JPH06339645A - Polluted fluid capturing apparatus - Google Patents

Polluted fluid capturing apparatus

Info

Publication number
JPH06339645A
JPH06339645A JP4088449A JP8844992A JPH06339645A JP H06339645 A JPH06339645 A JP H06339645A JP 4088449 A JP4088449 A JP 4088449A JP 8844992 A JP8844992 A JP 8844992A JP H06339645 A JPH06339645 A JP H06339645A
Authority
JP
Japan
Prior art keywords
hood
vortex
fluid
outer peripheral
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4088449A
Other languages
Japanese (ja)
Other versions
JP2539318B2 (en
Inventor
Mitsuhiro Sekino
光弘 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4088449A priority Critical patent/JP2539318B2/en
Publication of JPH06339645A publication Critical patent/JPH06339645A/en
Application granted granted Critical
Publication of JP2539318B2 publication Critical patent/JP2539318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To quickly capture polluted fluid in a wide area at high efficiency by installing a polluted fluid capturing hood in the center of an apparatus and an outer circumferential whirling flow generating part in the outer circumference of the hood and making the suction amount of the capturing hood larger than the amount to be blown to the outer circumference. CONSTITUTION:One or more whirling flow guiding plates 6 have the center part which is made to form an enclosing circle and a capturing hood 1 in which an impeller 2 of a centrifugal pump is built is so arranged as to set the suction inlet 3 upward and further a circular duct-like outer circumferential whirling flow generating part 9 is set in the outer circumference of the hood concentrically. A slit-like circular blowing outlet 4 is opened in the inner circumference of the upper end part of the whirling flow generating part 9 while being set to face the outer circumference of the guiding plate 6, and a dust 8 extended in the rotary direction of the impeller 2, which is the tangential direction of the side wall, is installed in the side face of the capturing hood 1 and communicated with the outer circumferential whirling flow generating part 9. The suction amount of the suction inlet 3 is made to be larger than the spiralling and blowing amount from the outer circumference of the apparatus. In this way, the spiralling whirling flow can be accelerated and the force to move upward of the fluid is increased and the capturing work is heightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流体(液体又は気体)の
広い領域から公害物質に汚染・汚濁された流体(以下こ
れを単に“汚染流体”と呼称する),例えば流体の場合
では油や有機溶剤,或は重金属類に汚染された液体等,
及び微生物による赤潮やアオコ等の発生水域を、また気
体では煤煙や粉塵,オイルミスト,或は化石燃料からの
排気物質(CO,COやNOSO等)などに汚染
された気体雰囲気を、旋回渦流による向心力で急速に捕
集・濃密化し、外部へ排出するか又は他のろ過,吸着,
化学処理など公知の浄化手段を併用することで、環境汚
染の進行を防止する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid contaminated or polluted with a pollutant from a wide range of fluid (liquid or gas) (hereinafter, simply referred to as "contaminated fluid"), such as oil in the case of fluid. Organic solvents, liquids contaminated with heavy metals, etc.
And the water area where red tides and water-blooms are generated by microorganisms, and in the case of gas, a gas atmosphere contaminated with soot, dust, oil mist, or exhaust substances (CO, CO 2 , NO X SO X, etc.) from fossil fuels, etc. , Is rapidly collected and concentrated by the centripetal force due to the swirling vortex and discharged to the outside, or other filtration, adsorption,
The present invention relates to an apparatus for preventing the progress of environmental pollution by using a known purifying means such as chemical treatment.

【0002】[0002]

【従来の技術】これ迄旋回渦流による流体分離回収方式
には遠心力方式と向心力方式とがあるが、前者は高速旋
回による比重差を利用した二液混合流体からの分離に用
いられ、一方後者は特公昭59−20807の如く、油
と水に代表されるような相互不溶の二液を、低速旋回渦
流方式による向心力で分離回収するに用いられている。
本発明は上記方式のうち後者の旋回渦流向心力方式に関
するものである。
2. Description of the Related Art Up to now, there have been a centrifugal force method and a centripetal force method as fluid separation and recovery methods by a swirling vortex flow, but the former is used for separation from a two-liquid mixed fluid utilizing the difference in specific gravity due to high speed swirling, while the latter is used. Is used for separating and recovering mutually insoluble two liquids represented by oil and water by centripetal force by a low speed swirling vortex system.
The present invention relates to the latter swirling vortex centripetal force method of the above methods.

【0003】[0003]

【発明が解決しようとする課題】しかし、これまでの向
心力方式は捕集フード内のインペラーからの旋回渦流に
よるため、装置中心のフード近くでは高い向心力を示す
ものゝ、装置外周部では旋回流が及ばず従って向心力も
殆ど働かないため、向心収集速度が緩慢になり広域の汚
染流体を捕集除去する場合には長時間を要するなどの欠
点があった。そこで本発明はこれまでの方式に対して、
装置周辺部にも旋回発生装置を設け、いはば外部向心旋
回渦流方式ともゆうべき新しい方式により、従来の欠点
を解消せんとするものである。
However, since the centripetal force method used so far is based on the swirling vortex flow from the impeller in the collection hood, it exhibits a high centripetal force near the hood at the center of the device. Therefore, since the centripetal force hardly acts, the centripetal collection speed becomes slow, and it takes a long time to collect and remove the contaminated fluid in a wide area. Therefore, the present invention is
A swirl generator is also provided in the peripheral portion of the device, and a new method that should be considered as an external centripetal swirl vortex method is used to solve the conventional drawbacks.

【0004】[0004]

【課題を解決するための手段】以上の如く、向心力方式
で広域の汚染流体を急速に捕集除去するためには、捕集
装置の外周から、いかにして汚染流体を効率よく呼び込
むかが重要課題である。そこでその解決策に入る前に旋
回向心力の物理現象について検討してみることにする。
先ず図6によって説明すると、回転する座標系には理論
上三つの見かけの力が働いている。説明を簡単にするた
め、今一平面内の点Oを中心として質量mの物体が動径
r,回転角速度ωで等速旋回円運動をしているとき、そ
の物体には遠心力f,向心力f,コリオリの力f
の三つの見かけの力が作用している。 (注)コリオリ力:Gaspard Gustave
de Corioli(1792−1843)1828
年に発表.一定の角速度で回転する座標系において、物
体が運動するとき、その座標系の回転方向に偏位しよう
とする見かけの力。:地球上では北半球の風向きが上か
ら見て高気圧は時計方向に、低気圧(台風等)は半時計
方向に旋回することが知られている。 図6では説明上、コリオリ力は物体が向心力で中心Oに
移動しようとするとき、それに直角の方向,即ち回転方
向と一致した方向に働くと見なす。そしてそれぞれ f
=mrω…(1),f=−mrω…(2),f
=mrω…(3)の式で表わされる。本発明方式で
は向心力方式が主眼であるため、式(2)と式(3)か
ら前記課題解決策の検討を進めることにする。先ず本向
心力方式で装置外周部の流体を効果的に呼び込む手段と
しては、式(2)から、流体の向心力を強めるよう遠心
ポンプの半径rか、回転角速度ωを大きくする方法が考
えられる。しかし前者は二つの相似ポンプの性能換算式
から、軸動力がポンプインペラー直径の5乗に比例する
ので著しいエネルギー損失を伴ない得策ではない。そこ
でインペラーの回転を速めてポンプで吸入した流体を装
置外周部に還流し、そこから内部へ向う旋回流を起させ
向心力を助勢するようにした方が効果的である。なお此
でもう一つの要素から検討する項目がある。それは液体
と気体の物性の質量と動粘性において前者が後者より著
しく大きいと言う事である。そのため液体では流体抵抗
で旋回流速が減衰し、またコリオリ力で吸入口に到達す
るまで旋回方向に偏流するため流路が長くなる。又装置
中心部に近づき半径rが小さくなるにつれ、式(2)か
ら向心力は益々減衰する傾向にある。そこで外周からの
旋回流速が弱まらないうちに周回流路を短縮して吸入口
へ到達する様な、機械的に導く渦流誘導板を設けること
は、液体領域における課題解決に有力な手段を提供する
ものである。此でこの渦流誘導板の作用効果について述
ベることにする。図6において、今先に説明した質量m
の物体が、点Pで渦流誘導板6の包絡面に当ると次ぎの
様な力関係が生じる。(尚此では説明を簡単にするため
ベルヌーイの定理による影響は省略する。)即ち誘導力
は f=f(cosφ−μsinφ) で表わ
され、主としてコリオリ力fの余弦成分になるため、
向心力fよりも強い力で包絡線を画き乍ら急速に中心
部へ誘導される。以上説明したように、この渦流誘導板
は旋回流速が減衰しない中に強力な渦流として、短い周
回流路で吸入口へ誘導する作用がある。以上が渦流誘導
板の作用効果の概要である。次ぎに本発明方式の気体領
域について、解決策を同様に検討してみる。この場合は
前記液体の場合と全く違った現象を呈する。即ち質量が
小さいので向心力も弱いが、その分だけ吸入側の吸入圧
を高めておく様にする。すると動粘性係数が極めて小さ
いため旋回渦流が殆ど減衰せず急速に中心部に引き寄せ
られる。従って理論式から渦流の半径rが小さくなる程
回転角速度ωが速まり回転速度は益々加速され、向心力
を高める傾向にある。この現象は液体の場合と全く逆の
現象であるといえる。そして先の液体の場合の様な渦流
誘導板を設けることは、むしろ渦流の障害となり逆効果
になるので全く不要である。尚またこの場合の煙霧や粉
塵等に含まれる微粉体は、質量mが周囲の気体より大き
いから向心力も大きく渦流の中心部に収束し、濃縮され
ながら吸入口へ吸入される。以上の理論上および現象工
学上からの知見を念頭において、本発明の外部向心旋回
渦流方式を従来公知のエアカーテン方式と併用するなら
ば、気体領域における課題解決に有力な手段となり得る
ものである。以下本発明方式の実施例を液体領域と気体
領域について次ぎに説明する。
As described above, in order to rapidly collect and remove the contaminated fluid in a wide area by the centripetal force method, it is important how to efficiently draw the contaminated fluid from the outer periphery of the trapping device. It is an issue. Therefore, let us consider the physical phenomenon of turning centripetal force before entering the solution.
First, referring to FIG. 6, theoretically three apparent forces act on the rotating coordinate system. In order to simplify the explanation, when an object of mass m is moving around the point O in the same plane at a radius r and a rotational angular velocity ω at a constant rotational circular motion, the centrifugal force f 1 , is applied to the object. Centripetal force f 2 , Coriolis force f 3
The three apparent forces of are acting. (Note) Coriolis force: Gaspard Gustave
de Corioli (1792-1843) 1828
Announced in. In a coordinate system that rotates at a constant angular velocity, when an object moves, the apparent force that tends to deviate in the direction of rotation of that coordinate system. : On the earth, it is known that the wind direction of the northern hemisphere turns clockwise when viewed from above, and low pressure (typhoon etc.) turns counterclockwise. In FIG. 6, for the sake of explanation, when the object tries to move to the center O by the centripetal force, it is assumed that the Coriolis force acts in a direction perpendicular to the center O, that is, in a direction coinciding with the rotation direction. And f
1 = mrω 2 (1), f 2 = −mrω 2 (2), f
3 = mrω 2 (3) Since the centripetal force method is the main object of the method of the present invention, the examination of the solution to the problem will be advanced from the equations (2) and (3). First, as a means for effectively drawing in the fluid in the outer peripheral portion of the device by the present centripetal force method, from the formula (2), a method of increasing the radius r of the centrifugal pump or the rotational angular velocity ω so as to strengthen the centripetal force of the fluid can be considered. However, the former is not a good idea with a significant energy loss because the shaft power is proportional to the fifth power of the pump impeller diameter from the performance conversion formulas of the two similar pumps. Therefore, it is more effective to accelerate the rotation of the impeller to recirculate the fluid sucked by the pump to the outer peripheral portion of the device, and to generate a swirling flow inward from the fluid to assist the centripetal force. Here, there is an item to be examined from another element. That is, the former is significantly larger than the latter in the physical mass and kinematic viscosity of liquids and gases. Therefore, in the case of a liquid, the swirling flow velocity is attenuated by the fluid resistance, and the flow is lengthened because the flow is biased in the swirling direction by the Coriolis force until it reaches the suction port. Further, the centripetal force tends to decrease more and more from the equation (2) as the radius r becomes smaller toward the center of the apparatus. Therefore, providing a vortex flow guide plate that guides mechanically so that the circulation flow path is shortened and reaches the suction port before the swirling flow velocity from the outer circumference is weakened is an effective means for solving problems in the liquid region. It is provided. Here, the effect of this eddy current guide plate will be described. In FIG. 6, the mass m described above
When the above object hits the envelope surface of the vortex flow guide plate 6 at the point P, the following force relationship occurs. (Effect of Bernoulli's theorem in order to simplify the explanation in Nao此omitted.) That induction force f o is represented by f o = f 3 (cosφ- μsinφ), primarily to the cosine component of the Coriolis force f 3 Because,
The envelope is drawn with a force stronger than the centripetal force f 2 and is rapidly guided to the center. As described above, the vortex flow guide plate has a function of guiding the swirl flow velocity to the suction port with a short circulation passage as a strong vortex flow while the swirling flow velocity is not attenuated. The above is the outline of the action and effect of the eddy current guide plate. Next, the solution is similarly examined for the gas region of the present invention. In this case, a phenomenon completely different from that of the liquid is exhibited. That is, since the mass is small, the centripetal force is weak, but the suction pressure on the suction side should be increased accordingly. Then, since the kinematic viscosity coefficient is extremely small, the swirling vortex flow is hardly attenuated and is rapidly drawn to the center. Therefore, from the theoretical formula, as the radius r of the vortex becomes smaller, the rotational angular velocity ω increases, the rotational velocity is further accelerated, and the centripetal force tends to be increased. It can be said that this phenomenon is completely opposite to the case of liquid. It is not necessary to provide the vortex flow guide plate as in the case of the above liquid, because it will rather hinder the vortex flow and have an adverse effect. Further, in this case, the fine powder contained in the fog, dust, etc. has a large centripetal force because the mass m is larger than the surrounding gas, converges to the center of the vortex, and is sucked into the suction port while being concentrated. With the knowledge from the above theory and phenomenon engineering in mind, if the external centripetal swirling vortex system of the present invention is used in combination with a conventionally known air curtain system, it can be an effective means for solving problems in the gas region. is there. Examples of the method of the present invention will be described below with respect to the liquid region and the gas region.

【0005】[0005]

【実施例1】図1及び図2は本発明になる新しい外部向
心旋回渦流方式による汚染流体捕集装置の液体領域での
実施例を示たもので、図1は平面図,図2は図1のA−
A断面図である。先ず図1及び図2において、一条以上
の渦流誘導板6を中心部がほゞ包絡円を画く様構成し、
これを水面に半没して適宜支持具で水平に保持し、又該
誘導板6の部材は、周辺部を水面から浅く、中心部の包
絡円筒部は深く没するように構成しておく。又この下方
には、原動機5で駆動される遠心ポンプのインペラー2
を内蔵した捕集フード1を吸入口3を上向き(水面側)
に設け、その装置外周に環状ダクトで構成された外周渦
流発生器9をフード1と同心に配置し、該渦流発生器の
上端部内周に、スリット状の環状吹出口4を、上方の渦
流誘導板6の外周に対面して同心に開口しておく。又捕
集フード1の側面には側壁の接線方向に,且つインペラ
ー2の回転と同方向に伸びるダクト8を設け、外周渦流
発生器9と連通させ、フード側から液を還流するように
構成しておく。尚このダクト8は1個以上フード外周に
均等に設け、流量調整用の旋回式ダンパー7を内蔵し、
又フード寄りに液の逃がし穴12を下向きにそれぞれ設
け、環状吹出口4から旋回流が全周に均等に吹き出す様
ダンパー7で適宜調整しておく。尚インペラーの回転は
低速でよいから、原動機5は減速機付きの水中電動モー
タか油圧又は空圧モータでよい。そして吸入口3の吸入
量を装置外周からの旋回吹出量よりも多くなる様設定し
ておく。この様に構成された本装置は複数の支持具10
で水底から適宜水平に保持されているものとする。以上
の如く構成された装置において、今水面に油剤等の汚染
流体Sが膜状に浮上しているとき、原動機5で捕集フ
ード1内のインペラー2を図1に示す如く時計方向に回
転すると、遠心ポンプ作用で上面の吸入口3から水を吸
い込んでフード外周に放散し、接線方向に等分に設けた
四個のダクト8を通って外周渦流発生器9内に放出され
る。そしてインペラー2の回転と同方向に旋回し乍ら環
状吹出口4より装置中心部へ向いた向心旋回流となって
吹き出される。このとき向心旋回流はダンパー7で流量
を加減し、全周に渡って均等に吹き出される。この様に
して発生した外部向心旋回流は次ぎの様な作用を有す
る。即ちこの向心旋回流で環状吹出口4の周辺近傍の表
層水やそこに浮遊する汚染流体Sを伴流として引き寄
せる働きをする。そして渦流誘導板6内で旋回渦流とな
って、先の“課題を解決するための手段”の項で説明し
た如く、コリオリの力と誘導板包絡面による向心力助長
作用で包絡線を画きながら誘導される。この作用により
旋回渦流を加速させ、短い周回流路て急速に効率よく収
集し、捕集作用を高める効果がある。この様にして、捕
集された汚染流体は油の様な浮上性の場合は、図2に示
す様に包絡円筒内に厚い層となって蓄積され、吸引管1
1で吸引排出される。一方この誘導板6の下方の液体は
吸入口3から捕集フード1内に吸い込まれ、ダクト8を
経由して再び外周渦流発生器9へと還流される。尚この
捕集作業では吸入量を外周の吹出量よりも多くなる様設
定してあるが、伴流を含む旋回渦流の全てが吸入口3に
吸入される訳ではなく、一部は捕集フード1の周辺から
本装置の下方へ分流放散される。以上が本発明方式の液
体領域での一実施例の動作機能とその作用効果について
の説明である。尚ここで説明を補足すると、図1及び図
2には図示されてないが、例えばは外周渦流発生器9は
必ずしも環状ダクトでなくてもよく、分割された複数の
扇形ダクトでもよい。或るいは又実用上直線上のダクト
4個以上を平面図的には図4の如く四角形以上の六角形
や八角形等の等辺多角形に配列してもよい。又断面も図
5(1)に示す様な丸形パイプでもよい。またフード側
吸入量と外周旋回吹出量が、先に説明した様に適正に設
定されている場合には、調整ダンパー7や逃がし穴12
を省略してもよい。又外周渦流発生器9の吹出口4内
に、図示されてない流体吹出調整板(デフレクター)を
設け、外部向心旋回流を渦流誘導板6の巻き込み方向と
一致させる様調整し得る様にしたり、図5(2)に示す
様な角度調整式スポット吹出口を複数配列してもよい。
又捕集フードの吸入口3に、図示してないろ材を装着し
て、赤潮やアオコ等の微生物やスカム等の浮遊物など
を、ろ過する様にしてもよい。尚また外周渦流発生器9
への給水は捕集フードからでなく、本装置とは別個に設
けた従来公知のポンプから給水する様にしてもよい。そ
の様な場合はダクト8は不要となる。或は捕集した液体
をろ過した後、前記給水ポンプへ循環させる様にしても
よい。この様な場合は捕集フード内の遠心ポンプも不要
となる。尚また本装置の使用場所が海洋や河川,或は沼
湖等の場合は、本装置に浮子を取り付けたり専用船を設
け、浮上式捕集装置としてもよい。以上が本発明方式の
液体領域での実施例の概要である。この様な汚染流体捕
集装置を用いた場合、広域の汚染流体を急速に回収する
ことが可能なため、大規模の油流出事故等の油回収作業
に威力を発揮し得ることはもとより、ダムや沼湖或は海
洋等の表層の富酸素溶存水を捕集し、深層部へ導入する
循環装置とした場合、水質の浄化装置としても利用する
ことができる。
Embodiment 1 FIGS. 1 and 2 show an embodiment in a liquid region of a pollutant fluid collecting device by a new external centripetal vortex flow system according to the present invention. FIG. 1 is a plan view and FIG. A- in FIG.
FIG. First, in FIG. 1 and FIG. 2, one or more eddy current guide plates 6 are configured so that the center part draws a substantially envelope circle.
It is semi-submerged in the water surface and appropriately held horizontally by a support, and the member of the guide plate 6 is constructed so that the peripheral portion is shallow from the water surface and the envelope cylinder portion in the central portion is deeply immersed. Below this is the impeller 2 of the centrifugal pump driven by the prime mover 5.
Collection hood 1 with a built-in suction inlet 3 (water side)
An outer peripheral vortex generator 9 formed of an annular duct is disposed concentrically with the hood 1 on the outer periphery of the device, and a slit-shaped annular outlet 4 is provided on the inner periphery of the upper end of the vortex generator to guide the upward vortex flow. The plate 6 is concentrically opened so as to face the outer periphery of the plate 6. Further, a duct 8 extending in the tangential direction of the side wall and in the same direction as the rotation of the impeller 2 is provided on the side surface of the collection hood 1 and is connected to the outer peripheral vortex generator 9 so that the liquid is circulated from the hood side. Keep it. In addition, at least one duct 8 is evenly provided on the outer periphery of the hood, and the swivel damper 7 for adjusting the flow rate is built-in.
Further, liquid escape holes 12 are provided downward near the hood, and the damper 7 is appropriately adjusted so that the swirling flow blows out uniformly from the annular outlet 4 over the entire circumference. Since the rotation of the impeller may be low, the prime mover 5 may be an underwater electric motor with a speed reducer or a hydraulic or pneumatic motor. Then, the suction amount of the suction port 3 is set to be larger than the swirl blowing amount from the outer periphery of the device. The present apparatus configured as described above is provided with a plurality of support members 10
Shall be held horizontally from the bottom of the water. In the apparatus configured as described above, when the contaminated fluid S o such as an oil agent is floating on the water surface in the form of a film, the impeller 2 in the collection hood 1 is rotated clockwise by the prime mover 5 as shown in FIG. Then, water is sucked from the suction port 3 on the upper surface by a centrifugal pump action, is diffused to the outer periphery of the hood, and is discharged into the outer peripheral vortex generator 9 through the four ducts 8 equally divided in the tangential direction. Then, while rotating in the same direction as the rotation of the impeller 2, it is blown out as a centripetal swirling flow from the annular outlet 4 toward the center of the device. At this time, the centripetal swirl flow is blown out uniformly over the entire circumference by adjusting the flow rate by the damper 7. The external centripetal swirling flow thus generated has the following effects. That serves to attract contaminated fluid S o floating surface water and there around the vicinity of the annular air outlet 4 as the wake in the centripetal swirling flow. Then, a swirling vortex is formed in the vortex flow guide plate 6, and as described in the above section "Means for Solving the Problem", the Coriolis force and the guide plate enveloping surface promote the centripetal force while guiding the envelope. To be done. This action has the effect of accelerating the swirling vortex flow, collecting it rapidly and efficiently in a short circulation passage, and enhancing the collection action. In this way, when the collected contaminated fluid has a floating property such as oil, it is accumulated as a thick layer in the envelope cylinder as shown in FIG.
It is sucked and discharged at 1. On the other hand, the liquid below the guide plate 6 is sucked into the collection hood 1 through the suction port 3 and is returned to the outer peripheral vortex generator 9 via the duct 8. In this collecting work, the suction amount is set to be larger than the outer peripheral blowing amount, but not all of the swirling vortex flow including the wake is sucked into the suction port 3, and a part thereof is collected. It is diverged and diffused from around 1 to below the device. The above is the description of the operation function and the operation effect of one embodiment in the liquid region of the present invention. Incidentally, to supplement the explanation here, for example, although not shown in FIGS. 1 and 2, the outer peripheral vortex generator 9 may not necessarily be an annular duct, and may be a plurality of divided fan-shaped ducts. Alternatively, in practice, four or more linear ducts may be arranged in a plan view in an equilateral polygon such as a quadrangle or more hexagon or octagon as shown in FIG. Also, the cross section may be a round pipe as shown in FIG. Further, when the intake amount on the hood side and the blowout amount on the outer circumference are appropriately set as described above, the adjustment damper 7 and the escape hole 12 are provided.
May be omitted. Further, a fluid blowout adjusting plate (deflector) (not shown) is provided in the blowout port 4 of the outer peripheral vortex generator 9 so that the external centripetal swirling flow can be adjusted so as to coincide with the winding direction of the vortex flow guide plate 6. A plurality of angle-adjustable spot air outlets as shown in FIG. 5B may be arranged.
A filter material (not shown) may be attached to the suction port 3 of the collection hood to filter microorganisms such as red tide or water-bloom and suspended matter such as scum. Furthermore, the outer circumference eddy current generator 9
Water may be supplied to the pump not by the collection hood but by a conventionally known pump provided separately from the present device. In such a case, the duct 8 becomes unnecessary. Alternatively, the collected liquid may be filtered and then circulated to the water supply pump. In such a case, the centrifugal pump in the collection hood becomes unnecessary. If the device is used in the ocean, a river, a swamp, or the like, a floater may be attached to the device or a special ship may be provided to provide a floating collection device. The above is the outline of the embodiment of the present invention in the liquid region. When such a contaminated fluid collector is used, it is possible to rapidly collect a contaminated fluid in a wide area, and therefore, it is not only useful for oil recovery work such as large-scale oil spill accidents, but also for dams. When it is used as a circulation device that collects oxygen-rich dissolved water in the surface layer of lakes such as Numa Lake or the ocean and introduces it into the deep layer, it can be used as a water quality purification device.

【0006】[0006]

【実施例2】次に本発明方式の今一つの実施例として、
気体領域に対応した場合について説明する。図3は本発
明の特徴である外部向心旋回渦流方式による気体領域の
汚染流体捕集装置の縦断面図である。又図4は図3を下
側から見た平面図である。図3及び図4において、原動
機5で駆動される2段式遠心ポンプのインペラー2及び
2’を内蔵した捕集フード1を吸入口を下向きにして装
置中央に設け、支持具10で水平に保持し、又このフー
ド下方の床面との間の適度な高さに、4個の外周渦流発
生器9’を四方を囲む様にして配置し、シロッコファン
などの様な公知の送風器13を内蔵し、吊具10’で保
持しておく。この様にして構成された各主要部材は先の
実施例1の項で説明した場合と全く同様の構成要件と機
能を有している。只基本的な相違点と言えば渦流誘導板
が無いことゝ、代ってエアカーテン装置が付加かされて
いる点である。その他では図3及び図4から捕集フード
1の函体を(無論円筒形でもよいが)四角形状にした
り、インペラーを2段構造にしたりしていることなどで
ある。以下これ等について順を追って説明する。まず2
段式インペラーについて、上下共同心の一体構造に作ら
れ、下段インペラー2’の円盤部材の中央には上段イン
ペラー2に通じる吸入口が明けてあり、羽根も短く枚数
も少なくして、上段側の方の遠心作用が下段側より強く
なる様に構成されている。次に捕集フード1については
インペラーに対応して、仕切板15で上下2室に仕切
り、上部室は上段インペラー2の専用室とし、ダクト8
を経て外部へ接続する様にし、一方下部室はインペラー
外方のフード週縁に図4の如くスリット状の吹出口4’
を設けている。この吹出口は等辺多角形でも扇形や環状
でもよい。そして下段インペラー2’の排気を鉛直方向
にエアカーテンSとして吹き下ろす様になっている。
尚本実施例ではこのエアカーテンは、インペラー回転の
ため旋回エアカーテンとなる。次に外周渦流発生器9’
は捕集フード1と床面との間にあって図示以外の等辺多
角形や扇形又は環状でもよい。尚吹出口4は前記エアカ
ーテンSの外周から内側へ向って吹き出す様に配置し
ておく。そして吹出口4内に設けた流体吹出調整板16
でエアカーテンSの旋回方向と同方向に吹き出す様に
調整しておく。すると四方からの吹出気流は合流して旋
回渦流となり渦流のエアカーテンSを創生する。此で
エアカーテンSについて説明すると、この気流は旋回
しない従来公知の層流でもよいが、多少旋回した方が望
ましい。但しその方向は渦流エアカーテンSと同方向
でなければならない。そして気流の一部は装置中央の負
圧方向に引かれるが、同時に旋回向心力で外周方向から
も気体を引き込み乍ら下降する。そして渦流エアカーテ
ンSに出あうと瞬時にして勢いよく合流し、強力な渦
流となって中心部に収束される。次に渦流エアカーテン
の方であるが、吹き出す位置と方向についてはエア
カーテンSの外方から吹き付ける様にするならば高さ
は任意でよく、図4の様に必ずしも渦流が床面に到達し
なくてもよい。従ってエアカーテンSを真横からんせ
ん断する様に吹いてもよい。又エアカーテンSを十分
長くしたい場合には渦流エアカーテンSは床面からで
もよい。又両エアカーテンの合流点における風圧は、渦
流エアカーテンの方を高くなるように設定しておく。尚
また吸入口3の吸入圧は、これら両エアカーテンのいず
れよりも高く(負圧に)なる様に設定しておく。以上の
様な条件で構成された装置において捕集フード1内の2
段式インペラーを原動機5で駆動すると、吸入口3から
の吸気において、中心吸気は下段インペラーの中央穴か
ら吸引力の強い上段側のインペラー2側に、また外周吸
気は下段インペラー2’側に吸い込まれる。そして前者
はダクト8を通って外部へ排出され、後者は先に説明し
た様にフード周辺の吹出口4’から旋回エアカーテンS
となって吹き下ろされる。さて一方外周渦流発生器
9’の方は先に説明したようにエカカーテンSの外周
部に配置した渦流吹出口4から渦流エアカーテンS
吹き出している。一方装置中央部は、吸入口3から強力
に気体を吸い込んでいるから、前記エアカーテンS
の合成気流は、強力な旋回渦流となって装置中央部
へ収束される。そっして先の“課題を解決するための手
段”の項で説明した様に、旋回渦流は中心に近づく程回
転が加速され、遂には中心部に細い柱状の人工竜巻S
を生じる。以上が気体捕集作用の概要てある。これ等一
連の作用を、先に説明した実施例1の液体領域の場合と
対比すると、エアカーテンSが恰も外部向心旋回渦流
に相当し、渦流エアカーテンSが渦流誘導板に相当す
ると見なすことができる。但し前者は機械的な誘導方法
であるのに対し、後者は流体による誘導方式である点が
異る。しかしいずれも外部向心旋回渦流の参与により向
心力を助長せしめていることが大きな特徴である。次に
中央に捕捉した気体の吸引方法について説明する。中央
に生じる竜巻Sは向心力の式(2)で分る通り、周り
の気体より質量が大きな物質は、中心部に収束され濃縮
される傾向を示すので、捕捉気流を全量捕集除去しても
よいが、図3に示す様に柱状の竜巻部だけを重点的に吸
入口3の中心部から上段のインペラー2側に選別吸引す
る方が効果的である。そしてこれ等濃縮汚染気体を別途
に設けた従来公知の浄化手段で処理する方が望ましい。
ー方竜巻周辺の捕捉気流は汚染物質が少ないので、その
まゝか或は実施例の様に環状のフイルター14を通して
下段インペラー2’側に吸引され、エアカーテンS
還流させる様にしてもよい。以上が本実施例の動作機能
及び作用効果の概要である。此でこれまでの説明を補足
すると、本実施例のエアカーテンSは従来公知のエア
カーテン装置を利用してもよい。その場合は2段式のイ
ンペラーは上段側の1段のみでよい。又本装置の捕集フ
ード1やエアカーテン発生部及び外周渦流発生器9’な
どを別個に設けた従来公知の送風機とそれぞれ連結して
もよい。その場合はインペラーは不要となる。しかし各
部の気圧条件は満たす様にしなければならない。 又対
象空域が低く広い場合は渦流エアカーテンSのみでも
よく、また低く狭い場合はエアカーテンSのみでもよ
い。但し此の場合はエアカーテンSの旋回速度を速く
する必要がある。なお本方式は装置全体を天地を逆にし
ても成り立つ。その場合はエアカーテンや人工竜巻の流
れが上下逆向きになるだけである。従って汚染流体の滞
留が上下どちらかによって設置方法を選択すればよい。
以上が本発明方式の気体領域での実施例の概要である。
本方式の捕集作用を要約すると、先ず第一段階で周囲の
気体をエアカーテンの伴流として取り込み、この気流を
次の第二段階で渦流エアカーテンの向心旋回渦流と合流
し、急速に中心部へ誘導せしめ人工竜巻として捕捉す
る。従って広い空間領域の汚染物質を、急速且つ効率的
に省エネルギーで捕集除去することができ、粉塵,煤
煙,ミスト,臭気,その他公害汚染物質を含む空間の浄
化作業に好適であり、作業環境や生活環境の改善、及び
健康管理の向上にも極めて有益な効果をもたらすもので
ある。
[Embodiment 2] Next, as another embodiment of the method of the present invention,
The case corresponding to the gas region will be described. FIG. 3 is a vertical cross-sectional view of a contaminated fluid collecting device in a gas region by an external centripetal swirling vortex system, which is a feature of the present invention. FIG. 4 is a plan view of FIG. 3 viewed from the lower side. In FIGS. 3 and 4, a collection hood 1 having impellers 2 and 2 ′ of a two-stage centrifugal pump driven by a prime mover 5 is provided in the center of the device with its suction port facing downward, and is horizontally held by a supporter 10. In addition, four peripheral vortex generators 9'are arranged so as to surround the four sides at an appropriate height between the floor surface below the hood, and a known blower 13 such as a sirocco fan is installed. It is built in and held by the hanger 10 '. Each of the main members configured in this way has exactly the same structural requirements and functions as those described in the first embodiment. The only basic difference is that there is no eddy current guide plate, and that an air curtain device is added instead. Other than that, as shown in FIGS. 3 and 4, the box body of the collection hood 1 has a quadrangular shape (although it may be a cylindrical shape), and the impeller has a two-stage structure. Hereinafter, these will be described step by step. First 2
Regarding the stepped impeller, it is made into an integrated structure of upper and lower joints, and the suction port leading to the upper step impeller 2 is open in the center of the disk member of the lower step impeller 2 ', and the blades are short and the number of the The centrifugal action of the other side is stronger than that of the lower side. Next, the collection hood 1 is divided into upper and lower two chambers by a partition plate 15 corresponding to the impeller, and the upper chamber is a dedicated chamber for the upper impeller 2 and the duct 8
And the lower chamber is connected to the outside, while the lower chamber has a slit-shaped outlet 4'at the hood outer edge of the impeller as shown in FIG.
Is provided. This outlet may be an equilateral polygon, a fan shape, or an annular shape. And it has become as down blown as an air curtain S 1 of the exhaust of the lower impeller 2 'in the vertical direction.
In this embodiment, this air curtain is a swirling air curtain due to the impeller rotation. Next, the peripheral vortex generator 9 '
Is between the collection hood 1 and the floor surface, and may be an equilateral polygon other than the one shown, a fan shape, or an annular shape. The air outlet 4 is arranged so as to blow out from the outer periphery of the air curtain S 1 toward the inside. The fluid outlet adjusting plate 16 provided in the outlet 4
Is adjusted so as to blow out in the same direction as the turning direction of the air curtain S 1 . Then, the air currents blown out from the four directions merge to form a swirling vortex, creating an air curtain S 2 of the vortex. Here, the air curtain S 1 will be described. The airflow may be a conventionally known laminar flow that does not swirl, but it is preferable that the airflow slightly swirl. However, its direction must be the same as that of the vortex air curtain S 2 . Then, a part of the airflow is drawn in the negative pressure direction at the center of the device, but at the same time, the gas is also drawn in from the outer peripheral direction by the turning centripetal force and descends. And in the moment and each other out in the vortex air curtain S 2 joined vigorously, is focused in the center become a powerful vortex. Next, regarding the vortex air curtain S 2, the height and position of the vortex air curtain S 2 may be arbitrary so long as they are blown from the outside of the air curtain S 1 , and as shown in FIG. Does not have to reach. Therefore, the air curtain S 1 may be blown so that it is sheared directly from the side. Further, when it is desired to make the air curtain S 1 sufficiently long, the vortex air curtain S 2 may be from the floor surface. The wind pressure at the confluence of both air curtains is set to be higher in the vortex air curtain. In addition, the suction pressure of the suction port 3 is set to be higher (negative pressure) than either of these air curtains. In the device configured under the above conditions, 2 in the collection hood 1
When the stepped impeller is driven by the prime mover 5, in the intake air from the intake port 3, the central intake air is sucked from the central hole of the lower stage impeller to the upper side impeller 2 side with strong suction force, and the peripheral intake air is sucked to the lower stage impeller 2'side. Be done. The former is discharged to the outside through the duct 8, and the latter is the swirling air curtain S from the outlet 4 ′ around the hood as described above.
It becomes 1 and is blown down. Well whereas towards the periphery vortex generators 9 'is blown vortex air curtain S 2 from the vortex air outlet 4 arranged on the outer periphery of Ekakaten S 1 as described above. On the other hand, since the central portion of the device strongly sucks gas from the suction port 3, the combined airflow of the air curtains S 1 and S 2 becomes a powerful swirling vortex and converges to the central part of the device. As described above in the section “Means for Solving the Problems”, the swirling vortex is accelerated in rotation as it approaches the center, and finally, the artificial tornado S 3 with a thin columnar shape is formed in the center.
Cause The above is the outline of the gas collecting action. Comparing these series of actions with the case of the liquid region of the first embodiment described above, it is assumed that the air curtain S 1 corresponds to the external centripetal swirl flow and the vortex air curtain S 2 corresponds to the vortex flow guide plate. I can see it. However, the former is a mechanical guide method, whereas the latter is a fluid guide method. However, the major feature of both is that the centripetal force is promoted by the participation of the external centripetal vortex. Next, a method of sucking the gas captured in the center will be described. As the tornado S 3 generated in the center is understood by the formula (2) of the centripetal force, a substance having a larger mass than the surrounding gas tends to be condensed and concentrated in the central portion, so that the trapped airflow is completely collected and removed. However, as shown in FIG. 3, it is more effective to select and suction only the columnar tornado portion from the central portion of the suction port 3 to the upper impeller 2 side. Then, it is preferable to treat these concentrated polluted gases with a conventionally known purifying means separately provided.
Since the capture air flow around over hand tornado is less contaminant is sucked into the lower impeller 2 'side through the annular filter 14 as the orゝor embodiments, also in the manner to be returned to the air curtain S 1 Good. The above is the outline of the operation functions and effects of the present embodiment. Here, supplementing the above description, the air curtain S 1 of this embodiment may use a conventionally known air curtain device. In that case, the two-stage impeller need only be one stage on the upper stage side. Further, the collection hood 1 of the present apparatus, the air curtain generator, the outer peripheral vortex generator 9 ', etc. may be respectively connected to a conventionally known blower. In that case, the impeller is unnecessary. However, the atmospheric pressure conditions of each part must be satisfied. When the target air space is low and wide, only the vortex air curtain S 2 may be used, and when the target air space is low and narrow, only the air curtain S 1 may be used. However, in this case, it is necessary to increase the turning speed of the air curtain S 1 . This method can be applied even if the entire device is turned upside down. In that case, the air curtain and the flow of the artificial tornado are only turned upside down. Therefore, the installation method may be selected depending on whether the contaminated fluid is retained up or down.
The above is the outline of the embodiment of the present invention in the gas region.
To summarize the collecting action of this method, first, the ambient gas is taken in as a wake of the air curtain in the first stage, and this air flow is merged with the centripetal swirling flow of the vortex air curtain in the second stage, and rapidly. It is guided to the center and captured as an artificial tornado. Therefore, it is possible to collect and remove pollutants in a wide space area rapidly and efficiently with energy saving, and it is suitable for purification work of a space containing dust, soot, mist, odor, and other pollutant pollutants. It also has extremely beneficial effects on improving the living environment and improving health care.

【0007】[0007]

【発明の効果】以上説明した如く、本発明の外部向心旋
回渦流方式による汚染流体捕集装置は、先ず装置中心に
流体を吸入する捕集フードを設け、その装置外周部に内
側へ吹き込む外周渦流発生器を備え、これによる向心旋
回渦流で装置周辺の流体を伴流として内側へ引き寄せる
作用をなさしめる。そしてこれを基本的構成要素及び機
能とし乍ら、本装置の適用範囲を気・液領域にまで拡大
するため、液体領域では渦流誘導板を付加することで、
また気体領域ではエアカーテンと併用することで、それ
ぞれ旋回渦流を加速させ、流体の向心力を助長せしめ捕
集作業を高めるようにしている。従って従来の遠心分離
や集塵換気方式等よりも吸・排量が少なくてすみ、開放
された領域の各種汚染流体を急速且つ効率的に捕集する
ことができる。また広域の汚染流体の捕集作業が短時間
ですみ、動力も数分の一と少なく、極めて省エネルギー
化が図れる効果がある。
As described above, in the pollutant fluid collecting apparatus of the external centripetal vortex system of the present invention, the collecting hood for sucking the fluid is first provided at the center of the apparatus, and the outer periphery of the apparatus is blown inward at the outer peripheral portion thereof. A vortex flow generator is provided, and a centripetal vortex flow by this is used to draw the fluid around the device as a wake to the inside. With this as a basic component and function, in order to expand the applicable range of this device to the gas / liquid region, by adding a vortex flow guide plate in the liquid region,
In addition, in the gas region, it is used together with an air curtain to accelerate the swirling vortex flow, thereby promoting the centripetal force of the fluid and enhancing the collection work. Therefore, the amount of intake / exhaust is smaller than that of the conventional centrifugal separation or dust collection ventilation system, and various contaminated fluids in the open region can be collected rapidly and efficiently. Moreover, the work of collecting the contaminated fluid over a wide area is completed in a short time, and the power consumption is also reduced to a fraction of a few, which has the effect of extremely saving energy.

【0008】[0008]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明装置の液体領域に適用した場合の一実
施例の平面図。
FIG. 1 is a plan view of an embodiment when applied to a liquid region of a device of the present invention.

【図2】 図1のA−A断面図。2 is a sectional view taken along line AA of FIG.

【図3】 本発明装置の気体領域に適用した場合の一実
施例の縦断面図。
FIG. 3 is a vertical cross-sectional view of one embodiment when applied to the gas region of the device of the present invention.

【図4】 図3の下からみた底面図。FIG. 4 is a bottom view seen from the bottom of FIG. 3.

【図5】 外周渦流発生器の吹出口断面を示す一実施例
で、(1)は渦流発生器が円筒状の場合を、(2)は角
度調整式のスポット形の場合を示す。
FIG. 5 is an embodiment showing a cross section of the air outlet of the peripheral vortex generator, (1) shows a case where the vortex generator is cylindrical, and (2) shows a case where the angle adjustment type is spot type.

【図6】 回転座標系内の三つの見かけの力と、渦流誘
導板の誘導作用についての説明図。
FIG. 6 is an explanatory diagram of three apparent forces in a rotating coordinate system and a guiding action of a vortex flow guide plate.

【符号の説明】[Explanation of symbols]

1 捕集フード 9 外周渦流発生
器 2 インペラー 10 支持具 3 吸入口 11 吸引管 4 吹出口 12 逃がし穴 5 原動機 13 送風器 6 渦流誘導板 14 フイルター 7 ダンパー 15 仕切板 8 ダクト 16 流体吹出調整
板 S 汚染流体 S エアカーテン S 渦流エアカーテン S 人工竜巻 N 点Pにおける包絡面の法線方向の力 μ 物質と包絡面の摩擦係数 φ コリオリ力fの方向と包絡面の接線方向とのな
す角度 f’ コリオリ力fの包絡面接線方向の成分 f” 包絡面接線方向の摩擦抵抗力 f 包絡面接線方向の包絡方向への誘導力
1 Collection Hood 9 Outer Peripheral Vortex Generator 2 Impeller 10 Support Tool 3 Suction Port 11 Suction Pipe 4 Blowout Port 12 Escape Hole 5 Motor 13 Blower 6 Vortex Induction Plate 14 Filter 7 Damper 15 Partition Plate 8 Duct 16 Fluid Blowout Adjustment Plate S o Contaminated fluid S 1 Air curtain S 2 Vortex air curtain S 3 Artificial tornado N Force of normal direction of envelope surface at point P μ Coefficient of friction between material and envelope surface φ Coriolis force f 3 direction and tangential direction of envelope surface Angle f'is the component of Coriolis force f 3 in the tangential direction of the envelope surface f "Frictional resistance in the tangential direction of the envelope surface f o Induction force in the tangential direction of the tangential surface of the envelope surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密閉せる函体の鉛直方向の片面中心に流
体の吸入口を有し、その背面又は側面に流体排出口を備
えた捕集フードを設け、その外方周辺部にダクト状部材
を環状又は複数の扇形状,或は四角形以上の等辺多角形
状に構成し、該部材に沿ってスリット状の流体吹出口
を、やゝ内方に向けて設けた外周渦流発生器を、フード
側の吸入口と同心に且つ吹出面を吸入面よりも前方に配
置し、該吹出口からの渦流旋回角を少なくとも吹出口を
含む円周の接線方向よりも内側に向く様にし、且つこの
外周渦流発生器からの吹出量よりもフード側吸入口の吸
入量の方が多くなるようにしたことを特徴とする汚染流
体捕集装置。
1. A collection hood having a fluid suction port at the center of one side in the vertical direction of a hermetically sealed box body and a fluid discharge port on the back or side surface thereof, and a duct-shaped member on the outer peripheral portion thereof. Is formed into an annular shape or a plurality of fan shapes, or isosceles polygonal shapes of quadrangle or more, and a slit-shaped fluid outlet is provided along the member, and an outer peripheral vortex flow generator is provided slightly inward, Is disposed concentrically with the suction surface of the suction port, and the blowing surface is arranged in front of the suction surface so that the swirl swirl angle from the blowing port is directed inward from the tangential direction of the circumference including at least the blowing port, and A polluted fluid collection device, characterized in that a suction amount at a hood side suction port is larger than a blowing amount from a generator.
【請求項2】 一条以上の渦巻状の渦流誘導板を中心部
をほぼ包絡円筒状に構成し、これを水面に半没して水平
に保持し、該誘導板の水面下の部材を包絡円筒部の方が
周辺部よりも水面から深くなるように構成し、その下方
に請求項1に記載した捕集フード及び外周渦流発生器を
水中に設け、これ等の吸入口及び吹出口を共に渦流誘導
板側に向けて同心に配置し、且つ外周渦流の旋回方向が
前記渦流誘導板の巻き込み方向と同方向にしたことを特
徴とする請求項1記載の汚染流体捕集装置。
2. A vortex flow guide plate having one or more spirals, the central portion of which is formed into a substantially enveloped cylinder shape, which is semi-submerged in the water surface and held horizontally, and the member below the water surface of the guide plate is enveloped in the cylinder shape. The part is configured to be deeper from the water surface than the peripheral part, and the collection hood and the outer peripheral vortex generator described in claim 1 are provided under the water, and both the suction port and the blowout port are swirled. 2. The contaminated fluid collecting device according to claim 1, wherein the contaminated fluid collecting device is arranged concentrically toward the guide plate side, and the swirl direction of the outer peripheral vortex flow is the same as the winding direction of the vortex flow guide plate.
【請求項3】 請求項1記載の装置において、装置全体
を水平に保持し、捕集フード周縁部には環状又は複数の
扇形状、或はほぼ等辺多角形を構成するスリット状の外
縁吹出口を同心に設けけ、該吹出口から鉛直方向に少な
くとも旋回角速度が0以上の旋回エアカーテンを創成せ
しめ、該エアカーテンの終縁部か又は途中の外方周辺部
に外周渦流発生器を配置し、且つ外周渦流の旋回方向を
前記エアカーテンの旋回方向と同方向にしたことを特徴
とする請求項1記載の汚染流体捕集装置。
3. The apparatus according to claim 1, wherein the entire apparatus is held horizontally, and a peripheral edge portion of the collecting hood has an annular or plural fan shape or a slit-shaped outer edge outlet which forms a substantially equilateral polygon. Are provided concentrically, and a swirling air curtain having a swirling angular velocity of at least 0 is created in the vertical direction from the air outlet, and an outer peripheral vortex generator is arranged at the end edge of the air curtain or the outer peripheral part in the middle. The polluted fluid collecting device according to claim 1, wherein the swirling direction of the outer peripheral vortex is the same as the swirling direction of the air curtain.
JP4088449A 1992-02-26 1992-02-26 Contaminated fluid collector Expired - Fee Related JP2539318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4088449A JP2539318B2 (en) 1992-02-26 1992-02-26 Contaminated fluid collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4088449A JP2539318B2 (en) 1992-02-26 1992-02-26 Contaminated fluid collector

Publications (2)

Publication Number Publication Date
JPH06339645A true JPH06339645A (en) 1994-12-13
JP2539318B2 JP2539318B2 (en) 1996-10-02

Family

ID=13943114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4088449A Expired - Fee Related JP2539318B2 (en) 1992-02-26 1992-02-26 Contaminated fluid collector

Country Status (1)

Country Link
JP (1) JP2539318B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101651363B1 (en) * 2015-05-26 2016-08-25 이경렬 Bit of a crushing sludge discharge pipe for air chute excavation
CN108750026A (en) * 2018-05-08 2018-11-06 清远初曲智能科技有限公司 A kind of unmanned boat form nature gardens waters floating refuse environment-protecting intelligent cleaning plant
CN109689977A (en) * 2016-07-06 2019-04-26 冲浪清洁器股份公司 It excludes and is flowed vertically with separator-periphery
CN109689976A (en) * 2016-07-06 2019-04-26 冲浪清洁器股份公司 It excludes and separator-center rotational flow
CN112294120A (en) * 2019-07-30 2021-02-02 安庆诚旺厨具科技有限公司 Special turbine system for noodle cooking machine
CN113622994A (en) * 2021-08-17 2021-11-09 安徽理工大学 Drainage device for mining industry

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101651363B1 (en) * 2015-05-26 2016-08-25 이경렬 Bit of a crushing sludge discharge pipe for air chute excavation
CN109689977A (en) * 2016-07-06 2019-04-26 冲浪清洁器股份公司 It excludes and is flowed vertically with separator-periphery
CN109689976A (en) * 2016-07-06 2019-04-26 冲浪清洁器股份公司 It excludes and separator-center rotational flow
US10883240B2 (en) 2016-07-06 2021-01-05 Surfcleaner Ab Skimming and separation device—peripheral vertical flow
US11542675B2 (en) 2016-07-06 2023-01-03 Surfcleaner Ab Skimming and separation device—central rotating flow
CN108750026A (en) * 2018-05-08 2018-11-06 清远初曲智能科技有限公司 A kind of unmanned boat form nature gardens waters floating refuse environment-protecting intelligent cleaning plant
CN108750026B (en) * 2018-05-08 2019-07-26 清远初曲智能科技有限公司 A kind of unmanned boat form nature gardens waters floating refuse environment-protecting intelligent cleaning plant
CN112294120A (en) * 2019-07-30 2021-02-02 安庆诚旺厨具科技有限公司 Special turbine system for noodle cooking machine
CN113622994A (en) * 2021-08-17 2021-11-09 安徽理工大学 Drainage device for mining industry

Also Published As

Publication number Publication date
JP2539318B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JP6060190B2 (en) Exhaust module with swirler fan
WO2013151336A1 (en) Hood system having built-in rotor
KR101463455B1 (en) Exhaust ventilation of re-spread prevention and Increasing the displacement
JP2529889B2 (en) Floating liquid separation and collection device
CA1244283A (en) Eddy pump
KR20160069500A (en) Vantilator module with swilrer fan
US4357152A (en) Fluid borne particulate separator
JP2008155093A (en) Mist collector device equipped with rotation type mist treatment plate
CN1136419C (en) Artificial spout generating mechanism and apparatus using the same
JPH06339645A (en) Polluted fluid capturing apparatus
KR101602794B1 (en) Exhaust ventilation to increase emissions by constructing a stable air moving road
KR20190139730A (en) Impeller
US2485390A (en) Centrifugal fluid purifier
CN107051098B (en) Gas-liquid separator
US4815929A (en) Eddy pump
CN205598834U (en) Reduce device of road construction dust
CN108361790A (en) Smoke machine with automatic cleaning function
US6293751B1 (en) Water/solids extracting blower
CN212327794U (en) Water spray cyclone dust collector
JPH01256745A (en) Artificial tornado generating mechanism
JPH0411767B2 (en)
CN207936191U (en) A kind of kitchen ventilator with on-plane surface filter device
JP3103823B2 (en) Gas-liquid mixing device
JP3255462B2 (en) Mist collection device
JPH0866680A (en) Vortex type floating contaminated fluid recovering device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees