JPH063392B2 - Flow velocity measurement method for high temperature powder - Google Patents

Flow velocity measurement method for high temperature powder

Info

Publication number
JPH063392B2
JPH063392B2 JP62159838A JP15983887A JPH063392B2 JP H063392 B2 JPH063392 B2 JP H063392B2 JP 62159838 A JP62159838 A JP 62159838A JP 15983887 A JP15983887 A JP 15983887A JP H063392 B2 JPH063392 B2 JP H063392B2
Authority
JP
Japan
Prior art keywords
particles
flow
pipe
high temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62159838A
Other languages
Japanese (ja)
Other versions
JPS646724A (en
Inventor
伸好 高橋
敏昭 栗原
典貞 清水
輝彦 平林
和也 国友
洋一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTETSU KAKOKI KK
Nippon Steel Corp
Original Assignee
NITSUTETSU KAKOKI KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTETSU KAKOKI KK, Nippon Steel Corp filed Critical NITSUTETSU KAKOKI KK
Priority to JP62159838A priority Critical patent/JPH063392B2/en
Publication of JPS646724A publication Critical patent/JPS646724A/en
Publication of JPH063392B2 publication Critical patent/JPH063392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非流動化状態で管内を移動する高温の粉粒体の
流れ、あるいは流速を測定する方法に関する。
TECHNICAL FIELD The present invention relates to a method for measuring the flow or flow velocity of a high temperature powder or granular material moving in a pipe in a non-fluidized state.

「従来の技術〕 粒子群の下降流を測定する方法としては熱デルタ応答法
が知られている(化学工学論文集第5巻第2号155頁
(1979))。また流動層内の粒子の移動速度につい
て磁気トレーサー粒子を用いる方法、光学的方法、ピエ
ゾ電気を利用する方法などがある。さらに直接重量を測
定したり、管路内に設けた円板に発生する荷重を検出す
るターゲット式の流量計もある。
"Prior Art" A thermal delta response method is known as a method for measuring the downflow of a particle group (Chemical Engineering Proceedings Vol. 5, No. 2, page 155 (1979)). Regarding the moving speed, there are a method of using magnetic tracer particles, an optical method, a method of using piezoelectricity, etc. Furthermore, a target type of directly measuring the weight or detecting a load generated on a disk provided in the pipe line is used. There is also a flow meter.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の従来技術は常温あるいは比較的低温の粒子の場合
に適用することが容易であるが、高温例えば500℃以
上のような場合は、物理的に極めて困難となる。
The above-mentioned conventional technique can be easily applied to particles at room temperature or a relatively low temperature, but it becomes physically difficult at a high temperature, for example, 500 ° C. or higher.

このうち熱デルタ応答法は原理的には簡単であり、すぎ
れた方法であるが、上記文献の方法は白金線等の電熱線
にパルス電流を通して粒子群を瞬間的に加熱するもので
あり、伝導性の粒子には応用できない。また高温の粒子
をさらに加熱するような場合には粒子が溶融したり、シ
ンターする等不都合を生じる上耐久性も低い。
Among them, the thermal delta response method is simple in principle and is an excessive method, but the method of the above-mentioned literature is to instantaneously heat a particle group by passing a pulse current through a heating wire such as a platinum wire, and It cannot be applied to particles of nature. Further, when the high temperature particles are further heated, the particles may be melted or sintered, and the durability is low.

本発明は主として流動層あるいは循環式流動層の粒子の
移動あるいは循環用に用いられる移送用のスタンドパイ
プ(直立管)あるいは傾斜管内を非流動化状態で流れる
高温の粉粒体の移動あるいは流速を検知するための比較
的簡便な方法を提供するものである。
The present invention mainly determines the movement or flow velocity of high-temperature powder particles flowing in a non-fluidized state in a transfer stand pipe (upright pipe) or an inclined pipe used for moving or circulating particles in a fluidized bed or a circulating fluidized bed. It provides a relatively simple method for detection.

「問題点を解決するための手段〕 本発明は直立管内あるいは傾斜管内に突出した小口径管
から管内粒子流よりも低温の粒子を一時的またはパルス
的に供給し、突出管開口部の近傍下流に設けた一個また
は複数個の温度検知端により熱応答の時間的変化を検知
して高温粉粒体の流れもしくは流速を測定する方法であ
るが、外部から管内粒子流よりも低温の粒子を供給し、
粒子流れを測定する方法であるため、従来の高温粒子を
さらに加熱するような場合に比べ粒子が熔融したり、シ
ンターするなどの問題も全くなく、耐久性にも問題はな
い。
[Means for Solving the Problems] The present invention supplies particles having a temperature lower than the particle flow in a pipe temporarily or in a pulsed manner from a small-diameter pipe protruding into an upright pipe or an inclined pipe, and downstream in the vicinity of the protruding pipe opening. This is a method to measure the time change of the thermal response by one or more temperature detection ends installed in the device to measure the flow or flow velocity of high temperature powder particles. Then
Since this is a method of measuring the particle flow, there is no problem such as melting or sintering of the particles as compared with the case where conventional high temperature particles are further heated, and there is no problem in durability.

また本発明は管内粒子の下流方向に開口した小口径管を
粉粒体の安息角あるいは静止摩擦角以上の傾斜で直立管
内あるいは傾斜管内に突出させることによって低温粒子
をパルス的に管内下降粒子中に入れることができる。そ
のためパルス的に入った低温粒子が一団となって下降す
るので、小口径管開口部の近傍下流に設けた温度検知端
できわめて正確に温度変化を検知することができる。こ
れによって粒子下降速度を十分に測定することが可能で
ある。
In the present invention, the low-temperature particles are pulsed in the descending particles in the pipe by causing a small-diameter pipe opened in the downstream direction of the in-pipe particles to project into the upright pipe or the inclined pipe at an inclination greater than the repose angle or the static friction angle of the granular material. Can be put in. Therefore, since the low temperature particles that have entered in a pulse descend as a group, the temperature change can be detected extremely accurately at the temperature detecting end provided downstream in the vicinity of the small-diameter pipe opening. This allows the particle descent rate to be fully measured.

しかし小口径管を管内に突出しない場合は低温粒子を高
温粒子の流れの中にパルス的に入れることができないた
めか、温度がきわめて広範囲に変化し、鋭敏な熱応答の
ピークの時間的変化を検知することができなかった。
However, if the small-diameter tube does not protrude into the tube, it is possible that cold particles cannot be injected into the flow of hot particles in a pulsed manner. It could not be detected.

なお、本発明が適用できる範囲は高温粉粉体の流れにお
いて、Usl<(Umf/εmf)であり、かつε<ε
mfの関係が成立する場合に限られる。
The range to which the present invention can be applied is Usl <(Umf / εmf) and ε <ε in the flow of high temperature powder.
Only when the relation of mf is established.

但し Usl=スリップ速度 Umf=最小流動化速度 εmf=最小流動化空間率 ε=粉粒体の測定時の空間率 すなわち、高温の粉粒体は流動化せず、ピストン流の移
動層である場合に限られる。
However, Usl = slip velocity Umf = minimum fluidization velocity εmf = minimum fluidization porosity ε = porosity at the time of measurement of the granular material, that is, when the high temperature granular material does not fluidize and is a moving bed of the piston flow Limited to

また粒子の流れる管内に突出させる小口径管の水平面に
対する傾斜角は低温粒子の流れが滞らないために、粒子
と小口径管の静止摩擦用あるいは粒子の安息角以上であ
ることが必要である。これは一般には45°以上、好ま
しくは60°程度とすればよい。そしてその先端は高温
粒子の流れに対して下流方向に、すなわち流れが開口部
に対して対面せず、遮ぎられるようにして管内に突出し
ていることが重要である。従って開口部を下に曲げると
か、下向きに斜めに切ることが好ましい。
Further, the inclination angle of the small diameter tube projected into the tube through which the particles flow with respect to the horizontal plane must be at least for static friction between the particles and the small diameter tube or above the repose angle of the particles so that the flow of the low temperature particles is not stopped. This is generally 45 ° or more, preferably about 60 °. It is important that the tip projects in the downstream direction with respect to the flow of the hot particles, that is, the flow does not face the opening and is blocked so as not to face the opening. Therefore, it is preferable to bend the opening downward or to cut it obliquely downward.

〔実施例〕〔Example〕

本発明の実施例を図面を用いて説明する。第1図に示す
ような高温の循環流動層において高温粒子の循環速度を
測定した。
Embodiments of the present invention will be described with reference to the drawings. The circulation rate of high temperature particles was measured in a high temperature circulating fluidized bed as shown in FIG.

内径38.4mmの流動層1に高温の反応ガス(900℃)を
流動化ガス吹込口8より入れ、流動層は乱流流動層を形
成している。高温粒子(Umf=2.2cm/sの砂鉄
粉)は流動層からガスにより沈降室2に送られ、ガスと
分離された後、直立管(ダウンカマー)3及び傾斜管5
を通し流動層の下部にもどる。また沈降室2で分離しき
れなかった粒子は僅かであったが、さらにサイクロン4
で分離された後、外径34mm、内径28mmの小口径管1
1を通って直立管3にもどされる。管12、13は粒子
の循環量の制御するためのガス吹込口である。なお本装
置には試料フィード用のフィード口9及び反応物抜き出
し用の抜出口10がついている。
A high-temperature reaction gas (900 ° C.) was introduced into the fluidized bed 1 having an inner diameter of 38.4 mm from the fluidizing gas injection port 8 to form a turbulent fluidized bed. High temperature particles (sand iron powder of Umf = 2.2 cm / s) are sent from the fluidized bed to the settling chamber 2 by gas and separated from the gas, then the upright pipe (downcomer) 3 and the inclined pipe 5
Return to the bottom of the fluidized bed. There were few particles that could not be completely separated in the sedimentation chamber 2, but the cyclone 4
After being separated by, a small diameter tube 1 with an outer diameter of 34 mm and an inner diameter of 28 mm
It is returned to the upright pipe 3 through 1. The tubes 12 and 13 are gas inlets for controlling the circulation amount of particles. The apparatus is provided with a feed port 9 for feeding a sample and a withdrawal port 10 for withdrawing reactants.

また高温粒子は約880℃で直立管内を移動層を形成し
て移動し、周囲をUf=1.1cm/sのガスが上向きに流れてお
り、その直立管内に小口径管11が60゜の傾斜で突出し
ており(第2図)、室温の低温粒子(砂鉄)はダブルバ
ルブ6を介して突出した小口径管11より供給される。
一度に供給する低温粒子は100gである。小口径管1
1の開口部の真下に125mmの間隔を置いて挿入した3
本の熱電対7により熱応答の時間的変化を測定し、これ
によって高温粒子の下降速度を測定した。この結果を第
3図(実線)に示す。
High-temperature particles move in a vertical tube at about 880 ° C to form a moving layer, and a gas of Uf = 1.1cm / s flows upward in the surroundings, and a small-diameter tube 11 is inclined at an angle of 60 ° in the vertical tube. (Fig. 2), the low temperature particles (sand iron) at room temperature are supplied through the double valve 6 from the small-diameter pipe 11.
The cold particles fed at once are 100 g. Small diameter tube 1
Inserted at a distance of 125 mm directly under the opening of 1 3
The time change of the thermal response was measured by the thermocouple 7 of the book, and thereby the descending velocity of the hot particles was measured. The result is shown in FIG. 3 (solid line).

これによれば熱応答の結果、粉粒体の下向速度は1.7cm/
sと測定され、粒子循環量は流動層本体内部で150kg/
m2hと計算された。なお第3図破線は小口径管が管壁よ
り突出していない場合のもので、熱応答がブロードで測
定に適さないことが明らかである。
According to this, as a result of the thermal response, the downward velocity of the granular material is 1.7 cm /
s is measured, and the amount of circulating particles is 150 kg /
Calculated as m 2 h. The broken line in FIG. 3 shows the case where the small-diameter pipe does not project from the pipe wall, and it is clear that the thermal response is broad and not suitable for measurement.

「発明の効果〕 本発明は、直立管内あるいは傾斜管内の高温粉流体の流
れを測定する熱応答方法において、シンターや熔融など
の問題はなく、機械的な要素あるいは電熱線のような消
耗部分もないので耐久性も大きい。
[Advantages of the Invention] The present invention, in a thermal response method for measuring the flow of a high temperature powder fluid in an upright pipe or an inclined pipe, has no problems such as sintering and melting, and does not include mechanical elements or consumable parts such as heating wires. Since it does not exist, it has great durability.

このように簡単な構成で確実に直ちに高温粉粒体の循環
速度を測定でき、実用上極めて大きな効果を有するもの
である。
With such a simple structure, the circulation speed of the high-temperature powder or granules can be measured immediately and reliably, which is extremely effective in practice.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の高速循環流動層装置の概略
図であり、第2図は第1図装置の主要部拡大図である。
第3図は熱応答結果を示すグラフで、実線は本発明の実
施例、破線は小口径管の突出のない比較例である。 1……流動層、2……沈降室 3……直立管、4……サイクロン 5……傾斜管、6……ダブルバルブ 7……温度検知端(3本) 8……流動化ガス吹込口 9……試料フィード口、10……反応物抜出口 11……突出した小口径管 12……循環制御用ガス吹込口 13……循環補助用ガス吹込口
FIG. 1 is a schematic view of a high-speed circulating fluidized bed apparatus according to an embodiment of the present invention, and FIG. 2 is an enlarged view of a main part of the apparatus shown in FIG.
FIG. 3 is a graph showing the thermal response results, where the solid line is the example of the present invention and the broken line is the comparative example in which the small-diameter pipe does not project. 1 ... Fluidized bed, 2 ... Sedimentation chamber 3 ... Upright pipe, 4 ... Cyclone 5 ... Inclined pipe, 6 ... Double valve 7 ... Temperature detection end (3) 8 ... Fluidizing gas inlet 9: Sample feed port, 10: Reactant withdrawal port 11: Projecting small-diameter tube 12: Circulation control gas injection port 13: Circulation assistance gas injection port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平林 輝彦 東京都世田谷区粕谷1−17−25 (72)発明者 国友 和也 神奈川県川崎市中原区井田1618番地 新日 本製鉄株式会社第1技術研究所内 (72)発明者 林 洋一 福岡県北九州市八幡東区枝光1−1−1 新日本製鉄株式会社第3技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruhiko Hirabayashi 1-17-25 Kasuya, Setagaya-ku, Tokyo (72) Inventor Kazuya Kunitomo 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Co., Ltd. Inside the laboratory (72) Inventor Yoichi Hayashi 1-1-1 Edamitsu, Yawatahigashi-ku, Kitakyushu, Fukuoka Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱応答法を用いて直立管内あるいは傾斜管
内の高温粉粒体の流れを測定する方法において、Usl
<(Umf/εmf)で、かつε<εmfである粒子流
の下流方向に、開口部を有する管内に突出した小口径管
から管内粒子流よりも低温の粒子を一時的またはパルス
的に供給し、開口部の近傍下流に設けた一個または複数
個の温度検知端により熱応答の時間的変化を検知して高
温粉流体の流れもしくは流速を測定する方法。 但し Usl=スリップ速度 Umf=最小流動化速度 εmf=最小流動化空間率 ε=粉粒体の測定時の空間率
1. A method for measuring the flow of high-temperature powder or granules in an upright pipe or an inclined pipe by using a thermal response method, comprising:
<(Umf / εmf) and ε <εmf, the particles having a temperature lower than that of the in-tube particle flow are temporarily or pulsed supplied from a small diameter tube protruding into the tube having an opening in the downstream direction of the particle flow. A method for measuring the flow or flow velocity of a high temperature powder fluid by detecting a temporal change in thermal response by means of one or a plurality of temperature detecting ends provided downstream of the opening. However, Usl = slip velocity Umf = minimum fluidization velocity εmf = minimum fluidization porosity ε = porosity at the time of measuring the granular material
JP62159838A 1987-06-29 1987-06-29 Flow velocity measurement method for high temperature powder Expired - Lifetime JPH063392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62159838A JPH063392B2 (en) 1987-06-29 1987-06-29 Flow velocity measurement method for high temperature powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62159838A JPH063392B2 (en) 1987-06-29 1987-06-29 Flow velocity measurement method for high temperature powder

Publications (2)

Publication Number Publication Date
JPS646724A JPS646724A (en) 1989-01-11
JPH063392B2 true JPH063392B2 (en) 1994-01-12

Family

ID=15702343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62159838A Expired - Lifetime JPH063392B2 (en) 1987-06-29 1987-06-29 Flow velocity measurement method for high temperature powder

Country Status (1)

Country Link
JP (1) JPH063392B2 (en)

Also Published As

Publication number Publication date
JPS646724A (en) 1989-01-11

Similar Documents

Publication Publication Date Title
Lehner et al. Characterization of the flow pattern in a downer reactor
Fan et al. Evaporative liquid jets in gas–liquid–solid flow system
Shu et al. Hydrodynamic study of a toroidal fluidized bed reactor
Issangya Flow dynamics in high density circulating fluidized beds
US4071324A (en) Chemical reactor
Kim et al. Solid recycle characteristics of loop‐seals in a circulating fluidized bed
Flaxman et al. Flow and particle heating in an entrained flow reactor
Matsumoto et al. Solid particle velocity in vertical gaseous suspension flows
Dry et al. Gas—solids contact efficiency in a high-velocity fluidised bed
JPH063392B2 (en) Flow velocity measurement method for high temperature powder
Stubington et al. A model for volatiles release into a bubbling fluidized‐bed combustor
Kim et al. Solid circulation characteristics in an internally circulating fluidized bed with orifice-type draft tube
Dry Radial concentration profiles in a fast fluidised bed
Depypere et al. Expanded bed height determination in a tapered fluidised bed reactor
CN107389971A (en) A kind of on-line measurement device of On Solids Recirculating Flowrate of Circulating Fluidized Bed
Wirth Axial pressure profile in circulating fluidized beds
Grace Heat transfer in high velocity fluidized beds
JPH01112114A (en) Flow velocity measuring method for high temperature granule
US4397267A (en) Technique and apparatus for solids circulation control in the solids circulating boiler
Hariri et al. Agglomeration of polyolefin particles in a fluidized bed with a central jet Part I. Experimental study
WU et al. Interacting jets in a fluidized bed
Gueguen et al. Heat transfer in a fluidized bed tubular solar receiver. On-sun experimental investigation
Liu et al. Hydrodynamic characteristics and mixing characteristics of a new type particle mixer
KR100460602B1 (en) Measurement method of solid circulation rate in internally circulating fluidized bed
Namkung et al. Effect of temperature on gas bypassing and solids circulation rate in an internally circulating fluidized bed