JPH06339749A - Method for producing high nitrogen-containing stainless steel wire and apparatus therefor - Google Patents

Method for producing high nitrogen-containing stainless steel wire and apparatus therefor

Info

Publication number
JPH06339749A
JPH06339749A JP13089193A JP13089193A JPH06339749A JP H06339749 A JPH06339749 A JP H06339749A JP 13089193 A JP13089193 A JP 13089193A JP 13089193 A JP13089193 A JP 13089193A JP H06339749 A JPH06339749 A JP H06339749A
Authority
JP
Japan
Prior art keywords
nitrogen
tundish
gas
stainless steel
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13089193A
Other languages
Japanese (ja)
Inventor
Hidekazu Todoroki
秀和 轟
Hitoshi Tsuji
均 辻
Hiroki Takahashi
博喜 高橋
Hideo Yoshida
英雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP13089193A priority Critical patent/JPH06339749A/en
Publication of JPH06339749A publication Critical patent/JPH06339749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide a castable high nitrogen-containing stainless steel wire having a uniform composition by preventing the variation of nitrogen concn. in molten steel during casting for long term. CONSTITUTION:In a horizontal continuous casting method for wire rod, gaseous nitrogen is supplied from a gaseous nitrogen cylinder 20 into a tundish 10 in a producing device 1, and further, gaseous argon is supplied from a gaseous argon cylinder 30. Then the partial pressure of the gaseous nitrogen in this mixed gas atmosphere is made equal to the saturated vapor pressure of the nitrogen in the molten steel 2 which can produce the stainless steel wire 3 having the aimed composition, to cast the stainless steel wire 3 containing 0.08-0.60wt.% nitrogen. By this method, always the nitrogen concn. in the molten steel can be kept constant during casting for the long term, and the stainless steel wire having 0.08-0.60wt.% nitrogen concn. can continuously be cast in the uniform nitrogen concn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼製の線材
の製造技術に関し、特に0.08〜0.60重量%の窒
素元素(N)を含むステンレス鋼線を水平連続鋳造機に
より溶鋼から直接鋳造してなる高窒素含有ステンレス鋼
線の製造方法及び製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for producing a wire rod made of stainless steel, and in particular, a stainless steel wire containing 0.08 to 0.60 wt% of nitrogen element (N) is melted from a molten steel by a horizontal continuous casting machine. The present invention relates to a method and an apparatus for producing a high nitrogen content stainless steel wire obtained by direct casting.

【0002】[0002]

【従来の技術】タンディッシュに続いて鋳型が水平に設
置されてなる線材水平連続鋳造機を用いて、その鋳型内
にタンディッシュから溶鋼(溶湯)を供給し、数時間か
けて長尺の線材を連続鋳造するにあたって、通常、タン
ディッシュ内を不活性ガス雰囲気にしている。これは、
タンディッシュ内に貯留された溶鋼の再酸化を防いで、
高清浄な鋼線を製造するために行われており、従来、不
活性ガスとしてアルゴン(Ar)又はヘリウム(He)
が用いられていた。
2. Description of the Related Art A wire rod horizontal continuous casting machine in which a mold is installed horizontally following a tundish is used to supply molten steel (molten metal) from the tundish into the mold, and a long wire rod is required for several hours. In continuous casting, the inside of the tundish is usually in an inert gas atmosphere. this is,
Prevents reoxidation of molten steel stored in the tundish,
This is done to produce a highly clean steel wire, and conventionally argon (Ar) or helium (He) was used as an inert gas.
Was used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
たようにタンディッシュ内をアルゴンガスやヘリウムガ
スの雰囲気でステンレス鋼線を鋳造した場合、0.08
重量%未満の窒素含有率では組成変動などがなく比較的
均一な線材が得られたが、窒素含有率が0.08重量%
を超えると線材の引抜方向の窒素濃度が不均一になるこ
とがあった。
However, when a stainless steel wire is cast in the tundish in an atmosphere of argon gas or helium gas as described above, it is 0.08.
When the nitrogen content was less than wt%, there was no composition change and a relatively uniform wire rod was obtained, but the nitrogen content was 0.08 wt%.
If it exceeds, the nitrogen concentration in the drawing direction of the wire may become non-uniform.

【0004】その不均一になる原因を究明するために、
本発明者がタンディッシュ内の溶鋼の組成変化を調べた
ところ、図2に△のプロットで示した従来例のように、
鋳造時間の経過とともに溶鋼の窒素濃度が徐々に減少す
ることがわかった。さらに、その原因を究明すべく検討
を行ったところ、溶鋼の窒素濃度が高いのに加えて鋳造
時間が長いため、Fe(鉄)−Cr(クロム)−Ni
(ニッケル)系の溶鋼中における窒素原子が窒素ガス
(N2)となって上記アルゴンガス(又は、ヘリウムガ
ス)雰囲気中に大量に蒸発するということがわかった。
これは、溶鋼中における窒素原子と蒸発した窒素ガスと
の間に平衡が成立するまで、例えば図2の上記従来例に
よれば溶鋼の窒素濃度が0.08重量%程度になるま
で、(1)式に示す反応が左へ進むということである。 1/2N2(g)=N(in liq.Fe−Cr−Ni)……(1)
In order to investigate the cause of the unevenness,
When the inventor examined the composition change of the molten steel in the tundish, as in the conventional example shown by the plot of Δ in FIG.
It was found that the nitrogen concentration in the molten steel gradually decreased with the passage of casting time. Furthermore, when a study was conducted to investigate the cause, Fe (iron) -Cr (chromium) -Ni was found to have a long nitrogen concentration in the molten steel and a long casting time.
It has been found that nitrogen atoms in the (nickel) -based molten steel become nitrogen gas (N 2 ) and are vaporized in large amounts in the argon gas (or helium gas) atmosphere.
This means that until the equilibrium is established between the nitrogen atoms in the molten steel and the evaporated nitrogen gas, for example, according to the above-mentioned conventional example of FIG. 2, the nitrogen concentration of the molten steel reaches about 0.08% by weight (1 It means that the reaction shown in the equation goes to the left. 1 / 2N 2 (g) = N (in liq. Fe-Cr-Ni) (1)

【0005】本発明はかかる事情に鑑みてなされたもの
で、その目的とするところは、長時間に及ぶ鋳造中に溶
鋼の窒素濃度が変化するのを防ぎ、以て均一な組成のス
テンレス鋼線を鋳造可能な高窒素含有ステンレス鋼線の
製造方法を提供することにある。また、本発明の他の目
的は、上記製造方法において用いられる製造装置を提供
することである。
The present invention has been made in view of the above circumstances, and an object thereof is to prevent the nitrogen concentration of molten steel from changing during casting for a long period of time, thereby providing a stainless steel wire having a uniform composition. It is an object of the present invention to provide a method for producing a high nitrogen content stainless steel wire that can be cast. Another object of the present invention is to provide a manufacturing apparatus used in the above manufacturing method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明者は、タンディッシュ内の不活性ガス雰囲気
に窒素ガスを混合させることにより、上記(1)式が左
に進まないようにすればよいと考えた。そして、鋭意研
究を重ねた結果、最適な窒素ガスの混合量を見い出し
た。
In order to achieve the above object, the present inventor mixes nitrogen gas with an inert gas atmosphere in a tundish so that the above equation (1) does not move to the left. I thought I should do it. As a result of intensive studies, an optimum amount of nitrogen gas mixed was found.

【0007】即ち、例えばタンディッシュ内を窒素ガス
のみで満たした場合(窒素ガスが多すぎる場合)には、
図2に□のプロットで示した比較例のように、溶鋼の窒
素濃度は時間の経過とともに高くなってしまう。これ
は、上記(1)式が右に進むからである。従って、鋳造
開始当初より、タンディッシュ内の雰囲気を上記(1)
式が左右何れにも進まない平衡状態とするのが好ましい
ことがわかった。そして、そのためには、その雰囲気に
おける窒素ガスの分圧を、目標とする組成の液相(即
ち、溶鋼)における窒素の飽和蒸気圧と同じにすればよ
いことがわかった。
That is, for example, when the inside of the tundish is filled with only nitrogen gas (when there is too much nitrogen gas),
As in the comparative example shown by the plot of □ in FIG. 2, the nitrogen concentration of the molten steel increases with time. This is because the above equation (1) proceeds to the right. Therefore, from the beginning of casting, the atmosphere in the tundish should be adjusted to the above (1)
It has been found that it is preferable to make an equilibrium state in which the equation does not advance to the left or right. Then, for that purpose, it was found that the partial pressure of nitrogen gas in the atmosphere should be the same as the saturated vapor pressure of nitrogen in the liquid phase of the target composition (that is, molten steel).

【0008】本発明は、上記知見に基づきなされたもの
で、タンディッシュから鋳型内に溶鋼を供給して0.0
8〜0.60重量%の窒素元素を含むステンレス鋼より
なる線材を鋳造するにあたり、タンディッシ内を窒素ガ
スと窒素ガス以外の不活性ガスとからなる混合ガス雰囲
気とし、その混合ガス雰囲気における前記窒素ガスの分
圧を、目標とする組成のステンレス鋼線を生じ得る溶鋼
における窒素の飽和蒸気圧と同じにすることを提案する
ものである。その際、タンディッシュ内における上記混
合ガスの圧力を常圧としてもよい。また、タンディッシ
ュ内に、上記窒素ガスと窒素ガス以外の上記不活性ガス
とを交互に供給するようにしてもよい。
The present invention was made on the basis of the above-mentioned findings, and the molten steel was supplied into the mold from the tundish to reach 0.0
When casting a wire rod made of stainless steel containing 8 to 0.60% by weight of nitrogen element, the inside of the tundish was made into a mixed gas atmosphere containing nitrogen gas and an inert gas other than nitrogen gas, and the nitrogen in the mixed gas atmosphere was used. It is proposed that the partial pressure of the gas be the same as the saturated vapor pressure of nitrogen in the molten steel that can produce a stainless steel wire of the target composition. At this time, the pressure of the mixed gas in the tundish may be normal pressure. Further, the nitrogen gas and the inert gas other than the nitrogen gas may be alternately supplied into the tundish.

【0009】ここで、ステンレス鋼線における窒素濃度
が上述した下限値(0.08重量%)に満たない場合に
は、窒素ガスを含まないアルゴンガスのみからなる雰囲
気で鋳造を行っても溶鋼の窒素濃度は変化しない。ま
た、上述した上限値(0.60重量%)は、1500℃
において1気圧の窒素ガスと平衡する溶鋼の窒素濃度で
あるため、ステンレス鋼線における窒素濃度は上述した
上限値(0.60重量%)を超えることがない。
Here, when the nitrogen concentration in the stainless steel wire is less than the lower limit value (0.08% by weight) described above, even if casting is performed in an atmosphere consisting of argon gas containing no nitrogen gas, Nitrogen concentration does not change. The upper limit value (0.60% by weight) described above is 1500 ° C.
Since the nitrogen concentration in the molten steel is in equilibrium with nitrogen gas at 1 atm, the nitrogen concentration in the stainless steel wire does not exceed the above-mentioned upper limit value (0.60% by weight).

【0010】また、本発明は、上記製造方法に用いられ
る装置であって、タンディッシュ内に窒素ガスを供給可
能な窒素ガス供給源と、タンディッシュ内に窒素ガス以
外の不活性ガスを供給可能な不活性ガス供給源とが、夫
々、タンディッシュに連結されているとともに、タンデ
ィッシュと前記窒素ガス供給源との間に、タンディッシ
ュ内の雰囲気における窒素ガスの分圧を調整可能な窒素
ガス圧力調整手段が設けられてなる製造装置を提案する
ものである。
Further, the present invention is an apparatus used in the above manufacturing method, wherein a nitrogen gas supply source capable of supplying nitrogen gas into the tundish and an inert gas other than nitrogen gas can be supplied into the tundish. Inert gas supply source, respectively, nitrogen gas that is connected to the tundish, and between the tundish and the nitrogen gas supply source, the partial pressure of the nitrogen gas in the atmosphere in the tundish can be adjusted The present invention proposes a manufacturing apparatus provided with pressure adjusting means.

【0011】なお、目標とする組成の液相における窒素
の飽和蒸気圧は、(2)式に示す鉄中への窒素の溶解反
応の平衡条件から求まる。即ち、(2)式における反応
の平衡定数Kは(3)式で表され、さらに平衡定数Kと
溶鋼温度Tとの間には(4)式の関係が成立する。従っ
て、溶鋼成分及び溶鋼温度を決めることにより、上記飽
和蒸気圧、即ち本発明に係る製造方法における窒素ガス
の分圧が決まる。(3)式において、aNは溶鋼中の窒
素原子の活量であり、溶鋼の成分と溶鋼温度Tにより決
まる値である。また、PN2は雰囲気中の窒素ガスの分圧
である。 1/2N2(g)=N(in liq.Fe)……(2) K=aN/√PN2……(3) logK=−518/T−1.063……(4)
The saturated vapor pressure of nitrogen in the liquid phase having a target composition can be obtained from the equilibrium condition of the dissolution reaction of nitrogen in iron shown in the equation (2). That is, the equilibrium constant K of the reaction in the equation (2) is represented by the equation (3), and the relationship of the equation (4) is established between the equilibrium constant K and the molten steel temperature T. Therefore, the saturated vapor pressure, that is, the partial pressure of the nitrogen gas in the manufacturing method according to the present invention is determined by determining the molten steel composition and the molten steel temperature. In the equation (3), a N is the activity of nitrogen atoms in the molten steel and is a value determined by the composition of the molten steel and the molten steel temperature T. P N2 is the partial pressure of nitrogen gas in the atmosphere. 1 / 2N 2 (g) = N (in liq.Fe) (2) K = a N / √P N2 (3) log K = -518 / T-1.063 (4)

【0012】[0012]

【作用】上記手段によれば、タンディッシュ内の雰囲気
における窒素ガスの分圧が、目標とする組成の固相を生
じ得る液相、即ち溶鋼における窒素の飽和蒸気圧に等し
くなるため、鋳造開始から終了に至るまで、溶鋼中から
の窒素ガスの蒸発及び溶鋼中への窒素ガスの溶解の何れ
も防ぐことができ、溶鋼の窒素濃度を目標とする組成の
固相を生じ得る濃度に一定に保つことができる。
According to the above means, the partial pressure of nitrogen gas in the atmosphere in the tundish becomes equal to the saturated vapor pressure of nitrogen in the liquid phase, that is, in the molten steel, which can produce the solid phase of the target composition, so that the casting start From the end to the end, it is possible to prevent both the evaporation of nitrogen gas from the molten steel and the dissolution of nitrogen gas into the molten steel, and to keep the nitrogen concentration of the molten steel constant at a concentration that can produce the solid phase of the target composition. Can be kept.

【0013】[0013]

【実施例】先ず、本発明に係る製造装置の一例に付いて
説明する。図1には、その製造装置の概略が示されてい
る。同図に示すように、この製造装置1は、従来の線材
水平連続鋳造機と同様に、タンディッシュ10、出鋼ノ
ズル11、ブレークリング12、モールド(鋳型)1
3、ピンチロール14を備えてなる構成の鋳造機であ
る。そして、タンディッシュ10には、窒素ガス供給源
である高圧窒素ガスボンベ20と、不活性ガス供給源で
ある高圧不活性ガスボンベ30とが連結されている。こ
こで、不活性ガスボンベ30にはアルゴンガスなどの窒
素ガス以外の不活性ガスが充填されている。
First, an example of a manufacturing apparatus according to the present invention will be described. FIG. 1 shows the outline of the manufacturing apparatus. As shown in the figure, this manufacturing apparatus 1 is similar to a conventional horizontal continuous casting machine for wire rods, including a tundish 10, a tapping nozzle 11, a break ring 12, and a mold (mold) 1.
3, a casting machine having a pinch roll 14. The tundish 10 is connected to a high-pressure nitrogen gas cylinder 20 that is a nitrogen gas supply source and a high-pressure inert gas cylinder 30 that is an inert gas supply source. Here, the inert gas cylinder 30 is filled with an inert gas other than nitrogen gas such as argon gas.

【0014】窒素ガスボンベ20からタンディッシュ1
0に至るガス流路21には、減圧弁22、流量調整装置
23、圧力調整装置(窒素ガス圧力調整手段)24が設
けられている。同様に、不活性ガスボンベ30からタン
ディッシュ10に至るガス流路31にも、減圧弁32、
流量調整装置33、圧力調整装置34が設けられてい
る。流量調整装置23,33は例えばマスフローコント
ローラであり、夫々タンディッシュ10内に供給される
各ガスの流量の調整を行なう。圧力調整装置24,34
は夫々タンディッシュ10内に供給される各ガスの分圧
の調整を行う。それら各調整装置23,24,33,3
4は、何れもコンピュータ等の制御装置(図示省略)に
より制御可能となっている。
From nitrogen gas cylinder 20 to tundish 1
The gas flow path 21 reaching 0 is provided with a pressure reducing valve 22, a flow rate adjusting device 23, and a pressure adjusting device (nitrogen gas pressure adjusting means) 24. Similarly, in the gas flow path 31 from the inert gas cylinder 30 to the tundish 10, the pressure reducing valve 32,
A flow rate adjusting device 33 and a pressure adjusting device 34 are provided. The flow rate adjusting devices 23 and 33 are mass flow controllers, for example, and adjust the flow rates of the gases supplied into the tundish 10, respectively. Pressure regulator 24, 34
Adjusts the partial pressure of each gas supplied into the tundish 10. Each of the adjusting devices 23, 24, 33, 3
All 4 can be controlled by a control device (not shown) such as a computer.

【0015】また、例えば、各ガス流路21,31は合
流してタンディッシュ10のガス導入口15に連通接続
されている。そのガス導入口15の手前には、タンディ
ッシュ10内の空間部10Aにおける全ガス圧(上記窒
素ガスの分圧と上記不活性ガスの分圧の和)を調整する
圧力調整装置40が設けられている。この調整装置40
もコンピュータ等により制御可能となっている。
Further, for example, the gas flow paths 21 and 31 are joined together and are connected to the gas introduction port 15 of the tundish 10 so as to communicate therewith. A pressure adjusting device 40 for adjusting the total gas pressure (the sum of the partial pressures of the nitrogen gas and the inert gas) in the space 10A in the tundish 10 is provided in front of the gas inlet 15. ing. This adjusting device 40
Can also be controlled by a computer or the like.

【0016】なお、図1において、符号2で示したもの
は溶鋼であり、符号3で示したものは鋳造されてなるス
テンレス鋼線である。また、図1では、タンディッシュ
10において、空間部10A内の排気を行なう排気口や
取鍋からの溶鋼導入口などに付いては図示省略した。
In FIG. 1, the reference numeral 2 indicates molten steel, and the reference numeral 3 indicates cast stainless steel wire. Further, in FIG. 1, in the tundish 10, an exhaust port for exhausting the space 10A, a molten steel introducing port from a ladle, and the like are not shown.

【0017】次に、以上のように構成された製造装置1
を用いて行った実施例及び従来例並びに比較例を以下に
挙げて、本発明の特徴とするところを明らかとする。な
お、以下の例においては組成の異なる3種の鋼種A,
B,Cよりなる直径10mmのステンレス鋼線を製造し
た。各鋼種の組成を表1に示す。また、実施例2〜4及
び従来例並びに比較例においては、明記していない条件
に付いては実施例1と同じであった。
Next, the manufacturing apparatus 1 configured as described above.
The characteristics of the present invention will be clarified by giving the following examples, conventional examples, and comparative examples. In the following examples, three steel types A, which have different compositions,
A stainless steel wire made of B and C and having a diameter of 10 mm was manufactured. Table 1 shows the composition of each steel type. In addition, in Examples 2 to 4, the conventional example, and the comparative example, the conditions not specified were the same as those in Example 1.

【表1】 [Table 1]

【0018】(実施例1)鋳造条件を表2に示す。この
実施例では、鋼種Aを選択して、窒素ガスの分圧を0.
6気圧、アルゴンガスの分圧を0.4気圧とし、タンデ
ィッシュ10の空間部10A(内容量は約1m3であ
る。)における全ガス圧を常圧、即ち1気圧とした。こ
こで、窒素ガスの上記分圧値(0.6気圧)は、上記
(2)〜(4)式に基いて算出した値である。鋳造時間
の経過とともに溶鋼2の窒素濃度を測定した結果を図2
に○のプロットで示す。同図より、5時間に及ぶ鋳造時
間中、溶鋼2の窒素濃度は、鋼種Aにおける窒素濃度で
ある0.20重量%で安定しており、変化しないことが
わかる。
(Example 1) Table 2 shows the casting conditions. In this embodiment, steel type A is selected and the partial pressure of nitrogen gas is set to 0.
The atmospheric pressure was 6 atm, the partial pressure of argon gas was 0.4 atm, and the total gas pressure in the space 10A of the tundish 10 (the content is about 1 m 3 ) was atmospheric pressure, that is, 1 atm. Here, the partial pressure value of nitrogen gas (0.6 atm) is a value calculated based on the above equations (2) to (4). Fig. 2 shows the results of measuring the nitrogen concentration of molten steel 2 with the passage of casting time.
Is shown by the plot of ○. From the figure, it can be seen that the nitrogen concentration of the molten steel 2 is stable at 0.20 wt% which is the nitrogen concentration in the steel type A and does not change during the casting time of 5 hours.

【表2】 [Table 2]

【0019】(従来例及び比較例)鋳造条件を表2に示
す。従来例では、窒素ガスの分圧を0気圧、即ちタンデ
ィッシュ10内に窒素ガスを供給せずに、アルゴンガス
のみを1気圧となるように供給した。比較例では、タン
ディッシュ10内にアルゴンガスを供給せずに、窒素ガ
スのみを1気圧となるように供給した。何れの例におい
ても鋼種Aを選択した。溶鋼2の窒素濃度を測定した結
果を図2に示す。△のプロットは従来例であり、□のプ
ロットは比較例である。同図より、鋳造時間の経過とと
もに、従来例では溶鋼2の窒素濃度が徐々に減少し、比
較例では逆に徐々に増加していた。
(Conventional Example and Comparative Example) Table 2 shows the casting conditions. In the conventional example, the partial pressure of nitrogen gas was 0 atm, that is, nitrogen gas was not supplied into the tundish 10 and only argon gas was supplied at 1 atm. In the comparative example, the argon gas was not supplied into the tundish 10, but only the nitrogen gas was supplied so as to have a pressure of 1 atmosphere. Steel type A was selected in each example. The result of having measured the nitrogen concentration of the molten steel 2 is shown in FIG. A plot of Δ is a conventional example, and a plot of □ is a comparative example. From the figure, the nitrogen concentration of the molten steel 2 gradually decreased in the conventional example and gradually increased in the comparative example with the elapse of the casting time.

【0020】上述した実施例1及び従来例並びに比較例
より、窒素ガスの分圧を上記(2)〜(4)式に基いて
算出した値に設定することにより、長時間にわたって溶
鋼2の窒素濃度を安定して一定に保つことができること
がわかった。
From the above-mentioned Example 1, the conventional example and the comparative example, the nitrogen of the molten steel 2 was set for a long time by setting the partial pressure of nitrogen gas to the value calculated based on the above equations (2) to (4). It was found that the concentration can be kept stable and constant.

【0021】(実施例2及び実施例3)鋳造条件を表2
に示す。実施例2では、鋼種Bを選択して、窒素ガスの
分圧を0.15気圧、アルゴンガスの分圧を0.85気
圧とした。また、実施例3では、鋼種Cを選択し、窒素
ガスの分圧を0.4気圧、アルゴンガスの分圧を0.6
気圧とした。ここで、実施例2及び実施例3における窒
素ガスの上記分圧値(0.15気圧及び0.4気圧)
は、何れも上記(2)〜(4)式に基いて算出した値で
ある。鋳造時間の経過とともに溶鋼2の窒素濃度を測定
した結果を、実施例2に付いては図3に、また実施例3
に付いては図4に夫々示す。これらの図より、鋼種B及
び鋼種Cに付いても、5時間に及ぶ鋳造時間中、溶鋼2
の窒素濃度は、各鋼種における窒素濃度と同じ値(鋼種
Bでは0.23重量%、鋼種Cでは0.18重量%)で
安定し、変化しないことがわかる。
(Examples 2 and 3) Table 2 shows the casting conditions.
Shown in. In Example 2, steel type B was selected and the partial pressure of nitrogen gas was 0.15 atm and the partial pressure of argon gas was 0.85 atm. In Example 3, steel type C was selected, the partial pressure of nitrogen gas was 0.4 atm, and the partial pressure of argon gas was 0.6.
Atmospheric pressure was used. Here, the partial pressure values of the nitrogen gas in Examples 2 and 3 (0.15 atm and 0.4 atm)
Is a value calculated based on the above equations (2) to (4). The results of measuring the nitrogen concentration of the molten steel 2 with the elapse of casting time are shown in FIG. 3 for Example 2 and Example 3
Each is shown in FIG. From these figures, even for steel types B and C, during the casting time of 5 hours, molten steel 2
It can be seen that the nitrogen concentration is stable at the same value as the nitrogen concentration in each steel type (0.23 wt% for steel type B, 0.18 wt% for steel type C) and does not change.

【0022】上述した実施例1〜3より、鋼種が変わっ
ても、即ち窒素濃度の異なるステンレス鋼に対しても、
窒素ガスの分圧を上記(2)〜(4)式に基いて算出し
た値に設定することが、溶鋼2の窒素濃度を一定に保つ
のに有効であることがわかった。
From Examples 1 to 3 described above, even if the steel type is changed, that is, even for stainless steels having different nitrogen concentrations,
It has been found that setting the partial pressure of the nitrogen gas to a value calculated based on the equations (2) to (4) is effective for keeping the nitrogen concentration of the molten steel 2 constant.

【0023】(実施例4)表3に示す鋳造条件のよう
に、タンディッシュ10内に窒素ガスとアルゴンガスと
を交互に供給した。鋼種Aを選択し、各ガスの分圧を上
記実施例1と同じ、即ち窒素ガスの分圧が0.6気圧で
あり、アルゴンガスの分圧が0.4気圧、になるように
調整した。鋳造時間の経過とともに溶鋼2の窒素濃度を
測定した結果を図5に示す。同図より、5時間に及ぶ鋳
造時間中、溶鋼2の窒素濃度は、鋼種Aにおける窒素濃
度である0.20重量%で安定しており、変化しないこ
とがわかる。即ち、このように各ガスを交番して供給し
ても、実施例1のように同時に供給する場合と同様の効
果が得られることがわかった。
(Example 4) Under the casting conditions shown in Table 3, nitrogen gas and argon gas were alternately supplied into the tundish 10. Steel type A was selected and the partial pressure of each gas was adjusted to be the same as in Example 1 above, that is, the partial pressure of nitrogen gas was 0.6 atm and the partial pressure of argon gas was 0.4 atm. . The results of measuring the nitrogen concentration of the molten steel 2 with the elapse of casting time are shown in FIG. From the figure, it can be seen that the nitrogen concentration of the molten steel 2 is stable at 0.20 wt% which is the nitrogen concentration in the steel type A and does not change during the casting time of 5 hours. That is, it was found that even if the gases were alternately supplied in this way, the same effect as in the case of simultaneously supplying the gases as in Example 1 was obtained.

【表3】 [Table 3]

【0024】なお、上記実施例においては窒素濃度が夫
々0.20重量%、0.23重量%、0.18重量%で
ある鋼種A,B,Cを例として挙げてその有効性を確か
めたが、窒素濃度範囲が0.08〜0.60重量%であ
る場合にも本発明に係る製造方法を適用することにより
同様の効果が得られるのは勿論である。また、窒素濃度
範囲が0.08重量%未満であっても、同様の効果が得
られるのはいうまでもない。さらに、製造装置1に付い
ては、タンディッシュ10内に窒素ガスと窒素ガス以外
の不活性ガスとを、窒素ガスの分圧を制御しながら、供
給することができれば、種々設計変更可能であるのは勿
論である。
In the above examples, the steel grades A, B and C having nitrogen concentrations of 0.20% by weight, 0.23% by weight and 0.18% by weight were taken as examples and the effectiveness thereof was confirmed. However, it is needless to say that the same effect can be obtained by applying the manufacturing method according to the present invention even when the nitrogen concentration range is 0.08 to 0.60% by weight. Needless to say, the same effect can be obtained even when the nitrogen concentration range is less than 0.08% by weight. Furthermore, the manufacturing apparatus 1 can be modified in various ways as long as nitrogen gas and an inert gas other than nitrogen gas can be supplied into the tundish 10 while controlling the partial pressure of the nitrogen gas. Of course.

【0025】さらにまた、本発明はステンレス鋼におけ
る窒素以外の成分の濃度安定化に付いても応用可能であ
るだけでなく、ステンレス鋼以外の合金における成分の
濃度安定化に付いても応用可能である。窒素以外の成分
の場合には、その成分の元素単体又はその元素を含む化
合物よりなる気体を、計算により求めた最適な分圧でタ
ンディッシュ10内に供給すればよい。
Furthermore, the present invention is applicable not only to stabilizing the concentration of components other than nitrogen in stainless steel, but also to stabilizing the concentration of components in alloys other than stainless steel. is there. In the case of a component other than nitrogen, a gas composed of a simple substance of the component or a compound containing the element may be supplied into the tundish 10 at an optimum partial pressure calculated.

【0026】[0026]

【発明の効果】本発明に係る高窒素含有ステンレス鋼線
の製造方法によれば、タンディッシュ内の窒素ガスの分
圧を溶鋼における窒素の飽和蒸気圧と同じなるようにし
たため、長時間にわたる鋳造中、常時、溶鋼の窒素濃度
を一定に保つことができる。従って、0.08〜0.6
0重量%の窒素濃度のステンレス鋼線を均一な窒素濃度
で連続鋳造することができる。また、本発明に係る製造
装置によれば、タンディッシュに圧力調整手段を介して
窒素ガス供給源が連設されているため、タンディッシュ
内に窒素ガスを供給することができるとともに、タンデ
ィッシュ内の雰囲気における窒素ガスの分圧を任意に調
整することができる。
According to the method for producing a high nitrogen content stainless steel wire according to the present invention, since the partial pressure of nitrogen gas in the tundish is made to be the same as the saturated vapor pressure of nitrogen in the molten steel, it can be cast for a long time. It is possible to keep the nitrogen concentration of molten steel constant at all times during and inside. Therefore, 0.08-0.6
A stainless steel wire having a nitrogen concentration of 0 wt% can be continuously cast with a uniform nitrogen concentration. Further, according to the manufacturing apparatus of the present invention, since the nitrogen gas supply source is connected to the tundish via the pressure adjusting means, the nitrogen gas can be supplied into the tundish and the tundish can be supplied. The partial pressure of nitrogen gas in the atmosphere can be adjusted arbitrarily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る製造方法の実施に供せられる製造
装置の一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of a manufacturing apparatus used for carrying out a manufacturing method according to the present invention.

【図2】実施例1における溶鋼の窒素濃度と鋳造時間と
の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the nitrogen concentration of molten steel and casting time in Example 1.

【図3】実施例2における溶鋼の窒素濃度と鋳造時間と
の関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between nitrogen concentration of molten steel and casting time in Example 2.

【図4】実施例3における溶鋼の窒素濃度と鋳造時間と
の関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between nitrogen concentration of molten steel and casting time in Example 3.

【図5】実施例4における溶鋼の窒素濃度と鋳造時間と
の関係を示す特性図である。
FIG. 5 is a characteristic diagram showing the relationship between the nitrogen concentration of molten steel and the casting time in Example 4.

【符号の説明】[Explanation of symbols]

1 製造装置 2 溶鋼 3 ステンレス鋼線(線材) 10 タンディッシュ 13 モールド(鋳型) 20 窒素ガスボンベ(窒素ガス供給源) 24 圧力調整装置(窒素ガス圧力調整手段) 30 不活性ガスボンベ(不活性ガス供給源) DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Molten steel 3 Stainless steel wire (wire material) 10 Tundish 13 Mold 20 )

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 博喜 神奈川県川崎市川崎区小島町4番2号 日 本冶金工業株式会社川崎製造所内 (72)発明者 吉田 英雄 東京都中央区京橋一丁目5番8号 日本冶 金工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroki Takahashi, No. 4-2 Kojima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Nihon Metallurgical Industry Co., Ltd. Kawasaki Plant (72) Hideo Yoshida 1-5, Kyobashi, Chuo-ku, Tokyo No. 8 in Nippon Yakin Kogyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タンディッシュから鋳型内に溶鋼を供給
して0.08〜0.60重量%の窒素元素を含むステン
レス鋼よりなる線材を鋳造するにあたり、タンディッシ
内を窒素ガスと窒素ガス以外の不活性ガスとからなる混
合ガス雰囲気とし、その混合ガス雰囲気における前記窒
素ガスの分圧を、目標とする組成のステンレス鋼線を生
じ得る溶鋼における窒素の飽和蒸気圧と同じにすること
を特徴とする高窒素含有ステンレス鋼線の製造方法。
1. When a molten steel is supplied from a tundish into a mold to cast a wire made of stainless steel containing 0.08 to 0.60% by weight of nitrogen element, the inside of the tundish contains nitrogen gas and other than nitrogen gas. A mixed gas atmosphere consisting of an inert gas, wherein the partial pressure of the nitrogen gas in the mixed gas atmosphere is the same as the saturated vapor pressure of nitrogen in molten steel capable of producing a stainless steel wire having a target composition. A method for producing a high nitrogen content stainless steel wire.
【請求項2】 タンディッシュ内における上記混合ガス
の圧力を常圧に保つことを特徴とする請求項1記載の高
窒素含有ステンレス鋼線の製造方法。
2. The method for producing a high nitrogen content stainless steel wire according to claim 1, wherein the pressure of the mixed gas in the tundish is maintained at normal pressure.
【請求項3】 タンディッシュ内に、上記窒素ガスと窒
素ガス以外の上記不活性ガスとを交互に供給することを
特徴とする請求項1又は2記載の高窒素含有ステンレス
鋼線の製造方法。
3. The method for producing a high nitrogen content stainless steel wire according to claim 1, wherein the nitrogen gas and the inert gas other than the nitrogen gas are alternately supplied into the tundish.
【請求項4】 上記製造方法に用いられる製造装置であ
って、タンディッシュ内に窒素ガスを供給可能な窒素ガ
ス供給源と、タンディッシュ内に窒素ガス以外の不活性
ガスを供給可能な不活性ガス供給源とが、夫々、タンデ
ィッシュに連結されているとともに、タンディッシュと
前記窒素ガス供給源との間に、タンディッシュ内の雰囲
気における窒素ガスの分圧を調整可能な窒素ガス圧力調
整手段が設けられていることを特徴とする高窒素含有ス
テンレス鋼線の製造装置。
4. A manufacturing apparatus used in the above manufacturing method, wherein a nitrogen gas supply source capable of supplying nitrogen gas into the tundish and an inert gas capable of supplying an inert gas other than nitrogen gas into the tundish. A gas supply source is connected to the tundish, and a nitrogen gas pressure adjusting means capable of adjusting the partial pressure of the nitrogen gas in the atmosphere in the tundish between the tundish and the nitrogen gas supply source. An apparatus for producing a high nitrogen content stainless steel wire, which is characterized in that:
JP13089193A 1993-06-01 1993-06-01 Method for producing high nitrogen-containing stainless steel wire and apparatus therefor Pending JPH06339749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13089193A JPH06339749A (en) 1993-06-01 1993-06-01 Method for producing high nitrogen-containing stainless steel wire and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13089193A JPH06339749A (en) 1993-06-01 1993-06-01 Method for producing high nitrogen-containing stainless steel wire and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH06339749A true JPH06339749A (en) 1994-12-13

Family

ID=15045132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13089193A Pending JPH06339749A (en) 1993-06-01 1993-06-01 Method for producing high nitrogen-containing stainless steel wire and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH06339749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138698A (en) * 2017-05-05 2017-09-08 哈尔滨工业大学 A kind of metal or alloy wire rod preparation facilities and the method that metal or alloy wire rod is prepared with the device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756425A (en) * 1980-09-20 1982-04-05 Santen Pharmaceut Co Ltd Hypotensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756425A (en) * 1980-09-20 1982-04-05 Santen Pharmaceut Co Ltd Hypotensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107138698A (en) * 2017-05-05 2017-09-08 哈尔滨工业大学 A kind of metal or alloy wire rod preparation facilities and the method that metal or alloy wire rod is prepared with the device
CN107138698B (en) * 2017-05-05 2019-04-16 哈尔滨工业大学 A kind of metal or alloy wire rod preparation facilities and the method for preparing metal or alloy wire rod with the device

Similar Documents

Publication Publication Date Title
Okuyama et al. Effect of slag composition on the kinetics of formation of Al2O3–MgO inclusions in aluminum killed ferritic stainless steel
JPH03159986A (en) Process for controlling oxygen concentration in single crystal and apparatus therefor
US5474809A (en) Evaporation method
JP7167646B2 (en) Method of adding alloy to molten steel
JP2007119894A (en) Method for regulating nitrogen concentration in molten steel and method for producing steel for large heat input
JPH06339749A (en) Method for producing high nitrogen-containing stainless steel wire and apparatus therefor
JP4475166B2 (en) Method for continuous casting of molten metal
JPH05305228A (en) Quantitative evaporating supply apparatus
US4057421A (en) Process for vacuum decarburization of steel
JP3825783B2 (en) Apparatus and method for supplying cover gas for molten metal
US4667715A (en) Method for controlling uniformity of alloy content in continuously cast steel
US5255525A (en) System and method for atomization of liquid metal
US5100110A (en) Treatment vessel for the treatment of molten metal melts
JPH0342159A (en) Plasma heating method for molten steel
JPH0790330A (en) Manufacture of atomized iron powder
JP2877777B2 (en) Method of manufacturing wire with brass surface for wire electric discharge machining
US3812899A (en) Controlled pressure consumable electrode vacuum arc remelting process
JPH0242882B2 (en)
KR100314851B1 (en) Method for continuously casting austenitic stainless alloy having less linear defects during hot rolling
JPS62130207A (en) Production of metallic powder
JPH04124229A (en) Method for electron beam melting of titanium alloy
JPH04103730A (en) Method for electron beam melting and device therefor
JPH07242927A (en) Method for adjusting nitrogen concentration in molten steel
JPS5980713A (en) Heat treatment of steel product accompanied by no decarburization
JPS63303016A (en) Vacuum arc melting method