JPH06341383A - Sealed type scroll fluid device - Google Patents

Sealed type scroll fluid device

Info

Publication number
JPH06341383A
JPH06341383A JP2251594A JP2251594A JPH06341383A JP H06341383 A JPH06341383 A JP H06341383A JP 2251594 A JP2251594 A JP 2251594A JP 2251594 A JP2251594 A JP 2251594A JP H06341383 A JPH06341383 A JP H06341383A
Authority
JP
Japan
Prior art keywords
scroll
oil
main shaft
orbiting
orbiting scroll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2251594A
Other languages
Japanese (ja)
Other versions
JP2548517B2 (en
Inventor
Kenji Tojo
東條健司
Masato Ikegawa
池川正人
Masao Shiibayashi
椎林正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6022515A priority Critical patent/JP2548517B2/en
Publication of JPH06341383A publication Critical patent/JPH06341383A/en
Application granted granted Critical
Publication of JP2548517B2 publication Critical patent/JP2548517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To increase the rigidity and strength of a revolving bearing detention part of a revolving scroll with the main shaft and prevent seizure and gall by forming the detention part from an eccentric shaft part in eccentricity from the axis of the main shaft and a concave boss which is installed in the revolving scroll for accommodating the eccentric shaft part. CONSTITUTION:In a sealed vessel 1, a compression element part and a motor part are accommodated while connected by a main shaft 7. The compression element part is so arranged that a stationary scroll 2 coupled with a frame 4 and a revolving scroll 3 (a, b) mesh with one another. The main shaft 7 provided in continuity to motor 11 is supported rotatably on the frame 4 by a bearing 8. The revolving bearing detention part 8a of the revolving scroll 3 with the main shaft 7 is composed of an eccentric shaft 7a in eccentricity from the axis of the main shaft 7 and a concave boss 3c which is furnished on the counter-lap side of a revolving scroll end plate for accommodating the eccentric shaft part 7a. The oil in the sealed vessel 1 is introduced to an oil pressure chamber 7c situated between the eccentric shaft part 7a and the boss 3c.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、冷凍、空調用の冷媒用
圧縮機あるいはヘリウム液化用圧縮機として用いらる密
閉形スクロール圧縮装置に関するものである。 【0002】 【従来の技術】密閉形スクロール圧縮装置の従来構造に
ついては、特開昭53−35840号にて開示されてい
る。この引用例では、スクロール流体装置を密閉容器内
にフランジを介して固定している。また、スクロール流
体装置の圧縮要素部である固定スクロール中央部の吐出
ポ−トから、冷媒ガスが密閉容器外へ導かれ吐出される
構造が開示されている。なお、密閉容器内の空間には吸
入ガスが導かれており、電動機の周囲も含めて低圧圧力
となる吸入圧力の雰囲気にある構造である。 【0003】 【発明が解決しようとする課題】密閉形スクロール圧縮
装置の技術課題として、上記引用例においては、スクロ
ール流体装置の駆動軸周辺は、低圧の吸入圧力の雰囲気
であるため、軸受部への給油方法として主軸の回転によ
る遠心ポンプ作用による給油方法を採用しているため、
油量を常時確保することが困難という問題点が生ずる。
また、旋回スクロールの鏡板背面が同じ低圧の吸入圧力
の雰囲気であるため、圧縮要素部であるスクロール部の
内圧によるガス力を受けるスラスト軸受部を備えてお
り、その部分には過大なスラスト力を受けることとな
る。したがって、そのスラスト力を受けるスラスト軸受
部にも給油量を確保する必要がある。特に、主軸下端部
と軸受部との距離であるポンプ揚程が大きいと、上記し
た遠心ポンプ作用による給油方法ではその給油量に限界
がある。このため、潤滑用油が不足して圧縮機各摺動部
の潤滑不良を起こすなどして軸受周りの信頼性が低下
し、ひいては圧縮機自体の信頼性を損なうという問題点
が生ずる。 【0004】 【課題を解決するための手段】本発明は上記問題点に鑑
みて発明されたもので、すなわち、第1番目の本発明に
よる密閉形スクロール流体装置は、密閉容器内に、スク
ロール圧縮機と電動機を主軸を介して連設して収納する
とともに、スクロール圧縮機は、円板状鏡板に渦巻状の
ラップを直立させた固定スクロールおよび旋回スクロー
ルをラップを内側にしてかみ合せ、一方の旋回スクロー
ルをバランスウエイト部を備えた主軸に連設する偏心軸
部に係合し、旋回スクロールを自転することなく固定ス
クロールに対し旋回運動させ、旋回スクロールの鏡板と
フレ−ムとにより形成される背圧室を設け、該背圧室に
は前記主軸のバランスウエイト部が配設され、固定スク
ロールには中心部に開口する吐出口と外周部に開口する
吸入口を設け、吸入口よりガスを吸入し、両スクロール
にて形成される密閉空間を中心に移動させ容積を減少し
てガスを圧縮し、吐出口よりの圧縮ガスを底部に油を溜
めた密閉容器内に吐出し、さらに吐出管を介し器外にガ
スを吐出する密閉形スクロール流体装置において、旋回
スクロールの鏡板背面にボス部を設け、該ボス部に主軸
に連設する偏心軸部に係合する旋回軸受部を備えて、偏
心軸部の先端部とボス部底部とで形成される軸方向隙間
からなる油圧室を設け、容器底部の油を主軸内に設けた
給油孔を介して前記油圧室に供給し、該旋回軸受部の軸
受隙間を介して該油圧室内の吐出圧力とほぼ等しい圧力
の高圧油の一部を背圧室に流入せしめるように構成した
ことを特徴とするものである。 【0005】また、第2番目の本発明による密閉形スク
ロール流体装置は、第1番目の発明と同様な前提のもと
で、容器底部の油を主軸内に設けた給油孔を介して旋回
軸受部と主軸受部に供給し、該軸受部からの洩れ油を前
記背圧室に流入して、さらに背圧室内部の油を旋回スク
ロール鏡板外周部から吸入室に導く給油経路を構成した
ことを特徴とするものである。 【0006】 【作用】上記のように、密封容器内を吐出圧力の雰囲気
として、旋回スクロールの鏡板背面に、偏心軸部の先端
部とボス部底部とで形成される軸方向隙間からなる油圧
室を設け、さらに旋回軸受部を設けたことによって、密
閉容器底部の油を主軸内に設けた給油孔を介して前記油
圧室に供給し、該旋回軸受部の軸受隙間を介して該油圧
室内の高圧油の一部を背圧室に流入せしめることができ
る。すなわち、旋回軸受部の微少軸受隙間が給油系の絞
り作用をなし、差圧給油方法により、各軸受部(摺動
部)に必ず給油ができる。また、主軸受部と旋回軸受部
の軸受部からの洩れ油を鏡板背面の空間である背圧室に
流入しているので、その中にあるバランスウェイト部に
よる油の跳ねかけ作用が得られ、軸受部から流入してき
た油は、オルダムリング周辺部のキ−溝部などへ十分に
行き渡り、その部分の潤滑に寄与させ、そのオルダムリ
ング周辺部の潤滑性が向上する。さらに背圧室内部の油
を旋回スクロール鏡板外周部からラップ外周部の吸入室
に導く差圧による給油経路を構成しているので、旋回ス
クロール鏡板外周面部の潤滑も改善できる効果がある。
このよに、本発明では特別な給油ポンプが不要で、コス
トが軽減される。また、偏心軸部の先端部の油圧室(吐
出圧力にほぼ等しい圧力の高圧油領域)の構造によっ
て、この油圧による力を旋回スクロールを支える支持力
とすることができ、旋回スクロールの挙動の安定化を図
るという効果がある。さらに、偏心軸部の先端部に粘性
などにより油をためることができ、起動時の旋回軸受部
への給油遅れを防止でき、その軸受部の信頼性を向上さ
せることができる。 【0007】 【実施例】以下この発明の一実施例を図1から図4によ
り説明する。図1および図2は、この発明の一実施例を
示すものである。 【0008】密閉容器1は2つの部分1a,1bに分割
され、、これら二つの部分があとで結合され一体の気密
容器を形成している。固定スクロール2は、端板2a、
この端板2aに直立しているラップ2bからなる。また
固定スクロールは、その外周部に吸入口2cを、また端
板2aの中央部に吐出口2dを備えている。この吐出口
2dは密閉容器室1内で開口し、密閉容器1内を吐出圧
力に保持している。旋回スクロール3は、円板状の端板
3aに直立しているラップ3b,反ラップ側の面(背
面)に形成されたスクロールボス3cからなる。両スク
ロール2,3の各ラップ2b,3bは、インボリュ−ト
曲線あるいはこれに類似する曲線に成形されている。こ
れら固定スクロール2と旋回スクロール3とは互いにラ
ップ2b,3bが向き合った状態で噛み合っている。フ
レ−ム4は、旋回スクロール3及び後述する自動阻止部
材5を納める空間を有し、固定スクロール2の外周部分
に数本のボルト(図示せず)によって結合され、またそ
のフレ−ム4の外周面は、前記密閉容器1の内壁にぴっ
たり密着して結合されている。 【0009】固定スクロール2の外周面は、前記密閉容
器1の内壁にぴったり密着して結合されている。旋回ス
クロール3の端板3aは、背面がフレ−ム4に支えら
れ、端板3aが固定スクロール2の端板2aからそれほ
どはなれることなく運動できるようになっている。自転
阻止部材5は、一方の面と他方の面に溝(図示せず)を
有するリングと各溝に嵌合するオルダムキ−からなり、
前記の各溝は互いに直交している。一方の溝にはフレ−
ム4に固定されたオルダムキ−6がはめ込まれている。
主軸(クランクシャフト)7は、フレ−ム4に取り付け
た軸受8に支持されている。このクランクシャフト7の
頭部には偏心軸部(クランクピン)7aがクランクシャ
フト7の軸心から旋回半径εに相当する距離だけはなれ
た位置に設けられるとともに、パランスウエイト部7b
が設けられ、このクランクピン7aが旋回スクロールボ
ス3cに嵌め込まれ係合している。この両者の係合部に
は、クランクピン7aの上端面の上方に軸方向に延びた
空間(軸方向隙間)が形成されている。給油孔9は、ク
ランクシャフト6に、その下端面から頭部にわたって形
成され、クランクピン部の上端面に開口している。旋回
スクロール3の鏡板背面にボス部3cを設け、該ボス部
3cに主軸7に連設する偏心軸部7aに係合する旋回軸
受部8aを備え、偏心軸部7aの先端部とボス部3c底
部とで形成される軸方向隙間からなる油圧室7cを設け
て、密閉容器底部の油を主軸7内に設けた給油孔9を介
して前記油圧室7cに供給し、該旋回軸受部8aから軸
受隙間を介して該油圧室内7c内の吐出圧力にほぼ等し
い圧力の高圧油の一部を背圧室25に流入せしめてい
る。 【0010】また、容器底部の油を主軸7内に設けた給
油孔9を介して旋回軸受部8aと主軸受部8bに供給
し、これら軸受部8からの洩れ油を背圧室25に流入せ
しめている。さらに背圧室25内部の油を旋回スクロー
ル3の鏡板外周部を通って吸入室に導くように、背圧室
の圧力(中間圧力)と吸入圧力との差圧による給油経路
を構成せしめている。なお、符号11は電動機であり、
そのステ−タは、前記密閉容器1の内壁にぴったり密着
して結合されている。符号12は固定スクロール2の吸
入管2cに接続された吸入管、符号13は吐出管であ
る。密閉容器内は、空間を前記フレ−ム4により固定ス
クロール2の反ラップ側の吐出室20と電動機11側の
電動機室22とに区画し、吐出室20と電動機室22と
を連通する流路21(21a,21b,21c,21
d,21e)をフレ−ム外縁部にあって密閉容器1aの
内壁に沿って設けている。電動機室22側からガスを吐
出する吐出管13を設けている。該吐出管13は、電動
機室22の上方部でフレ−ム4の外縁部近傍にあって、
上記連通流路21と軸方向に重ならない密閉容器1aの
壁部に設置している。 【0011】次に、給油通路10は、旋回スクロール3
に設けられており、旋回スクロール3に設けられてお
り、旋回スクロール3の中心部から放射状に延びてい
る。これら給油通路10の中心部と給油孔9とは、スク
ロールボス3cとクランクシャフト7の係合部に形成さ
れた空間(油圧室)7cでそれぞれ連通している。ま
た、給油通路10の油の放出端は固定スクロール2と旋
回スクロール3との摺動面に開口している。 【0012】図3は、給油路10の別の実施態様を示す
もので、給油通路10の油の放出端をラップ3bの端面
に開口したものである。他は、図1、図2と同じであ
る。 【0013】図4は、給油路10のさらに別の実施態様
を示すもので、給油通路10の油の放出端を密閉空間V
1に開口したものである。その他は図1、図2と同じで
ある。密閉容器1の底部に溜められている油は、吐出圧
を受け、給油孔9を上昇して係合部の空間(軸方向隙
間)に流入し、ここから給油通路10に入り、固定スク
ロール2と旋回スクロール3との摺動面、ラップ3bと
固定スクロール2の端板2aとの摺動面または密閉空間
V1に圧送される。 【0014】冷媒ガスは吸入管12を経て密閉容器内の
圧縮要素部に導入され、ここで圧縮されると共に、上記
摺動部及び軸受などに供給される潤滑油が,背圧室ひい
ては旋回スクロール3の鏡板外周部から吸入室へと中間
圧力と吸入圧力との差圧による給油経路を経て、圧縮要
素部2、3に導かれ混合される。この潤滑油を混入した
冷媒ガスは高温、高圧となって吐出口2dより吐出さ
れ、吐出室20ひいては連通流路21から電動機室22
へと移動することになる。ここで冷媒ガス中の油は分離
され、密閉容器の底部に溜ることになる。 【0015】油を各摺動面、密閉空間V1に供給する
際、吐出圧を利用したが、給油孔9を、その下方端を軸
心に開口し、頭部を軸心から離れた位置に開口すれば、
細孔9自体にポンプ作用をもたせることができ、このポ
ンプ作用と吐出圧を併用することもできる。前記した給
油路10の各実施態様によれば、クランクシャフトおよ
び旋回スクロールに常時連通している給油孔を設けたの
で、旋回スクロールと固定スクロールとの摺動面、密閉
空間に強制給油が可能となり給油が確実となる。従って
各摺動面の潤滑を良くして摩擦損傷を大幅に軽減すると
共に焼き付きを防止することができる。また、クランク
シャフト頭部に形成された空間(軸方向隙間)に作用す
る吐出圧力にほぼ等しい圧力の高圧油によって、軸方向
押し付け力を旋回スクロールに付与することができ、圧
縮室内のガス圧による離脱力をより小さくすることがで
き、これにより旋回スクロールの旋回運動を安定させる
ことができる。 【0016】 【発明の効果】本発明によれば、次のような効果があ
る。 【0017】(1)旋回軸受部の微少軸受隙間が給油系
の絞り作用をなし、差圧給油方法により、各摺動部に必
ず給油がで、圧縮機の信頼性の大幅な向上が図れる。 【0018】(2)特別な給油ポンプが不要で、コスト
が軽減される。 【0019】(3)バランスウェイト部による油の跳ね
かけ作用が得られ、軸受部から流入してきた油をオルダ
ムリング周辺部のキ−溝部などへ油が行き渡り、その部
分の潤滑が向上する。 【0020】(4)旋回軸受部の微少軸受隙間が給油系
の絞り作用をなし、差圧給油方法により偏心軸部の先端
部の油圧室はほぼ吐出圧力に等しい圧力の高圧油を保持
できる。このため、この油圧による力を旋回スクロール
を支える支持力とすることができる。 【0021】(5)偏心軸部の先端部の油圧室に粘性な
どにより油をためることができ、起動時の旋回軸受部へ
の給油遅れを防止でき、その軸受部の信頼性を向上させ
ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetic scroll compressor used as a refrigerant compressor for refrigeration or air conditioning or a helium liquefaction compressor. A conventional structure of a hermetic scroll compressor is disclosed in Japanese Patent Laid-Open No. 53-35840. In this reference, the scroll fluid device is fixed in a closed container via a flange. Further, a structure is disclosed in which a refrigerant gas is guided to the outside of a hermetically sealed container and discharged from a discharge port at the center of a fixed scroll, which is a compression element portion of a scroll fluid device. It should be noted that the suction gas is introduced into the space inside the closed container, and the structure is in an atmosphere of suction pressure that is a low pressure including the surroundings of the electric motor. As a technical problem of the hermetic scroll compression device, in the above cited example, since the atmosphere around the drive shaft of the scroll fluid device has a low suction pressure atmosphere, the bearing part is not provided. Since the method of lubrication by the centrifugal pump action by the rotation of the spindle is adopted as the lubrication method of
There is a problem that it is difficult to always secure the amount of oil.
In addition, since the back surface of the end plate of the orbiting scroll has the same low-pressure suction pressure atmosphere, it is equipped with a thrust bearing portion that receives gas force due to the internal pressure of the scroll portion that is the compression element portion, and that portion has an excessive thrust force. You will receive it. Therefore, it is necessary to secure a sufficient oil supply amount also in the thrust bearing portion that receives the thrust force. In particular, if the pump head, which is the distance between the lower end of the main shaft and the bearing, is large, the amount of oil supply is limited in the above-described oil supply method using the centrifugal pump action. For this reason, there is a problem in that the lubrication oil is insufficient and the lubrication of each sliding portion of the compressor is poor, so that the reliability around the bearing is deteriorated and the reliability of the compressor itself is impaired. The present invention has been invented in view of the above-mentioned problems, that is, a hermetic scroll fluid device according to the first aspect of the present invention is a scroll compression device in a hermetic container. The compressor and the electric motor are connected to each other through the main shaft and stored, and the scroll compressor is such that the fixed scroll and the orbiting scroll in which the spiral wrap is upright on the disk-shaped end plate are engaged with each other with the wrap inside. The orbiting scroll is formed by an end plate and a frame of the orbiting scroll, which engages with an eccentric shaft portion which is continuously provided on a main shaft having a balance weight portion, and causes the orbiting scroll to orbit with respect to a fixed scroll without rotating. A back pressure chamber is provided, and the balance weight portion of the main shaft is disposed in the back pressure chamber, and the fixed scroll has a discharge port opening at the center and an intake port opening at the outer periphery. A port is provided, gas is sucked in through the suction port, the volume is reduced by moving around the closed space formed by both scrolls to compress the gas, and the compressed gas from the discharge port is sealed with oil at the bottom. In a sealed scroll fluid device that discharges gas into a container and further discharges gas to the outside of a container through a discharge pipe, a boss portion is provided on the back face of an orbiting scroll end plate, and an eccentric shaft portion that is continuous with the main shaft is attached to the boss portion. A slewing bearing portion is provided, and an oil pressure chamber is formed by an axial gap formed by the tip portion of the eccentric shaft portion and the bottom portion of the boss portion, and the oil at the bottom portion of the container is provided through an oil supply hole provided in the main shaft. It is characterized in that it is configured so that a part of the high-pressure oil, which is supplied to the hydraulic chamber and has a pressure substantially equal to the discharge pressure in the hydraulic chamber, flows into the back pressure chamber through the bearing gap of the slewing bearing portion. is there. Further, in the hermetic scroll fluid device according to the second aspect of the present invention, on the basis of the same premise as in the first aspect of the invention, the oil in the bottom of the container is slewing bearing through an oil supply hole provided in the main shaft. And a main bearing portion, oil leaking from the bearing portion is introduced into the back pressure chamber, and an oil supply path for guiding the oil inside the back pressure chamber from the outer peripheral portion of the orbiting scroll end plate to the suction chamber is configured. It is characterized by. [0006] As described above, a hydraulic chamber formed of an axial gap formed by the tip of the eccentric shaft and the bottom of the boss is formed on the rear surface of the end plate of the orbiting scroll, with the inside of the sealed container as an atmosphere of discharge pressure. By further providing the slewing bearing portion, the oil at the bottom of the closed container is supplied to the hydraulic chamber through the oil supply hole provided in the main shaft, and the oil in the hydraulic chamber is provided through the bearing gap of the slewing bearing portion. A part of the high pressure oil can be made to flow into the back pressure chamber. That is, the minute bearing gap of the orbiting bearing portion functions as a throttle for the oil supply system, and each bearing portion (sliding portion) can always be lubricated by the differential pressure oil supply method. Further, since the leaked oil from the bearings of the main bearing portion and the orbiting bearing portion is flowing into the back pressure chamber which is the space behind the end plate, the balance weight portion in the oil can splash the oil, The oil that has flowed in from the bearing portion sufficiently spreads to the key groove portion around the Oldham ring and contributes to the lubrication of that portion, and the lubricity around the Oldham ring is improved. Further, since the oil supply path is constituted by the differential pressure for guiding the oil in the back pressure chamber from the outer peripheral portion of the orbiting scroll end plate to the suction chamber in the outer peripheral portion of the wrap, there is an effect that the lubrication of the outer peripheral surface portion of the orbiting scroll end plate can be improved.
As described above, according to the present invention, a special oil supply pump is unnecessary, and the cost is reduced. Also, due to the structure of the hydraulic chamber at the tip of the eccentric shaft (high-pressure oil region at a pressure approximately equal to the discharge pressure), the force due to this hydraulic pressure can be used as the supporting force for supporting the orbiting scroll, and the behavior of the orbiting scroll is stable. It has the effect of promoting Further, oil can be accumulated in the tip end portion of the eccentric shaft portion due to viscosity or the like, delay of oil supply to the slewing bearing portion at the time of starting can be prevented, and reliability of the bearing portion can be improved. An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. 1 and 2 show an embodiment of the present invention. The closed container 1 is divided into two parts 1a and 1b, and these two parts are later joined to form an integral airtight container. The fixed scroll 2 includes an end plate 2a,
It consists of a wrap 2b standing upright on this end plate 2a. Further, the fixed scroll is provided with a suction port 2c on its outer peripheral portion and a discharge port 2d on the central portion of the end plate 2a. The discharge port 2d opens in the closed container chamber 1 and maintains the closed container 1 at a discharge pressure. The orbiting scroll 3 includes a wrap 3b standing upright on a disk-shaped end plate 3a, and a scroll boss 3c formed on the surface (back surface) on the side opposite to the wrap. Each of the wraps 2b and 3b of the scrolls 2 and 3 is formed into an involute curve or a curve similar thereto. The fixed scroll 2 and the orbiting scroll 3 are meshed with each other with the wraps 2b and 3b facing each other. The frame 4 has a space for accommodating the orbiting scroll 3 and an automatic blocking member 5 which will be described later, and is connected to the outer peripheral portion of the fixed scroll 2 by several bolts (not shown). The outer peripheral surface is closely fitted and joined to the inner wall of the closed container 1. The outer peripheral surface of the fixed scroll 2 is closely fitted and joined to the inner wall of the closed container 1. The rear surface of the end plate 3a of the orbiting scroll 3 is supported by the frame 4, and the end plate 3a can move without being so far from the end plate 2a of the fixed scroll 2. The rotation preventing member 5 comprises a ring having grooves (not shown) on one surface and the other surface and an Oldham key fitted in each groove,
The above grooves are orthogonal to each other. One groove has a frame
The Oldham Key-6 fixed to M4 is fitted.
The main shaft (crankshaft) 7 is supported by a bearing 8 attached to the frame 4. An eccentric shaft portion (crank pin) 7a is provided on the head portion of the crankshaft 7 at a position separated from the axial center of the crankshaft 7 by a distance corresponding to a turning radius ε, and a balance weight portion 7b.
The crank pin 7a is fitted and engaged with the orbiting scroll boss 3c. A space (axial gap) extending in the axial direction is formed above the upper end surface of the crank pin 7a in the engaging portion between the two. The oil supply hole 9 is formed in the crankshaft 6 from its lower end surface to its head portion, and opens at the upper end surface of the crankpin portion. The orbiting scroll 3 is provided with a boss portion 3c on the rear surface of the end plate, and the boss portion 3c is provided with an orbiting bearing portion 8a that engages with an eccentric shaft portion 7a that is continuous with the main shaft 7. The tip end portion of the eccentric shaft portion 7a and the boss portion 3c are provided. An oil pressure chamber 7c formed by an axial gap formed with the bottom is provided, and oil at the bottom of the closed container is supplied to the oil pressure chamber 7c through an oil supply hole 9 provided in the main shaft 7, and from the slewing bearing portion 8a. A part of the high pressure oil having a pressure substantially equal to the discharge pressure in the hydraulic chamber 7c is caused to flow into the back pressure chamber 25 through the bearing gap. The oil at the bottom of the container is supplied to the orbiting bearing portion 8a and the main bearing portion 8b through the oil supply holes 9 provided in the main shaft 7, and the oil leaking from these bearing portions 8 flows into the back pressure chamber 25. I am busy. Further, the oil supply path is configured by the differential pressure between the pressure (intermediate pressure) of the back pressure chamber and the suction pressure so that the oil inside the back pressure chamber 25 is guided to the suction chamber through the outer peripheral portion of the orbiting scroll 3. . Incidentally, reference numeral 11 is an electric motor,
The stator is closely attached to the inner wall of the closed container 1. Reference numeral 12 is a suction pipe connected to the suction pipe 2c of the fixed scroll 2, and reference numeral 13 is a discharge pipe. In the closed container, a space is divided by the frame 4 into a discharge chamber 20 on the side opposite to the wrap side of the fixed scroll 2 and a motor chamber 22 on the side of the electric motor 11, and a flow path connecting the discharge chamber 20 and the electric motor chamber 22. 21 (21a, 21b, 21c, 21
d, 21e) is provided along the inner wall of the closed container 1a at the outer edge of the frame. A discharge pipe 13 that discharges gas from the electric motor chamber 22 side is provided. The discharge pipe 13 is located above the electric motor chamber 22 in the vicinity of the outer edge of the frame 4,
It is installed on the wall portion of the closed container 1a that does not axially overlap with the communication channel 21. Next, the oil supply passage 10 is provided with an orbiting scroll 3
And is provided in the orbiting scroll 3, and extends radially from the central portion of the orbiting scroll 3. The center portion of the oil supply passage 10 and the oil supply hole 9 communicate with each other in a space (hydraulic chamber) 7c formed in an engaging portion of the scroll boss 3c and the crankshaft 7. Further, the oil discharge end of the oil supply passage 10 is opened to the sliding surface between the fixed scroll 2 and the orbiting scroll 3. FIG. 3 shows another embodiment of the oil supply passage 10, in which the oil discharge end of the oil supply passage 10 is opened to the end surface of the wrap 3b. Others are the same as FIG. 1 and FIG. FIG. 4 shows still another embodiment of the oil supply passage 10, in which the oil discharge end of the oil supply passage 10 is closed space V.
1 is opened. Others are the same as those in FIGS. 1 and 2. The oil stored in the bottom portion of the closed container 1 receives the discharge pressure, rises in the oil supply hole 9 and flows into the space (axial gap) of the engaging portion, enters the oil supply passage 10 from this, and then the fixed scroll 2 And the sliding surface of the orbiting scroll 3, the sliding surface of the wrap 3b and the end plate 2a of the fixed scroll 2, or the sealed space V1. The refrigerant gas is introduced into the compression element portion in the closed container through the suction pipe 12, is compressed there, and the lubricating oil supplied to the sliding portion, the bearing and the like is supplied to the back pressure chamber and thus the orbiting scroll. 3 from the outer peripheral portion of the end plate to the suction chamber, through the oil supply path by the pressure difference between the intermediate pressure and the suction pressure, and guided to the compression element portions 2 and 3 to be mixed. The refrigerant gas mixed with the lubricating oil becomes a high temperature and a high pressure and is discharged from the discharge port 2d, so that the discharge chamber 20 and the communication passage 21 are electrically connected to the electric motor chamber 22.
Will be moved to. Here, the oil in the refrigerant gas is separated and collected at the bottom of the closed container. Although the discharge pressure was used when oil was supplied to each sliding surface and the closed space V1, the lower end of the oil supply hole 9 was opened at the axial center, and the head was located at a position away from the axial center. If you open it,
The pores 9 themselves can have a pumping action, and this pumping action and discharge pressure can be used together. According to each of the embodiments of the oil supply passage 10 described above, the oil supply hole that is in constant communication with the crankshaft and the orbiting scroll is provided, so that it is possible to perform forced oil supply to the sliding surface between the orbiting scroll and the fixed scroll and the sealed space. Refueling is reliable. Therefore, it is possible to improve the lubrication of each sliding surface to significantly reduce frictional damage and prevent seizure. Further, the high-pressure oil having a pressure substantially equal to the discharge pressure acting on the space (axial gap) formed in the crankshaft head can give an axial pressing force to the orbiting scroll, and the gas pressure in the compression chamber The separating force can be made smaller, and the orbiting motion of the orbiting scroll can be stabilized. According to the present invention, the following effects can be obtained. (1) The small bearing gap of the slewing bearing portion acts as a throttle for the oil supply system, and by means of the differential pressure oil supply method, oil can be supplied to each sliding portion without fail, and the reliability of the compressor can be greatly improved. (2) No special oil supply pump is required, and the cost is reduced. (3) The balance weight portion provides an oil splashing action, and the oil flowing from the bearing portion is distributed to the key groove portion around the Oldham ring and the lubrication of that portion is improved. (4) The small bearing gap of the slewing bearing portion functions as a throttle for the oil supply system, and the differential pressure oil supply method allows the hydraulic chamber at the tip of the eccentric shaft portion to hold high-pressure oil at a pressure substantially equal to the discharge pressure. Therefore, this hydraulic force can be used as a supporting force for supporting the orbiting scroll. (5) Oil can be accumulated in the hydraulic chamber at the tip of the eccentric shaft portion due to viscosity or the like, delay of oil supply to the swivel bearing portion at the time of start can be prevented, and the reliability of the bearing portion can be improved. You can

【図面の簡単な説明】 【図1】この発明の一実施例の縦断面図。 【図2】図1のII−II断面図。 【図3】旋回スクロールの鏡板に設けた給油通路の別の
実施態様を示す図。 【図4】給油通路のさらに別の実施態様を示す図。 【符号の説明】 1…密閉容器 2…固定スクロール 3…旋回スクロール 4…フレ−ム 7…クランクシャフト 7c…油圧室 8a…旋回軸受部 8b…主軸受部 9…給油孔 10…給油通路 25…背圧室
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view of an embodiment of the present invention. FIG. 2 is a sectional view taken along line II-II of FIG. FIG. 3 is a view showing another embodiment of the oil supply passage provided on the end plate of the orbiting scroll. FIG. 4 is a view showing still another embodiment of the oil supply passage. [Explanation of Codes] 1 ... Airtight container 2 ... Fixed scroll 3 ... Orbiting scroll 4 ... Frame 7 ... Crankshaft 7c ... Hydraulic chamber 8a ... Orbiting bearing portion 8b ... Main bearing portion 9 ... Oil supply hole 10 ... Oil supply passage 25 ... Back pressure chamber

─────────────────────────────────────────────────────
【手続補正書】 【提出日】平成6年3月23日 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】全文 【補正方法】変更 【補正内容】 【書類名】 明細書 【発明の名称】 密閉形スクロール流体装置 【特許請求の範囲】 【1】 密閉容器内に、スクロール圧縮要素部と電動機
を主軸を介して連設して収納するとともに、圧縮要素部
は円板状鏡板に渦巻状のラップを直立させた固定スクロ
ールおよび旋回スクロールをラップを内側にしてかみ合
せ、これに固定スクロールが結合されたフレームと、旋
回スクロールの自転を阻止し旋回運動させるための自転
阻止部材と、フレームに軸受を介して回転自在に支持さ
れ電動機に連設した主軸とからなり、固定スクロールに
は中心部に開口する吐出口と外周部に開口する吸入口と
を設け、吸入口よりガスを吸入し両スクロールにて形成
される密閉空間を中心部に移動させ容積を減少させガス
を圧縮する密閉形スクロール流体装置において、 前記旋回スクロールと主軸との旋回軸受係合部が、主軸
の軸心から偏心した偏心軸と、該偏心軸を収納するため
旋回スクロール鏡板の反ラップ側に設けられた凹状のボ
ス部とからなり、前記旋回軸受係合部において、偏心軸
の端部と凹状のボス部底面との間に空間を形成し、該空
間に前記密閉容器内油溜りの油を導くための手段を備え
たことを特徴とする密閉形スクロール流体装置。 【2】 前記密閉容器内油溜りの油を偏心軸の端部と凹
状のボス部底面との間の前記空間へ導くための手段は、
前記油溜りの油面に吐出ガス圧を付与する手段と、下端
が油溜りの油面下に開口し上端が偏心軸の端部に開口し
て主軸内に設けられた給油孔とからなることを特徴とす
る特許請求の範囲第1項記載の密閉形スクロール流体装
置。 【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、冷凍、空調用の冷媒用
圧縮機として用いられる密閉形スクロール圧縮装置に関
するものである。 【0002】 【従来の技術】密閉形スクロール圧縮装置の従来構造に
ついては、特開昭53−35840号にて開示されてい
る。この引用例では、スクロール流体装置を密閉容器内
にフランジを介して固定している。また、スクロール流
体装置の圧縮要素部である固定スクロール中央部の吐出
ポ−トから、冷媒ガスが密閉容器外へ導かれ吐出される
構造が開示されている。なお、密閉容器内の空間には吸
入ガスが導かれており、電動機の周囲も含めて低圧圧力
となる吸入圧力の雰囲気にある構造である。 【0003】 【発明が解決しようとする課題】上記引用例に開示され
ている従来のスクロール流体機械では、旋回スクロール
の円板状鏡板の反ラップ側の面の中心部に短いピン部が
形成され、これに主軸の軸心に対して偏心し、中央部が
凹状になったボス部が旋回軸受係合し、旋回スクロール
が駆動されていた。 【0004】一般に、旋回スクロールを駆動する主軸は
剛性が高く強度のある鋼などが使用されているが、旋回
スクロールは加工性、軽量化などの要求のため、鋳物、
アルミニウム合金などの材料が使用されている。このた
め、旋回スクロール側の前記ピン部には、旋回スクロー
ルの旋回運動にともない繰返し曲げ応力が作用すること
になり、使用材料の強度の関係から、疲労破壊などによ
るピン部の切損などの問題が生じた。 【0005】また、前記旋回軸受係合部の給油、潤滑に
関して十分な配慮がなされておらず、起動時など過渡的
に給油遅れを生じ、このため該係合部の焼付、かじりな
どを発生し、圧縮機の信頼性を損なうという問題が生ず
る。 【0006】本発明は上記問題点に鑑みて発明されたも
ので、本発明の目的は、主軸の偏心部と係合する旋回軸
受係合部の剛性、強度増加を図ること、また該係合部摺
動面の給油、潤滑性を改善して焼付、かじりなどの発生
を抑え、信頼性に優れた密閉形スクロール流体装置を提
供することにある。 【0007】 【課題を解決するための手段】本発明は、上記目的を達
成するため、密閉容器内に、スクロール圧縮要素部と電
動機を主軸を介して連設して収納するとともに、圧縮要
素部は円板状鏡板に渦巻状のラップを直立させた固定ス
クロールおよび旋回スクロールをラップを内側にしてか
み合せ、これに固定スクロールが結合されたフレーム
と、旋回スクロールの自転を阻止し旋回運動させるため
の自転阻止部材と、フレームに軸受を介して回転自在に
支持され電動機に連設した主軸とからなり、固定スクロ
ールには中心部に開口する吐出口と外周部に開口する吸
入口とを設け、吸入口よりガスを吸入し両スクロールに
て形成される密閉空間を中心部に移動させ容積を減少さ
せガスを圧縮する密閉形スクロール流体装置において、
前記旋回スクロールと主軸との旋回軸受係合部が、主軸
の軸心から偏心した偏心軸と、該偏心軸を収納するため
旋回スクロール鏡板の反ラップ側に設けられた凹状のボ
ス部とからなり、前記旋回軸受係合部において、偏心軸
の端部と凹状のボス部底面との間に空間を形成し、該空
間に前記密閉容器内油溜りの油を導くための手段を備え
たことを特徴とするものである。 【0008】 【作用】上記のように旋回スクロールと主軸との旋回軸
受係合部が、主軸の軸心から偏心した偏心軸と、旋回ス
クロール鏡板の反ラップ側に上記偏心軸を収納する凹状
のボス部とからなるので、従来の旋回スクロール側の偏
心ピン方式に対し、中心径が増すため該係合部の強度が
増す。一方主軸は、剛性が高く強度に優れた鋼などの材
料とするため、前記主軸も十分な強度を得ることがで
き、前記係合部の切損などの損傷を未然に防ぐことがで
きる。さらに前記旋回軸受係合部において、偏心軸の端
部と凹状のボス部底面との間に空間を形成し、該空間に
密閉容器内油溜りの油を導くための手段を備えたので該
空間が油溜りを形成し、起動時など過渡的な条件でも旋
回軸受への給油遅れが緩和される。また、該空間に送ら
れた潤滑油から、潤滑油中に溶け込んだ冷媒ガスが分離
発生しても、そのガスは該空間の上部に溜り、下部には
潤滑油が溜るので、旋回軸受にはガスを含まない潤滑油
が送られるから、旋回軸受けでの油切れによる焼付やか
じりなどの発生を抑えることができる。 【0009】 【実施例】以下この発明の一実施例を図1から図4によ
り説明する。図1および図2は、この発明の一実施例を
示すものである。 【0010】密閉容器1は2つの部分1a,1bに分割
され、、これら二つの部分があとで結合され一体の気密
容器を形成している。固定スクロール2は、端板2a、
この端板2aに直立しているラップ2bからなる。また
固定スクロールは、その外周部に吸入口2cを、また端
板2aの中央部に吐出口2dを備えている。この吐出口
2dは密閉容器室1内で開口し、密閉容器1内を吐出圧
力に保持している。旋回スクロール3は、円板状の端板
3aに直立しているラップ3b,反ラップ側の面(背
面)に形成されたスクロールボス3cからなる。両スク
ロール2,3の各ラップ2b,3bは、インボリュ−ト
曲線あるいはこれに類似する曲線に成形されている。こ
れら固定スクロール2と旋回スクロール3とは互いにラ
ップ2b,3bが向き合った状態で噛み合っている。フ
レ−ム4は、旋回スクロール3及び後述する自動阻止部
材5を納める空間を有し、固定スクロール2の外周部分
に数本のボルト(図示せず)によって結合され、またそ
のフレ−ム4の外周面は、前記密閉容器1の内壁にぴっ
たり密着して結合されている。 【0011】固定スクロール2の外周面は、前記密閉容
器1の内壁にぴったり密着して結合されている。旋回ス
クロール3の端板3aは、背面がフレ−ム4に支えら
れ、端板3aが固定スクロール2の端板2aからそれほ
どはなれることなく運動できるようになっている。自転
阻止部材5は、一方の面と他方の面に溝(図示せず)を
有するリングと各溝に嵌合するオルダムキ−からなり、
前記の各溝は互いに直交している。一方の溝にはフレ−
ム4に固定されたオルダムキ−6がはめ込まれている。
主軸(クランクシャフト)7は、フレ−ム4に取り付け
た軸受8に支持されている。このクランクシャフト7の
頭部には偏心軸部(クランクピン)7aがクランクシャ
フト7の軸心から旋回半径εに相当する距離だけはなれ
た位置に設けられるとともに、パランスウエイト部7b
が設けられ、このクランクピン7aが旋回スクロールの
ボス部3cに嵌め込まれ旋回軸受係合している。この両
者の旋回軸受係合部には、クランクピン7aの上端面の
上方に軸方向に延びた空間(軸方向隙間)が形成されて
いる。給油孔9は、クランクシャフト6に、その下端面
から頭部にわたって形成され、クランクピン部の上端面
に開口している。旋回スクロール3の鏡板背面にボス部
3cを設け、該ボス部3cに主軸7に連設する偏心軸部
7aに係合する旋回軸受係合部8aを備え、偏心軸部7
aの先端部とボス部3c底面とで形成された空間(軸方
向隙間)からなる油圧室7cを設けて、密閉容器底部の
油を主軸7内に設けた給油孔9を介して前記油圧室7c
に供給し、該旋回軸受係合部8aの軸受隙間を介して該
油圧室内7c内の吐出圧力にほぼ等しい圧力の高圧油の
一部を背圧室25に流入せしめている。 【0012】また、容器底部の油を主軸7内に設けた給
油孔9および油圧室7cを介して旋回軸受係合部8aに
供給し、該旋回軸受係合部8からの洩れ油を背圧室25
に流入せしめている。さらに背圧室25内部の油を旋回
スクロール3の鏡板外周部を通って吸入室に導くよう
に、背圧室の圧力(中間圧力)と吸入圧力との差圧によ
る給油経路を構成せしめている。なお、符号11は電動
機であり、そのステ−タは、前記密閉容器1の内壁にぴ
ったり密着して結合されている。符号12は固定スクロ
ール2の吸入管2cに接続された吸入管、符号13は吐
出管である。密閉容器内は、空間を前記フレ−ム4によ
り固定スクロール2の反ラップ側の吐出室20と電動機
11側の電動機室22とに区画し、吐出室20と電動機
室22とを連通する流路21(21a,21b,21
c,21d,21e)をフレ−ム外縁部にあって密閉容
器1aの内壁に沿って設けている。電動機室22側から
ガスを吐出する吐出管13を設けている。該吐出管13
は、電動機室22の上方部でフレ−ム4の外縁部近傍に
あって、上記連通流路21と軸方向に重ならない密閉容
器1aの壁部に設置している。 【0013】次に、給油通路10は、旋回スクロール3
に設けられており、旋回スクロール3に設けられてお
り、旋回スクロール3の中心部から放射状に延びてい
る。これら給油通路10の中心部と給油孔9とは、スク
ロールボス3cとクランクシャフト7の旋回軸受係合部
に形成された空間(油圧室)7cでそれぞれ連通してい
る。また、給油通路10の油の放出端は固定スクロール
2と旋回スクロール3との摺動面に開口している。ま
た、前記ボス部を囲むように、該ボス部の外側を主軸の
上部に設けられたバランスウエイト7bの一部が包囲し
て回転するように構成し、さらに外側に前記各部材を囲
むようにリング状の自転阻止部材が配置されている。 【0014】図3は、給油路10の別の実施態様を示す
もので、給油通路10の油の放出端をラップ3bの端面
に開口したものである。他は、図1、図2と同じであ
る。 【0015】図4は、給油路10のさらに別の実施態様
を示すもので、給油通路10の油の放出端を密閉空間V
1に開口したものである。その他は図1、図2と同じで
ある。密閉容器1の底部に溜められている油は、吐出圧
を受け、給油孔9を上昇して旋回軸受係合部の空間(軸
方向隙間)に流入し、ここから給油通路10に入り、固
定スクロール2と旋回スクロール3との摺動面、ラップ
3bと固定スクロール2の端板2aとの摺動面または密
閉空間V1に圧送される。 【0016】冷媒ガスは吸入管12を経て密閉容器内の
圧縮要素部に導入され、ここで圧縮されると共に、上記
摺動部及び軸受などに供給される潤滑油が,背圧室ひい
ては旋回スクロール3の鏡板外周部から吸入室へと中間
圧力と吸入圧力との差圧による給油経路を経て、圧縮要
素部2、3に導かれ混合される。この潤滑油を混入した
冷媒ガスは高温、高圧となって吐出口2dより吐出さ
れ、吐出室20ひいては連通流路21から電動機室22
へと移動することになる。ここで冷媒ガス中の油は分離
され、密閉容器の底部に溜ることになる。 【0017】油を各摺動面、密閉空間V1に供給する
際、吐出圧を利用したが、給油孔9を、その下方端を軸
心に開口し、頭部を軸心から離れた位置に開口すれば、
細孔9自体にポンプ作用をもたせることができ、このポ
ンプ作用と吐出圧を併用することもできる。前記した給
油路10の各実施態様によれば、クランクシャフトおよ
び旋回スクロールに常時連通している給油孔を設けたの
で、旋回スクロールと固定スクロールとの摺動面、密閉
空間に強制給油が可能となり給油が確実となる。従って
各摺動面の潤滑を良くして摩擦損傷を大幅に軽減すると
共に焼き付きを防止することができる。また、旋回軸受
係合部の頭部に形成された空間(軸方向隙間)に作用す
る吐出圧力にほぼ等しい圧力の高圧油によって、軸方向
押し付け力を旋回スクロールに付与することができ、圧
縮室内のガス圧による離脱力をより小さくすることがで
き、これにより旋回スクロールの旋回運動を安定させる
ことができる。 【0018】 【発明の効果】本発明においては、旋回スクロールと主
軸との旋回軸受係合部が、主軸の軸心から偏心した偏心
軸と、旋回スクロール鏡板の反ラップ側に上記偏心軸を
収納する凹状のボス部とからなるので、従来の旋回スク
ロール側の偏心ピン方式に対し、中心径が増すため該係
合部の強度が増す。一方主軸は、剛性が高く強度に優れ
た鋼などの材料とするため、前記主軸も十分な強度を得
ることができ、前記係合部の切損などの損傷を未然に防
ぐという効果がある。 【0019】さらに、本発明においては、前記旋回軸受
係合部において偏心軸端部と、凹状のボス部底面との間
に空間を形成し、該空間に密閉容器内油溜りの油を導く
ための手段を備えているので、該空間が油溜りを形成
し、起動時など過渡的な条件でも旋回軸受への給油遅れ
が緩和される。また、該空間に送られた潤滑油から、潤
滑油中に溶け込んだ冷媒ガスが分離発生しても、そのガ
スは該空間の上部に溜り、下部には潤滑油が溜るので旋
回軸受にはガスを含まない潤滑油が送られるから、旋回
軸受での油切れによる焼付やかじりなどの発生を抑える
効果がある。 【図面の簡単な説明】 【図1】この発明の一実施例の縦断面図。 【図2】図1のII−II断面図。 【図3】旋回スクロールの鏡板に設けた給油通路の別の
実施態様を示す図。 【図4】給油通路のさらに別の実施態様を示す図。 【符号の説明】 1…密閉容器 2…固定スクロール 3…旋回スクロール 4…フレ−ム 7…クランクシャフト 7c…油圧室 8…軸受 8a…旋回軸受 9…給油孔 10…給油通路 25…背圧室
─────────────────────────────────────────────────── ───
[Procedure amendment] [Date of submission] March 23, 1994 [Procedure Amendment 1] [Amendment target document name] Specification [Amendment target item name] Full text [Amendment method] Change [Amendment content] [Document name] Specification BOOK Title of the Invention Closed scroll fluid device [Claims] [1] A scroll compression element part and an electric motor are connected and housed in a closed container via a main shaft, and the compression element part is a disk. A fixed scroll and an orbiting scroll in which a spiral wrap is upright on a plate-shaped end plate are engaged with each other with the wrap being inside, and the frame in which the fixed scroll is connected to it and the rotation of the orbiting scroll are blocked to prevent rotation. It consists of a member and a main shaft that is rotatably supported by a frame via bearings and is connected to an electric motor.The fixed scroll is provided with a discharge port that opens to the center and a suction port that opens to the outer periphery. In a closed scroll fluid device that sucks gas from a mouth and moves a closed space formed by both scrolls to a central portion to reduce the volume and compress the gas, the orbiting bearing engaging portion between the orbiting scroll and the main shaft, An eccentric shaft that is eccentric from the axis of the main shaft, and a concave boss portion that is provided on the side opposite to the wrap of the orbiting scroll end plate for housing the eccentric shaft. And a bottom surface of the concave boss portion, and a means for guiding the oil in the oil reservoir in the closed container to the space is provided. [2] A means for guiding the oil in the oil reservoir in the closed container to the space between the end of the eccentric shaft and the bottom surface of the concave boss is
A means for applying a discharge gas pressure to the oil surface of the oil sump, and an oil supply hole provided in the main shaft with the lower end opened below the oil surface of the oil sump and the upper end opened at the end of the eccentric shaft. The hermetically sealed scroll fluid device according to claim 1, wherein Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetic scroll compressor used as a refrigerant compressor for refrigeration and air conditioning. A conventional structure of a hermetic scroll compressor is disclosed in Japanese Patent Laid-Open No. 53-35840. In this reference, the scroll fluid device is fixed in a closed container via a flange. Further, a structure is disclosed in which a refrigerant gas is guided to the outside of a hermetically sealed container and discharged from a discharge port at the center of a fixed scroll, which is a compression element portion of a scroll fluid device. It should be noted that the suction gas is introduced into the space inside the closed container, and the structure is in an atmosphere of suction pressure that is a low pressure including the surroundings of the electric motor. In the conventional scroll fluid machine disclosed in the above cited reference, a short pin portion is formed in the central portion of the surface of the disk-shaped end plate of the orbiting scroll opposite to the wrap side. The boss portion, which is eccentric with respect to the axis of the main shaft and has a concave center portion, engages with the orbiting bearing, and the orbiting scroll is driven. Generally, steel or the like having high rigidity and strength is used for the main shaft for driving the orbiting scroll. However, since the orbiting scroll is demanded for workability and weight reduction, casting,
Materials such as aluminum alloys are used. Therefore, repetitive bending stress is applied to the pin portion on the orbiting scroll side with the orbiting motion of the orbiting scroll, and problems such as damage to the pin portion due to fatigue fracture due to the strength of the material used. Occurred. In addition, due consideration has not been given to the lubrication and lubrication of the swivel bearing engaging portion, which causes a transient lubrication delay at the time of start-up, which causes seizure and galling of the engaging portion. However, there arises a problem that the reliability of the compressor is impaired. The present invention has been invented in view of the above problems, and an object of the present invention is to increase the rigidity and strength of a slewing bearing engaging portion which engages with an eccentric portion of a main shaft, and to further enhance the engagement. It is an object of the present invention to provide a sealed scroll fluid device which is excellent in reliability by improving lubrication and lubricity of a sliding surface of the portion to suppress seizure and galling. In order to achieve the above object, the present invention accommodates a scroll compression element portion and a motor connected in series in a hermetically sealed container via a main shaft, and at the same time, the compression element portion. Is a disc-shaped end plate with a spiral wrap standing upright and engaged with the orbiting scroll with the wrap inside, and to prevent the rotation of the orbiting scroll from rotating with the frame in which the fixed scroll is connected. Of the rotation prevention member and a main shaft rotatably supported by a frame via a bearing and connected to the electric motor.The fixed scroll is provided with a discharge port opening to the center and a suction port opening to the outer periphery. In a sealed scroll fluid device that sucks gas from the suction port and moves the sealed space formed by both scrolls to the center to reduce the volume and compress the gas,
The orbiting bearing engaging portion between the orbiting scroll and the main shaft comprises an eccentric shaft eccentric from the axis of the main shaft, and a concave boss portion provided on the side opposite to the wrap of the orbiting scroll end plate for housing the eccentric shaft. In the swivel bearing engaging portion, a space is formed between the end of the eccentric shaft and the bottom surface of the concave boss portion, and means for guiding the oil in the oil reservoir in the closed container is provided in the space. It is a feature. As described above, the orbiting bearing engaging portion between the orbiting scroll and the main shaft has an eccentric shaft eccentric from the axis of the main shaft and a concave shape for accommodating the eccentric shaft on the opposite lap side of the orbiting scroll end plate. Since it is composed of the boss portion, the center diameter is increased as compared with the conventional eccentric pin type on the orbiting scroll side, so that the strength of the engaging portion is increased. On the other hand, since the main shaft is made of a material such as steel having high rigidity and high strength, the main shaft can also obtain sufficient strength, and damage such as cutting damage of the engaging portion can be prevented. Further, in the swivel bearing engaging portion, a space is formed between the end of the eccentric shaft and the bottom surface of the concave boss portion, and the space is provided with means for guiding the oil in the oil reservoir in the closed container. Forms an oil sump, which reduces the delay in oil supply to the slewing bearing even under transient conditions such as startup. Further, even if the refrigerant gas dissolved in the lubricating oil separates from the lubricating oil sent to the space, the gas accumulates in the upper part of the space and the lubricating oil accumulates in the lower part, so Since the lubricating oil containing no gas is sent, it is possible to suppress the occurrence of seizure or galling due to oil shortage in the slewing bearing. An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. 1 and 2 show an embodiment of the present invention. The closed container 1 is divided into two parts 1a and 1b, and these two parts are later joined to form an integral airtight container. The fixed scroll 2 includes an end plate 2a,
It consists of a wrap 2b standing upright on this end plate 2a. Further, the fixed scroll is provided with a suction port 2c on its outer peripheral portion and a discharge port 2d on the central portion of the end plate 2a. The discharge port 2d opens in the closed container chamber 1 and maintains the closed container 1 at a discharge pressure. The orbiting scroll 3 includes a wrap 3b standing upright on a disk-shaped end plate 3a, and a scroll boss 3c formed on the surface (back surface) on the side opposite to the wrap. Each of the wraps 2b and 3b of the scrolls 2 and 3 is formed into an involute curve or a curve similar thereto. The fixed scroll 2 and the orbiting scroll 3 are meshed with each other with the wraps 2b and 3b facing each other. The frame 4 has a space for accommodating the orbiting scroll 3 and an automatic blocking member 5 which will be described later, and is connected to the outer peripheral portion of the fixed scroll 2 by several bolts (not shown). The outer peripheral surface is closely fitted and joined to the inner wall of the closed container 1. The outer peripheral surface of the fixed scroll 2 is closely fitted and joined to the inner wall of the closed container 1. The rear surface of the end plate 3a of the orbiting scroll 3 is supported by the frame 4, and the end plate 3a can move without being so far from the end plate 2a of the fixed scroll 2. The rotation preventing member 5 comprises a ring having grooves (not shown) on one surface and the other surface and an Oldham key fitted in each groove,
The above grooves are orthogonal to each other. One groove has a frame
The Oldham Key-6 fixed to M4 is fitted.
The main shaft (crankshaft) 7 is supported by a bearing 8 attached to the frame 4. An eccentric shaft portion (crank pin) 7a is provided on the head portion of the crankshaft 7 at a position separated from the axial center of the crankshaft 7 by a distance corresponding to a turning radius ε, and a balance weight portion 7b.
The crank pin 7a is fitted into the boss portion 3c of the orbiting scroll and engaged with the orbiting bearing. A space (axial gap) extending in the axial direction is formed above the upper end surface of the crank pin 7a in the swing bearing engaging portion of both of them. The oil supply hole 9 is formed in the crankshaft 6 from its lower end surface to its head portion, and opens at the upper end surface of the crankpin portion. A boss portion 3c is provided on the rear surface of the end plate of the orbiting scroll 3, and an orbiting bearing engaging portion 8a that engages with an eccentric shaft portion 7a continuous with the main shaft 7 is provided on the boss portion 3c.
The hydraulic chamber 7c is formed by a space (axial gap) formed by the tip of a and the bottom surface of the boss 3c, and the oil in the bottom of the closed container is supplied through the oil supply hole 9 provided in the main shaft 7 to the hydraulic chamber. 7c
And a part of the high-pressure oil having a pressure substantially equal to the discharge pressure in the hydraulic chamber 7c is caused to flow into the back pressure chamber 25 through the bearing gap of the orbiting bearing engaging portion 8a. Further, the oil at the bottom of the container is supplied to the slewing bearing engaging portion 8a through the oil supply hole 9 provided in the main shaft 7 and the hydraulic chamber 7c, and the oil leaked from the slewing bearing engaging portion 8 is back pressured. Room 25
Is flowing into. Further, the oil supply path is configured by the differential pressure between the pressure (intermediate pressure) of the back pressure chamber and the suction pressure so that the oil inside the back pressure chamber 25 is guided to the suction chamber through the outer peripheral portion of the orbiting scroll 3. . Reference numeral 11 is an electric motor, and its stator is closely attached to the inner wall of the hermetically sealed container 1. Reference numeral 12 is a suction pipe connected to the suction pipe 2c of the fixed scroll 2, and reference numeral 13 is a discharge pipe. In the closed container, a space is divided by the frame 4 into a discharge chamber 20 on the side opposite to the wrap side of the fixed scroll 2 and a motor chamber 22 on the side of the electric motor 11, and a flow path connecting the discharge chamber 20 and the electric motor chamber 22. 21 (21a, 21b, 21
c, 21d, 21e) are provided along the inner wall of the closed container 1a at the outer edge of the frame. A discharge pipe 13 that discharges gas from the electric motor chamber 22 side is provided. The discharge pipe 13
Is installed on the wall of the hermetically sealed container 1a which is located above the electric motor chamber 22 and near the outer edge of the frame 4 and which does not axially overlap the communication passage 21. Next, the oil supply passage 10 is provided with an orbiting scroll 3
And is provided in the orbiting scroll 3, and extends radially from the central portion of the orbiting scroll 3. The center of the oil supply passage 10 and the oil supply hole 9 communicate with each other in a space (hydraulic chamber) 7c formed in the orbiting bearing engaging portion of the crankshaft 7 and the scroll boss 3c. Further, the oil discharge end of the oil supply passage 10 is opened to the sliding surface between the fixed scroll 2 and the orbiting scroll 3. Further, a part of the balance weight 7b provided on the upper part of the main shaft surrounds the outside of the boss so as to surround the boss and is configured to rotate, and further surrounds each of the members outside. A ring-shaped rotation preventing member is arranged. FIG. 3 shows another embodiment of the oil supply passage 10, in which the oil discharge end of the oil supply passage 10 is opened to the end face of the wrap 3b. Others are the same as FIG. 1 and FIG. FIG. 4 shows still another embodiment of the oil supply passage 10, in which the oil discharge end of the oil supply passage 10 is closed in a closed space V.
1 is opened. Others are the same as those in FIGS. 1 and 2. The oil stored in the bottom of the closed container 1 receives the discharge pressure, rises in the oil supply hole 9 and flows into the space (axial gap) of the slewing bearing engagement portion, enters the oil supply passage 10 from there, and is fixed. It is fed by pressure to the sliding surface between the scroll 2 and the orbiting scroll 3, the sliding surface between the wrap 3b and the end plate 2a of the fixed scroll 2, or the closed space V1. The refrigerant gas is introduced into the compression element portion in the closed container through the suction pipe 12, is compressed therein, and the lubricating oil supplied to the sliding portion and the bearing is supplied to the back pressure chamber and thus the orbiting scroll. 3 from the outer peripheral portion of the end plate to the suction chamber, through the oil supply path by the pressure difference between the intermediate pressure and the suction pressure, and guided to the compression element portions 2 and 3 to be mixed. The refrigerant gas mixed with the lubricating oil becomes a high temperature and a high pressure and is discharged from the discharge port 2d, so that the discharge chamber 20 and the communication passage 21 are electrically connected to the electric motor chamber 22.
Will be moved to. Here, the oil in the refrigerant gas is separated and collected at the bottom of the closed container. Although the discharge pressure was used when oil was supplied to each sliding surface and the closed space V1, the lower end of the oil supply hole 9 was opened at the axis and the head was placed at a position away from the axis. If you open it,
The pores 9 themselves can have a pumping action, and this pumping action and discharge pressure can be used together. According to each of the embodiments of the oil supply passage 10 described above, the oil supply hole that is in constant communication with the crankshaft and the orbiting scroll is provided, so that forced oiling can be performed on the sliding surface between the orbiting scroll and the fixed scroll and the sealed space. Refueling is reliable. Therefore, it is possible to improve the lubrication of each sliding surface to significantly reduce frictional damage and prevent seizure. In addition, the high-pressure oil having a pressure substantially equal to the discharge pressure acting on the space (axial gap) formed in the head of the orbiting bearing engaging portion can apply an axial pressing force to the orbiting scroll, which results in the compression chamber. The separation force due to the gas pressure can be further reduced, and the orbiting motion of the orbiting scroll can be stabilized. According to the present invention, the orbiting bearing engaging portion between the orbiting scroll and the main shaft accommodates the eccentric shaft on the lap side of the eccentric shaft eccentric from the shaft center of the main shaft and the orbiting scroll end plate. As compared with the conventional eccentric pin system on the orbiting scroll side, the center diameter increases, so that the strength of the engaging portion increases. On the other hand, since the main shaft is made of a material such as steel having high rigidity and excellent strength, the main shaft can also obtain sufficient strength, and there is an effect of preventing damage such as cutting damage of the engaging portion. Further, in the present invention, a space is formed between the end of the eccentric shaft and the bottom surface of the concave boss in the slewing bearing engaging portion, and the oil in the oil reservoir in the closed container is introduced into the space. Since the space is provided with an oil reservoir, the delay of oil supply to the slewing bearing is alleviated even under transient conditions such as starting. Further, even if the refrigerant gas dissolved in the lubricating oil separates from the lubricating oil sent to the space, the gas accumulates in the upper part of the space and the lubricating oil accumulates in the lower part, so that gas is not collected in the orbiting bearing. Since lubricating oil containing no oil is sent, it has the effect of suppressing the occurrence of seizure and galling due to oil shortage in the slewing bearing. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical sectional view of an embodiment of the present invention. FIG. 2 is a sectional view taken along line II-II of FIG. FIG. 3 is a view showing another embodiment of the oil supply passage provided on the end plate of the orbiting scroll. FIG. 4 is a view showing still another embodiment of the oil supply passage. [Explanation of Codes] 1 ... Airtight container 2 ... Fixed scroll 3 ... Orbiting scroll 4 ... Frame 7 ... Crankshaft 7c ... Hydraulic chamber 8 ... Bearing 8a ... Orbiting bearing 9 ... Oil supply hole 10 ... Oil supply passage 25 ... Back pressure chamber

Claims (1)

【特許請求の範囲】 【1】 密閉容器内に、スクロール圧縮機と電動機を主
軸を介して連設して収納するとともに、スクロール圧縮
機は、円板状鏡板に渦巻状のラップを直立させた固定ス
クロールおよび旋回スクロールをラップを内側にしてか
み合せ、一方の旋回スクロールをバランスウエイト部を
備えた主軸に連設する偏心軸部に係合し、旋回スクロー
ルを自転することなく固定スクロールに対し旋回運動さ
せ、旋回スクロールの鏡板とフレ−ムとにより形成され
る背圧室を設け、該背圧室には前記主軸のバランスウエ
イト部が配設され、固定スクロールには中心部に開口す
る吐出口と外周部に開口する吸入口を設け、吸入口より
ガスを吸入し、両スクロールにて形成される密閉空間を
中心に移動させ容積を減少してガスを圧縮し、吐出口よ
りの圧縮ガスを底部に油を溜めた密閉容器内に吐出し、
さらに吐出管を介し器外にガスを吐出する密閉形スクロ
ール流体装置において、 旋回スクロールの鏡板背面にボス部を設け、該ボス部に
主軸に連設する偏心軸部に係合する旋回軸受部を備え
て、偏心軸部の先端部とボス部底部とで形成される軸方
向隙間からなる油圧室を設け、容器底部の油を主軸内に
設けた給油孔を介して前記油圧室に供給し、該旋回軸受
部の軸受隙間を介して該油圧室内の吐出圧力とほぼ等し
い圧力の高圧油の一部を背圧室に流入せしめるように構
成したことを特徴とする密閉形スクロール流体装置。 【2】 密閉容器内に、スクロール圧縮機と電動機を主
軸を介して連設して収納するとともに、スクロール圧縮
機は、円板状鏡板に渦巻状のラップを直立させた固定ス
クロールおよび旋回スクロールをラップを内側にしてか
み合せ、一方の旋回スクロールをバランスウエイト部を
備えた主軸に連設する偏心軸部に係合し、旋回スクロー
ルを自転することなく固定スクロールに対し旋回運動さ
せ、旋回スクロールの鏡板とフレ−ムとにより形成され
る背圧室を設け、該背圧室内には前記主軸のバランスウ
エイト部が配設され、固定スクロールには中心部に開口
する吐出口と外周部に開口する吸入口を設け、吸入口よ
りガスを吸入し、両スクロールにて形成される密閉空間
を中心に移動させ容積を減少してガスを圧縮し、吐出口
よりの圧縮ガスを底部に油を溜めた密閉容器内に吐出
し、さらに吐出管を介し器外にガスを吐出する密閉形ス
クロール流体装置において、 容器底部の油を主軸内に設けた給油孔を介して旋回軸受
部と主軸受部に供給し、該軸受部からの洩れ油を前記背
圧室に流入して、さらに背圧室内部の油を旋回スクロー
ル鏡板外周部から吸入室に導く給油経路を構成したこと
を特徴とする密閉形スクロール流体装置。
[Claims] [1] A scroll compressor and an electric motor are arranged in series in a hermetically sealed container via a main shaft to be housed, and in the scroll compressor, a spiral wrap is erected on a disk-shaped end plate. The fixed scroll and the orbiting scroll are engaged with each other with the wrap inside, and one of the orbiting scrolls is engaged with the eccentric shaft part that is linked to the main shaft with the balance weight part, and the orbiting scroll orbits with respect to the fixed scroll without rotating. A back pressure chamber formed by the end plate and the frame of the orbiting scroll that is moved is provided, and the balance weight portion of the main shaft is disposed in the back pressure chamber, and the fixed scroll has a discharge port that opens to the center. And a suction port that opens to the outer periphery are provided, gas is sucked in through the suction port, the volume is reduced by moving the scroll around the enclosed space formed by both scrolls, and the gas is discharged. Discharged into the sealed container reservoir oil at the bottom of Rino compressed gas,
Further, in a hermetic scroll fluid device that discharges gas to the outside of the device via a discharge pipe, a boss portion is provided on the back face of the orbiting scroll end plate, and the boss portion is provided with an orbiting bearing portion that engages with an eccentric shaft portion continuous with the main shaft. Provided, a hydraulic chamber consisting of an axial gap formed by the tip of the eccentric shaft and the bottom of the boss is provided, and the oil at the bottom of the container is supplied to the hydraulic chamber via an oil supply hole provided in the main shaft, A sealed scroll fluid device characterized in that a part of high-pressure oil having a pressure substantially equal to a discharge pressure in the hydraulic chamber is made to flow into a back pressure chamber through a bearing gap of the orbiting bearing portion. [2] A scroll compressor and an electric motor are connected in series through a main shaft and housed in a closed container, and the scroll compressor includes a fixed scroll and an orbiting scroll in which a spiral wrap is upright on a disk-shaped end plate. The wraps are engaged with each other, and one orbiting scroll is engaged with the eccentric shaft part that is continuous with the main shaft equipped with the balance weight part, and the orbiting scroll is orbited against the fixed scroll without rotating to rotate the orbiting scroll. A back pressure chamber formed by an end plate and a frame is provided, and a balance weight portion of the main shaft is disposed in the back pressure chamber, and a fixed scroll has a discharge port opening at the center and an outer peripheral portion. A suction port is provided, and gas is sucked in through the suction port, and the volume is reduced by moving around the enclosed space formed by both scrolls to reduce the volume and compress the gas from the discharge port to the bottom. In a sealed scroll fluid device that discharges oil into a closed container with oil stored in its part, and further discharges gas outside the device via a discharge pipe, the oil at the bottom of the container is rotated through a lubrication hole provided in the main shaft. And the main bearing portion, the oil leaking from the bearing portion flows into the back pressure chamber, and the oil inside the back pressure chamber is further guided from the outer peripheral portion of the orbiting scroll end plate to the suction chamber. Characteristic sealed scroll fluid device.
JP6022515A 1994-02-21 1994-02-21 Closed scroll fluid device Expired - Lifetime JP2548517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6022515A JP2548517B2 (en) 1994-02-21 1994-02-21 Closed scroll fluid device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6022515A JP2548517B2 (en) 1994-02-21 1994-02-21 Closed scroll fluid device

Publications (2)

Publication Number Publication Date
JPH06341383A true JPH06341383A (en) 1994-12-13
JP2548517B2 JP2548517B2 (en) 1996-10-30

Family

ID=12084912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6022515A Expired - Lifetime JP2548517B2 (en) 1994-02-21 1994-02-21 Closed scroll fluid device

Country Status (1)

Country Link
JP (1) JP2548517B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005010372A1 (en) * 2003-07-24 2006-09-07 松下電器産業株式会社 Scroll compressor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032512A (en) * 1973-06-11 1975-03-29
JPS5182405A (en) * 1974-12-28 1976-07-20 Chika Morita ROOTARIKON PURETSUSANOKYUYUSOCHI
JPS51117304A (en) * 1975-03-24 1976-10-15 Little Inc A Fixed delivery fluid means
JPS5222208U (en) * 1975-08-06 1977-02-17
JPS5247772U (en) * 1975-10-02 1977-04-05
US4065279A (en) * 1976-09-13 1977-12-27 Arthur D. Little, Inc. Scroll-type apparatus with hydrodynamic thrust bearing
JPS5314403U (en) * 1976-07-17 1978-02-06
JPS5348208U (en) * 1976-09-28 1978-04-24
JPS53119412A (en) * 1977-03-28 1978-10-18 Hitachi Ltd Scroll compressor
JPS547604A (en) * 1977-06-17 1979-01-20 Little Inc A Scrawl liquid pump
JPS5546081A (en) * 1978-09-29 1980-03-31 Mitsubishi Electric Corp Scroll compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249205A (en) * 1975-10-17 1977-04-20 Toyo Tire & Rubber Co Ltd Apparatus for preparing emulsified oils

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032512A (en) * 1973-06-11 1975-03-29
JPS5182405A (en) * 1974-12-28 1976-07-20 Chika Morita ROOTARIKON PURETSUSANOKYUYUSOCHI
JPS51117304A (en) * 1975-03-24 1976-10-15 Little Inc A Fixed delivery fluid means
JPS5222208U (en) * 1975-08-06 1977-02-17
JPS5247772U (en) * 1975-10-02 1977-04-05
JPS5314403U (en) * 1976-07-17 1978-02-06
US4065279A (en) * 1976-09-13 1977-12-27 Arthur D. Little, Inc. Scroll-type apparatus with hydrodynamic thrust bearing
JPS5348208U (en) * 1976-09-28 1978-04-24
JPS53119412A (en) * 1977-03-28 1978-10-18 Hitachi Ltd Scroll compressor
JPS547604A (en) * 1977-06-17 1979-01-20 Little Inc A Scrawl liquid pump
JPS5546081A (en) * 1978-09-29 1980-03-31 Mitsubishi Electric Corp Scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005010372A1 (en) * 2003-07-24 2006-09-07 松下電器産業株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP2548517B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JP2816210B2 (en) Oil device for scroll compressor
KR100452837B1 (en) Scroll compressor
US6071100A (en) Scroll compressor having lubrication of the rotation preventing member
JP2522775B2 (en) Scroll fluid machinery
US7163386B2 (en) Scroll compressor having a movable auxiliary portion with contact plane of a stopper portion to contact a pane of the fixed scroll through elastic pressure of high pressure fluid
US6439867B1 (en) Scroll compressor having a clearance for the oldham coupling
JPH11241682A (en) Compressor for co2
US5178527A (en) Lubricating apparatus for scroll-type compressor
JPS6352237B2 (en)
JPH0372840B2 (en)
JPH0751950B2 (en) Scroll type fluid device
JPS63131889A (en) Scroll gas compressor
JP3545826B2 (en) Scroll compressor
JP2511863B2 (en) Scroll gas compressor
JPH08121366A (en) Scroll compressor
JPH08326671A (en) Scroll type compressor
JPH06341383A (en) Sealed type scroll fluid device
JP3593083B2 (en) Scroll compressor
JP4064325B2 (en) Scroll compressor
JPH08284853A (en) Scroll compressor
JP2816201B2 (en) Scroll compressor
JP2016156297A (en) Scroll compressor
JP2766291B2 (en) Scroll compressor
JPS62261686A (en) Scroll gas compressor
JP3301118B2 (en) Oil pump unit for compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term