スイッチ4、反射鏡5から成っている。赤外線用望遠鏡
200は、主鏡10、副鏡11、レンズ12、支持体1
3、鏡筒14から成っている。赤外線映像装置300は
例えば市販の赤外線映像装置(三菱サーマルイメージャ
ー、三菱電機製、IR−M300)等であり、赤外検出
器20の他に、図には示していないが該赤外検出器20
の冷却用のスターリングサイクルクーラが内蔵されてい
る。
FIG. 1 is a schematic explanatory view of a coating film deterioration inspection apparatus showing a first embodiment of the present invention.
00, infrared telescope 200, infrared imaging device 300,
The infrared image processing device 400 is included. The infrared projector 100 includes an infrared lamp 1, a condenser mirror 2, a power source 3,
It is composed of a switch 4 and a reflecting mirror 5. The infrared telescope 200 includes a primary mirror 10, a secondary mirror 11, a lens 12, and a support 1.
3 and the lens barrel 14. The infrared imager 300 is, for example, a commercially available infrared imager (Mitsubishi Thermal Imager, manufactured by Mitsubishi Electric, IR-M300) and the like, and other than the infrared detector 20, the infrared detector is not shown in the figure. 20
It has a built-in Stirling cycle cooler for cooling.

【0028】次に、赤外線投光装置100の構成部品、
装置類の機能並びに動作を説明する。赤外ランプ1はタ
ングステンフィラメントを光源とするものであって、放
射された赤外線、並びに可視光線は放物面型の集光鏡2
によって、平行ビームに形成され、赤外光束6となって
赤外線用望遠鏡200の鏡筒14の側面に入射される。
入射された赤外光束6は、支持体13に取り付けられた
反射鏡5によって赤外線用望遠鏡200と同軸で被検査
塗装膜に投光される。スイッチ4は、後述する赤外線画
像処理装置400からのトリガーによって、自動的に消
灯されるようになっている。
Next, the components of the infrared projector 100,
The functions and operations of the devices will be described. The infrared lamp 1 uses a tungsten filament as a light source, and the emitted infrared rays and visible rays are parabolic focusing mirrors 2.
Then, it is formed into a parallel beam and becomes the infrared light flux 6 and is incident on the side surface of the lens barrel 14 of the infrared telescope 200.
The incident infrared light flux 6 is projected onto the coating film to be inspected by the reflecting mirror 5 attached to the support 13 coaxially with the infrared telescope 200. The switch 4 is automatically turned off by a trigger from the infrared image processing device 400 described later.

【0029】赤外線用望遠鏡200は、焦点距離200
mmのカセグレン式の反射望遠鏡であって、主鏡10、
副鏡11、レンズ12と、副鏡11並びに反射鏡5を固
定支持するための支持体13、及びこれらの光学部品を
収容する鏡筒14から構成されている。赤外線用望遠鏡
200に入った入射光線aは主鏡10によって反射さ
れ、光線bとなって副鏡11に入射し、反射光線cはシ
リコン製レンズ12で屈折され、屈折光dは赤外検出器
20に入る。
The infrared telescope 200 has a focal length of 200
mm Cassegrain type reflecting telescope, which is a primary mirror 10,
The sub mirror 11, the lens 12, the support 13 for fixing and supporting the sub mirror 11 and the reflecting mirror 5, and the lens barrel 14 for housing these optical components. The incident light ray a entering the infrared telescope 200 is reflected by the main mirror 10 and becomes a light ray b and enters the sub mirror 11, the reflected light ray c is refracted by the silicon lens 12, and the refracted light d is the infrared detector. Enter 20.

【0030】なお、図1には示していないが、前記赤外
線用望遠鏡200には、遠方の被検査塗装膜を捕捉する
ための倍率2倍の低倍率望遠鏡が取り付けられている。
該低倍率望遠鏡は、視野中に十字線が入っているから、
検査対象を十字線に合わせるように、赤外線映像装置3
00の向きを調節すればよい。このような低倍率望遠鏡
を併用した理由は、本実施例の焦点距離200mmの望
遠鏡のみの場合、視野角は1.8×1.4度であり、ご
く狭い視野のみを大きく拡大することになるから、検査
対象の捕捉が非常に困難になるためである。
Although not shown in FIG. 1, the infrared telescope 200 is equipped with a low-magnification telescope with a magnification of 2 for capturing a distant inspected coating film.
The low magnification telescope has a crosshair in the field of view,
Infrared imaging device 3 so that the inspection target is aligned with the crosshair
The direction of 00 should be adjusted. The reason why such a low magnification telescope is used together is that the viewing angle is 1.8 × 1.4 degrees in the case of only the telescope having the focal length of 200 mm according to the present embodiment, which means that only a very narrow visual field is greatly expanded. Therefore, it is very difficult to capture the inspection target.

【0031】次に、赤外線画像処理装置400の機能を
説明する。図2は本発明の中核を担う赤外線画像処理装
置400の回路ブロック図であって、測定視野限定回路
30と、該測定視野中の最高温度を検出する最高温度検
出回路31と、同最低温度検出回路32と、該最高温度
と該最低温度の温度差を演算する温度差演算回路33
と、最高温度差を登録する最高温度差メモリ回路34
と、登録温度差メモリ35と、切換器36と、温度差比
較回路37、赤外線画像フリーズ回路38と、劣化面積
演算・表示回路39と、トリガ出力回路40とから構成
されている。
Next, the function of the infrared image processing apparatus 400 will be described. FIG. 2 is a circuit block diagram of an infrared image processing apparatus 400 that is the core of the present invention, and includes a measurement visual field limiting circuit 30, a maximum temperature detection circuit 31 that detects the maximum temperature in the measurement visual field, and a minimum temperature detection circuit. Circuit 32 and temperature difference calculation circuit 33 for calculating the temperature difference between the maximum temperature and the minimum temperature
And the maximum temperature difference memory circuit 34 for registering the maximum temperature difference
And a registered temperature difference memory 35, a switch 36, a temperature difference comparison circuit 37, an infrared image freeze circuit 38, a deterioration area calculation / display circuit 39, and a trigger output circuit 40.

【0032】測定視野限定回路30は、赤外線映像装置
300からの映像出力を切り出すための回路である。画
像切り出しは、カーソルキーによって、上下左右、任意
の面積を切り出せるようになっている。本発明の検査方
法に従えば、例えば、青空を背景にした鉄塔の塗装膜を
検査する場合、赤外線画像中の背景画像を除去する必要
がある。なぜならば、後述の、最低温度検出回路32は
健全塗装膜部の温度を検出するためのものであるが、背
景画像が含まれている場合、最低温度は通常背景画像部
で検出され、赤外線投光装置100を動作させても最低
温度は変わらず、健全塗装膜部の温度検出が不可能にな
るからである。
The measurement visual field limiting circuit 30 is a circuit for cutting out an image output from the infrared imager 300. Image cutting can be performed by using the cursor keys to cut out an arbitrary area in the vertical and horizontal directions. According to the inspection method of the present invention, for example, when inspecting a coating film on a steel tower against a blue sky, it is necessary to remove the background image in the infrared image. This is because the minimum temperature detection circuit 32, which will be described later, is for detecting the temperature of the sound coating film portion. However, when the background image is included, the minimum temperature is normally detected in the background image portion and the infrared projection is performed. This is because the minimum temperature does not change even when the optical device 100 is operated, and it becomes impossible to detect the temperature of the sound coating film portion.

【0033】最高温度検出回路31、最低温度検出回路
32は前記測定視野限定回路30の映像出力に対してな
され、1画像フレーム中の最高温度と最低温度がほぼリ
アルタイムで検出される。
The maximum temperature detection circuit 31 and the minimum temperature detection circuit 32 are provided for the video output of the measurement visual field limiting circuit 30, and the maximum temperature and the minimum temperature in one image frame are detected in almost real time.

【0034】温度差演算回路33は前記最高温度と最低
温度の減算回路である。そして、その温度差は最高温度
差メモリ回路34によって、前記温度差演算回路33か
ら刻々送られて来る温度差の時系列中で最高温度のみが
更新登録される。
The temperature difference calculation circuit 33 is a subtraction circuit for the maximum temperature and the minimum temperature. Then, the maximum temperature difference memory circuit 34 updates and registers only the maximum temperature in the time series of temperature differences sent from the temperature difference calculation circuit 33.

【0035】登録温度差メモリ35は、手動で設定した
温度を登録するものである。切換器36は前記最高温度
差と登録温度差のいずれかを切り換えるものである。
The registered temperature difference memory 35 is for registering the temperature set manually. The switch 36 switches between the maximum temperature difference and the registered temperature difference.

【0036】さて、前記温度差演算回路33と切換器3
6の出力は、温度差比較回路37によって実測温度差と
登録温度差が比較される。切換器36が登録温度差メモ
リ35に接続されている場合、温度差比較回路37で実
測温度差と登録温度差が比較され、もし同一であるなら
ば、画像フリーズ回路38によって画像がフィックスさ
れ、劣化面積演算・表示回路39によって検査結果が表
示される。また、この場合、トリガ出力回路40によっ
て、赤外線投光装置100のスイッチ4が作動し、赤外
線投光が停止される。
Now, the temperature difference calculation circuit 33 and the switch 3
The temperature difference comparison circuit 37 compares the measured temperature difference with the registered temperature difference. When the switch 36 is connected to the registered temperature difference memory 35, the temperature difference comparison circuit 37 compares the measured temperature difference with the registered temperature difference, and if they are the same, the image freeze circuit 38 fixes the image, The deterioration area calculation / display circuit 39 displays the inspection result. In this case, the trigger output circuit 40 activates the switch 4 of the infrared light projecting device 100 to stop the infrared light projecting.

【0037】前記切換器36が最高温度差メモリ回路3
4に接続されている場合、実測温度差と最高登録温度差
が比較され、もし、実測温度が低くなった時点で、画像
フリーズ回路38によって画像がフィックスされ、劣化
面積演算・表示回路39によって検査結果が表示され
る。また、この場合も同様に、トリガ出力回路40によ
って、赤外線投光装置100のスイッチ4が作動し、赤
外線投光が停止される。
The switch 36 is the maximum temperature difference memory circuit 3
4 is connected, the measured temperature difference and the maximum registered temperature difference are compared, and if the measured temperature becomes low, the image is fixed by the image freeze circuit 38 and inspected by the deterioration area calculation / display circuit 39. The result is displayed. Also in this case, similarly, the trigger output circuit 40 operates the switch 4 of the infrared light projecting device 100 to stop the infrared light projecting.

【0038】[0038]

【発明の効果】以上説明したように、本発明の塗装膜劣
化検査方法及び検査装置によれば、被検査塗装膜を熱励
起する手段を具備しているから、天候、日時、場所によ
らず、塗装膜劣化検査を実施することが出来る。また、
赤外線用望遠鏡を具備しているから、微細な塗装膜の膨
れやはがれ等を遠隔的に検査することができる。
As described above, according to the coating film deterioration inspection method and the inspection device of the present invention, since the means for thermally exciting the coating film to be inspected is provided, regardless of the weather, date and time, place. The coating film deterioration inspection can be performed. Also,
Since it is equipped with an infrared telescope, it is possible to remotely inspect swelling, peeling, etc. of the fine coating film.

【0039】本発明は、このような特徴があるので、従
来不可能であった、橋梁、タンク、アンテナ鉄塔等の屋
外構造物や建物の塗装劣化を、天候、日時、場所に左右
されず、遠隔的に診断することが可能である。
Since the present invention has such characteristics, it is possible to prevent coating deterioration of outdoor structures such as bridges, tanks, and antenna towers and buildings, which has been impossible in the past, regardless of weather, date, and place. It is possible to diagnose remotely.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す塗装膜劣化検査装置の
概略構成説明図である。
FIG. 1 is a schematic configuration explanatory view of a coating film deterioration inspection apparatus showing an embodiment of the present invention.

【図2】図1の赤外線画像処理装置の一例を示す回路ブ
ロック図である。
FIG. 2 is a circuit block diagram showing an example of the infrared image processing apparatus of FIG.

【図3】本発明の塗装膜劣化検査法の原理を説明する塗
装部の断面図である。
FIG. 3 is a cross-sectional view of a coating section for explaining the principle of the coating film deterioration inspection method of the present invention.

【図4】本発明の塗装膜劣化検査法の原理を説明する特
性図である。
FIG. 4 is a characteristic diagram illustrating the principle of the coating film deterioration inspection method of the present invention.

【符号の説明】[Explanation of symbols]

1…赤外ランプ、2…集光鏡、3…電源、4…スイッ
チ、5…反射鏡、6…赤外光束、10…主鏡、11…副
鏡、12…レンズ、13…支持体、14…鏡筒、20…
赤外検出器、100…赤外線投光装置、200…赤外線
用望遠鏡、300…赤外線映像装置、400…赤外線画
像処理装置、1000…塗装下地、2000…塗装膜、
3000…赤外ランプ。
DESCRIPTION OF SYMBOLS 1 ... Infrared lamp, 2 ... Condensing mirror, 3 ... Power supply, 4 ... Switch, 5 ... Reflecting mirror, 6 ... Infrared light flux, 10 ... Primary mirror, 11 ... Secondary mirror, 12 ... Lens, 13 ... Support, 14 ... Lens barrel, 20 ...
Infrared detector, 100 ... Infrared projector, 200 ... Infrared telescope, 300 ... Infrared imaging device, 400 ... Infrared image processing device, 1000 ... Coating base, 2000 ... Coating film,
3000 ... Infrared lamp.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 被検査塗装膜を遠隔的に熱励起する熱励
起工程と、該被検査塗装膜の温度分布を非接触測定する
非接触測定工程と、前記熱励起工程によって誘起される
温度分布から劣化部を判定する劣化部判定工程とからな
ることを特徴とする塗装膜劣化検査方法。
1. A thermal excitation step of remotely thermally exciting a coating film to be inspected, a non-contact measuring step of measuring a temperature distribution of the coating film to be inspected in a non-contact manner, and a temperature distribution induced by the thermal excitation step. And a deterioration portion determining step of determining a deterioration portion.
【請求項2】 前記熱励起工程が、集光された赤外線ビ
ームを一時的に照射することによってなされることを特
徴とする請求項1記載の塗装膜劣化検査方法。
2. The coating film deterioration inspection method according to claim 1, wherein the thermal excitation step is performed by temporarily irradiating a focused infrared beam.
【請求項3】 前記非接触測定工程が、波長3μmから
6μm帯あるいは波長8μmから14μm帯の赤外線を
検知する赤外線映像装置によってなされることを特徴と
する請求項1記載の塗装膜劣化検査方法。
3. The coating film deterioration inspection method according to claim 1, wherein the non-contact measurement step is performed by an infrared imaging device that detects infrared rays in a wavelength band of 3 μm to 6 μm or a wavelength band of 8 μm to 14 μm.
【請求項4】 前記劣化部判定工程が、定められた視野
中の同一赤外線画像における最高温度と最低温度を測定
し、その温度差が予め定められた温度、あるいは該温度
差が最大になる時点の温度分布画像を対象としてなされ
ることを特徴とする請求項1記載の塗装膜劣化検査方
法。
4. The deteriorated portion determining step measures the maximum temperature and the minimum temperature in the same infrared image in a predetermined field of view, and the temperature difference is a predetermined temperature or a time point when the temperature difference becomes maximum. The coating film deterioration inspection method according to claim 1, wherein the temperature distribution image of (1) is used as a target.
【請求項5】 赤外線を被検査塗装膜に投光する赤外線
投光装置と、前記被検査塗装膜を捕捉する赤外線用望遠
鏡と、前記被検査塗装膜の温度分布を測定する赤外線映
像装置と、前記被検査塗装膜の温度分布から劣化部を判
定する赤外線画像処理装置とを具備することを特徴とす
る塗装膜劣化検査装置。
5. An infrared projector for projecting infrared rays onto a coating film to be inspected, an infrared telescope for capturing the coating film to be inspected, and an infrared image device for measuring the temperature distribution of the coating film to be inspected. An infrared image processing device for determining a deteriorated portion from the temperature distribution of the coating film to be inspected, the coating film deterioration inspection device.
【請求項6】 前記赤外線投光装置が、前記赤外線用望
遠鏡に組み込まれ、同軸照明であることを特徴とする請
求項5記載の塗装膜劣化検査装置。
6. The coating film deterioration inspection device according to claim 5, wherein the infrared projection device is incorporated in the infrared telescope and is a coaxial illumination.
【請求項7】 前記赤外線用望遠鏡が、被検査塗装膜捕
捉用の低倍率望遠鏡を具備した反射型望遠鏡であること
を特徴とする請求項5記載の塗装膜劣化検査装置。
7. The coating film deterioration inspection apparatus according to claim 5, wherein the infrared telescope is a reflection type telescope equipped with a low magnification telescope for capturing a coating film to be inspected.
【請求項8】 前記赤外線画像処理装置が、赤外線映像
装置からの映像出力を切り出す測定視野限定回路と、該
測定視野中の最高温度と最低温度を検出する検出回路を
有し、該最高温度と該最低温度の温度差を演算する演算
回路と、予め登録された温度と前記温度差とを比較する
比較回路と、該比較回路の出力に基づき赤外線画像をフ
リーズする回路と、該回路のフリーズ時点を外部に通知
するトリガー出力回路とを具備することを特徴とする請
求項5記載の塗装膜劣化検査装置。
8. The infrared image processing device includes a measurement visual field limiting circuit for cutting out a video output from the infrared video device, and a detection circuit for detecting a maximum temperature and a minimum temperature in the measurement visual field. An arithmetic circuit for calculating the temperature difference of the minimum temperature, a comparison circuit for comparing the temperature registered in advance with the temperature difference, a circuit for freezing an infrared image based on the output of the comparison circuit, and a freeze time of the circuit. The coating film deterioration inspection device according to claim 5, further comprising a trigger output circuit for notifying the outside of the coating film.
【請求項9】 前記赤外線画像処理装置からのトリガー
出力によって赤外線投光装置が投光停止する機能を具備
することを特徴とする請求項8記載の塗装膜劣化検査装
置。
9. The coating film deterioration inspection device according to claim 8, further comprising a function of stopping the light emission of the infrared light projecting device by a trigger output from the infrared image processing device.
JP13326993A 1993-06-03 1993-06-03 Inspection method for deterioration of painted film and its inspection device Pending JPH06341965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13326993A JPH06341965A (en) 1993-06-03 1993-06-03 Inspection method for deterioration of painted film and its inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13326993A JPH06341965A (en) 1993-06-03 1993-06-03 Inspection method for deterioration of painted film and its inspection device

Publications (1)

Publication Number Publication Date
JPH06341965A true JPH06341965A (en) 1994-12-13

Family

ID=15100677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13326993A Pending JPH06341965A (en) 1993-06-03 1993-06-03 Inspection method for deterioration of painted film and its inspection device

Country Status (1)

Country Link
JP (1) JPH06341965A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043369A (en) * 2003-07-24 2005-02-17 General Electric Co <Ge> Active quenching type lamp, infrared thermography imaging system, and method for controlling flash duration actively
US7129492B2 (en) 2003-07-29 2006-10-31 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings
US7220966B2 (en) 2003-07-29 2007-05-22 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings, surfaces and interfaces
US8204294B2 (en) 2009-11-25 2012-06-19 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for detecting defects in coatings utilizing color-based thermal mismatch
WO2023175710A1 (en) * 2022-03-15 2023-09-21 日本電信電話株式会社 Observation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005043369A (en) * 2003-07-24 2005-02-17 General Electric Co <Ge> Active quenching type lamp, infrared thermography imaging system, and method for controlling flash duration actively
US7129492B2 (en) 2003-07-29 2006-10-31 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings
US7220966B2 (en) 2003-07-29 2007-05-22 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings, surfaces and interfaces
US8204294B2 (en) 2009-11-25 2012-06-19 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for detecting defects in coatings utilizing color-based thermal mismatch
WO2023175710A1 (en) * 2022-03-15 2023-09-21 日本電信電話株式会社 Observation device

Similar Documents

Publication Publication Date Title
US6000844A (en) Method and apparatus for the portable identification of material thickness and defects using spatially controlled heat application
US8553233B2 (en) Method and apparatus for the remote nondestructive evaluation of an object using shearography image scale calibration
US6712502B2 (en) Synchronized electronic shutter system and method for thermal nondestructive evaluation
US20070181180A1 (en) Methods and apparatus for inspection of multi-junction solar cells
WO2012003372A2 (en) Method and apparatus for the remote nondestructive evaluation of an object
CN109737987A (en) Infrared radiometric calibration system on a kind of how photosynthetic in-orbit star of diameter space camera at a gulp
JPH06341965A (en) Inspection method for deterioration of painted film and its inspection device
Schuss et al. Detecting defects in photovoltaic cells and panels with the help of time-resolved thermography under outdoor environmental conditions
JPH0223817B2 (en)
JP2003130752A (en) Gas leakage detector
JP3961163B2 (en) Tire inspection apparatus and tire inspection method
Cramer et al. Boiler tube corrosion characterization with a scanning thermal line
JPH06138003A (en) Plant temperature monitor
JPH05307013A (en) Inspecting method using thermographic device
Bern et al. FREDA-An automated field reflectance and degradation assessment system for central receiver systems
US20030020916A1 (en) Optical detection device
CN100474888C (en) High sensitivity thermal radiation detection with an emission microscope with room temperature optics
JPH0356847A (en) Nondestructive detecting method for interfacial defect of coating member
RU2152065C1 (en) Method for checking of inner surface of chimney and device for its embodiment
US20040001199A1 (en) Real time detection of cracked quartz window
RU2155932C1 (en) Device inspecting surfaces of optical elements
WO2017183558A1 (en) Gas observation method
Zalameda Synchronized electronic shutter system (SESS) for thermal nondestructive evaluation
Kevane Construction and operation of the Arizona State College solar furnace
TWI814412B (en) Multi-directional inspection system for mura detection and the method thereof