JPH06338871A - Spread spectrum demodulator - Google Patents

Spread spectrum demodulator

Info

Publication number
JPH06338871A
JPH06338871A JP14980593A JP14980593A JPH06338871A JP H06338871 A JPH06338871 A JP H06338871A JP 14980593 A JP14980593 A JP 14980593A JP 14980593 A JP14980593 A JP 14980593A JP H06338871 A JPH06338871 A JP H06338871A
Authority
JP
Japan
Prior art keywords
output
circuit
demodulation
component
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14980593A
Other languages
Japanese (ja)
Other versions
JP2679576B2 (en
Inventor
Yukinobu Ishigaki
行信 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP14980593A priority Critical patent/JP2679576B2/en
Publication of JPH06338871A publication Critical patent/JPH06338871A/en
Application granted granted Critical
Publication of JP2679576B2 publication Critical patent/JP2679576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the S/N by dividing the interference component in the band from the interference component which is modulated by the frequency of the reciprocal of the cycle of a spreading code and canceling and demodulating the interference component by the subtraction processing. CONSTITUTION:A clock signal to be supplied to an input terminal In3 is supplied also to a frequency divider 22 having the divided frequency of 1/L, the reciprocal of a spreading code synchronization L, and obtains a frequency divider clock signal. By passing a BPF 23, a carrier signal is obtained. The carrier signal and the amplitude modulation wave being the output of a BPF 20 are added by an adder 21 to prevent the waveform collapse. The output of the circuit 21 is applied to an envelope detection circuit 24 and the AM detection is performed. By removing the high frequency component by an LPF 25 and cutting the dc component, the same signal as the interference wave component can be obtained. This signal is supplied to a subtraction circuit 26 to cancel the interference wave component included in the output of the LPF 18. Thus, the output suppressing the interference component can be obtained from an output terminal out and the information with the good S/N is outputted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、送信(変調装置)側で
角度変調波を直接拡散して得られるスペクトル拡散変調
波を、所定の伝送媒体を介して入力して受信,復調する
スペクトル拡散復調装置に係り、特に、伝送中に混入し
た干渉波を、復調動作において大幅に抑圧低減し得るス
ペクトル拡散復調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spread spectrum system for inputting, receiving and demodulating a spread spectrum modulated wave obtained by directly spreading an angle modulated wave on the transmission (modulation device) side through a predetermined transmission medium. The present invention relates to a demodulation device, and more particularly, to a spread spectrum demodulation device capable of significantly suppressing and reducing an interference wave mixed during transmission in a demodulation operation.

【0002】[0002]

【技術的背景】スペクトル拡散(SS)通信方式の技術
分野において、伝送時に混入する他局からの干渉波の除
去もしくは抑圧に関する研究が、本出願人会社を始めと
する主要機関で日夜進められ、種々の技術開発が行われ
ている。その中で、妨害となる既知のSS変調波を抑圧
する方法や、予めキャリヤ変調された後SS変調された
SS変調波に未知の狭帯域干渉波が加わっている場合、
狭帯域干渉波を適応的にフィルタリング(狭帯域除去)
する方法がよく知られている。このような技術は、SS
通信システムの周波数利用効率を高める場合に寄与でき
るものである。
[Technical background] In the technical field of spread spectrum (SS) communication system, research on elimination or suppression of interference waves from other stations mixed during transmission is advanced day and night by major organizations including the applicant company, Various technological developments are being made. Among them, a method of suppressing a known SS modulated wave which becomes an interference, or when an unknown narrow band interference wave is added to the SS modulated wave which has been carrier modulated in advance and then SS modulated,
Adaptive filtering of narrowband interference (narrowband removal)
Well known how to do. Such technology is
This can contribute to improving the frequency utilization efficiency of the communication system.

【0003】[0003]

【従来の技術】SS通信における従来の干渉波抑圧技術
においては、次第に回路規模が大きくなり、回路規模に
対する抑圧効果の比較において十分とは言えず、実際の
キャリヤ変調されているSS変調波において実用に供す
る開発技術は見当らず、SS通信方式のプロセス利得に
対応した干渉波抑圧に依存しているのが現状である。
2. Description of the Related Art In the conventional interference wave suppression technique in SS communication, the circuit scale gradually increases, and it is not sufficient to compare the suppression effect with the circuit size. No development technology has been found for this purpose, and the current situation is that it depends on interference wave suppression corresponding to the process gain of the SS communication system.

【0004】従来のSS復調について説明するに当り、
送信(SS変調装置)側で予め1次変調として角度変調
された角度変調波をSS変調する技術と、このSS変調
波の復調において復調出力に生じる干渉波について、図
1に従って説明する。
In describing conventional SS demodulation,
A technique of SS-modulating an angle-modulated wave that has been angle-modulated in advance as primary modulation on the transmission (SS modulator) side and an interference wave generated in a demodulation output in demodulation of this SS-modulated wave will be described with reference to FIG.

【0005】図1(A) は送信部における変調装置のブロ
ック構成図であり、2は角度変調回路、3は拡散変調回
路、5は拡散符号発生回路、6はBPF(帯域濾波
器)、7は送信アンテナである。また、図1(B) は受信
部における復調装置のブロック構成図であり、11は受
信アンテナ、12,16はBPF、13は逆拡散復調回
路、15は拡散符号発生回路、17は角度復調回路、1
8はLPF(低域濾波器)である。なお、かかる変調装
置と復調装置の双方を通常のSS通信機は備えており、
その場合、アンテナ7と11,及び拡散符号発生回路5
と15は、夫々1個で兼用される。
FIG. 1 (A) is a block diagram of a modulator in a transmitter, 2 is an angle modulator, 3 is a spread modulator, 5 is a spread code generator, 6 is a BPF (bandpass filter), and 7 is a bandpass filter. Is a transmitting antenna. Further, FIG. 1B is a block diagram of a demodulation device in the receiving section. 11 is a receiving antenna, 12 and 16 are BPFs, 13 is a despreading demodulation circuit, 15 is a spreading code generation circuit, and 17 is an angle demodulation circuit. 1
Reference numeral 8 is an LPF (low pass filter). An ordinary SS communication device is equipped with both the modulator and the demodulator,
In that case, the antennas 7 and 11 and the spread code generation circuit 5
One of each of 15 and 15 is also used.

【0006】次に回路動作ついて説明する。先ず、図1
(A) のSS変調装置においては、入力端子In1 より、後
述の変調信号に比べて低い周波数を使用している情報S
(t)が角度変調回路2に供給され、ここでキャリヤ角周
波数ω0 の変調信号により角度変調されて、次式で表わ
される角度変調信号fm(t)が生成される。
Next, the circuit operation will be described. First, Fig. 1
In the SS modulator of (A), the information S that uses a lower frequency than the modulation signal described later is input from the input terminal In1.
(t) is supplied to the angle modulation circuit 2, where it is angle-modulated by the modulation signal of the carrier angular frequency ω 0 to generate the angle modulation signal fm (t) represented by the following equation.

【0007】[0007]

【数1】 ……………………… (1) この式から明らかなように、角度変調として具体的には
FM変調及び位相変調を行なっており、かかる角度変調
出力fm(t)は拡散変調回路3に供給される。
[Equation 1] ………………………… (1) As is clear from this equation, FM modulation and phase modulation are specifically performed as the angle modulation, and the angle modulation output fm (t) is obtained by the spread modulation circuit 3 Is supplied to.

【0008】一方、入力端子In2 からは拡散符号発生用
のクロック信号C(t) が拡散符号発生回路5に供給され
る。ここで拡散符号P(t) を発生させて拡散変調回路3
に供給し、上記角度変調出力fm(t)に対して乗算による
SS変調を行なっている。従って、SS変調出力即ちS
S波SS(t) は、
On the other hand, a clock signal C (t) for generating a spread code is supplied to the spread code generating circuit 5 from the input terminal In2. Here, the spread code P (t) is generated to generate the spread modulation circuit 3
And the angle modulation output fm (t) is subjected to SS modulation by multiplication. Therefore, the SS modulation output or S
S wave SS (t) is

【0009】[0009]

【数2】 ……………………… (2) となり、BPF6を介して送信アンテナ7より出力され
る。送信アンテナ7より空中に放射されたSS波は、受
信側のSS通信機で受信されるまでの間に、他局間で使
用されている電波{これを干渉波fn(t)とする}等の混
入による通信妨害を受けてしまう。
[Equation 2] ……………………… (2), which is output from the transmitting antenna 7 via the BPF 6. The SS wave radiated in the air from the transmitting antenna 7 is a radio wave used between other stations until it is received by the SS communication device on the receiving side (this is assumed to be an interference wave fn (t)}, etc. Receives communication interference due to the mixture of

【0010】次に、図1(B) を参照して、受信側(SS
復調装置)の説明を行う。受信アンテナ11により受信
されたSS波は、BPF12にてSS波の主ローブ以外
の不要な周波数成分を除去された後、逆拡散復調回路1
3に供給される。ここで、干渉波fn(t)は、SS波のキ
ャリヤ角周波数ω0 に近い角周波数ωn0を有するという
条件を付ければ、次式のように表現することができる。
Next, referring to FIG. 1B, the receiving side (SS
The demodulation device) will be described. The SS wave received by the reception antenna 11 has unnecessary frequency components other than the main lobe of the SS wave removed by the BPF 12, and then the despreading demodulation circuit 1
3 is supplied. Here, the interference wave fn (t) can be expressed as the following equation, provided that it has an angular frequency ω n0 close to the carrier angular frequency ω 0 of the SS wave.

【0011】[0011]

【数3】 ……………………… (3) ここで、ωn0−ω0 =ωn {後述の図3(A)に示す干渉
波成分}とおけば、干渉波fn(t)とSS波SS(t) の合成
波は上記の条件{干渉波の周波数はSS波のキャリヤ角
周波数に近いという条件}を適用して次のように変形で
きる。
[Equation 3] ………………………… (3) where ω n0 −ω 0 = ω n {interference wave component shown in FIG. 3 (A) described later}, the interference wave fn (t) and the SS wave The composite wave of SS (t) can be transformed as follows by applying the above condition (condition that the frequency of the interference wave is close to the carrier angular frequency of the SS wave).

【0012】[0012]

【数4】 ……………………… (4) 但し、X=E2 /E1 また、SS波のパワーE1 に比べて干渉波のパワーE2
が小さければX2 <<1となるので (4)式は次のように近
似できる。
[Equation 4] ……………………… (4) However, X = E 2 / E 1 and the power E 2 of the interference wave compared to the power E 1 of the SS wave.
If is small, X 2 << 1, so Eq. (4) can be approximated as follows.

【0013】[0013]

【数5】 ……………………… (5) 一方、入力端子In3 を介して図示しないクロック信号発
生器からクロック信号C(t−τ)が拡散符号発生回路
15に供給され、ここで拡散符号P(t−τ)が生成さ
れて逆拡散回路13に供給され、拡散符号P(t−τ)
を合成波fn(t)+SS(t) に乗算することにより、SS波
等の逆拡散復調が行なわれる。その逆拡散復調出力Dss
(t) は、
[Equation 5] (5) On the other hand, the clock signal C (t-τ) is supplied from the clock signal generator (not shown) to the spreading code generating circuit 15 via the input terminal In3, and here the spreading code P (T−τ) is generated and supplied to the despreading circuit 13, and the spreading code P (t−τ)
Is multiplied by the composite wave fn (t) + SS (t) to perform despread demodulation of SS wave or the like. The despread demodulation output Dss
(t) is

【0014】[0014]

【数6】 ……………………… (6) となる。なお、τは前記SS変調装置側で使用されるク
ロック信号C(t) に対する時間遅れを表わし、 (6)式中
のRp(τ),Pn(t)は夫々自己相関成分及び拡散成分を示
す。これらRp(τ),Pn(t)は共に非常に複雑な数式で表
現されるが、相関成分Rp(τ)はRp(τ)<1であり、
拡散成分Pn(t)はBPF16により帯域制限されるの
で、ここでは具体的な数式の記載は省略する。
[Equation 6] ……………………… (6). Here, τ represents a time delay with respect to the clock signal C (t) used on the side of the SS modulator, and Rp (τ) and Pn (t) in the equation (6) respectively represent an autocorrelation component and a diffusion component. . Both Rp (τ) and Pn (t) are expressed by very complicated mathematical formulas, but the correlation component Rp (τ) is Rp (τ) <1,
Since the spread component Pn (t) is band-limited by the BPF 16, the description of specific mathematical expressions is omitted here.

【0015】更に、BPF16において振幅変動成分を
除き、角度復調回路17により瞬時周波数の検出{微分
による逆拡散復調出力Dss(t) の検波}を行うと、その
出力Dss'(t)は、
When the BPF 16 removes the amplitude fluctuation component and the angle demodulation circuit 17 detects the instantaneous frequency (detection of the despread demodulation output Dss (t) by differentiation), the output Dss' (t) is

【0016】[0016]

【数7】 …………………… (7) となる。但し、振幅成分(振幅の絶対値)や自己相関成
分を1としている。実際の角度復調出力はキャリヤ成分
が除去されたものとして示される。従って、角度復調出
力Ds(t)は、
[Equation 7] …………………… (7). However, the amplitude component (absolute value of amplitude) and the autocorrelation component are set to 1. The actual angle demodulated output is shown with the carrier component removed. Therefore, the angle demodulation output Ds (t) is

【0017】[0017]

【数8】 …………………… (8) となる。なお、式中の「' 」は微分記号である。この出
力Ds(t)は更に、LPF18によって情報S(t) の周波
数帯域より高域の周波数成分を除去されて、次のような
復調出力D(t) となって出力端子Out より出力される。
[Equation 8] …………………… (8). In addition, "'" in a formula is a differential symbol. This output Ds (t) is further filtered by the LPF 18 to remove frequency components higher than the frequency band of the information S (t), and output as the following demodulation output D (t) from the output terminal Out. .

【0018】[0018]

【数9】 …………………… (9) ところで、拡散符号発生回路5,15で生成される拡散
符号の成分は、その拡散符号の周期(拡散符号長)をL
とすると、その逆数である周波数(繰返し周波数)1/L
は、情報S(t) の周波数帯域より一般に充分高いのでL
PF18によって除去されるが、情報S(t) と周波数帯
域が共通な復調干渉波成分は除去されずに残留してい
る。
[Equation 9] …………………… (9) By the way, the spreading code components generated by the spreading code generation circuits 5 and 15 have a cycle (spreading code length) of the spreading code of L.
Then, the reciprocal frequency (repetition frequency) 1 / L
Is generally sufficiently higher than the frequency band of information S (t), so L
Although removed by the PF 18, the demodulation interference wave component having the same frequency band as the information S (t) remains without being removed.

【0019】[0019]

【発明が解決しようとする課題】上記従来のSS復調装
置においては、復調情報の周波数帯域内に存在する干渉
波は、復調出力信号中に復調干渉波として上記の如く残
留するため、情報S(t)がアナログ信号の場合はSN比
の劣化となり、データ等のデジタル信号の場合はデータ
誤りを引起し易いという欠点がある。これらの問題は原
理的に生じるもので、その問題の程度は周知の如くSS
通信におけるプロセス利得に対応している。従って、キ
ャリヤ周波数帯域内で受ける干渉の程度や干渉波の種類
に関係なく、充分な干渉除去を行なえるSS復調装置の
出現が待望されていた。
In the conventional SS demodulator described above, the interference wave existing in the frequency band of the demodulation information remains as a demodulation interference wave in the demodulation output signal as described above. If t) is an analog signal, the SN ratio deteriorates, and if it is a digital signal such as data, there is a drawback that a data error is likely to occur. These problems occur in principle, and as is well known, the extent of the problems is SS.
It corresponds to the process gain in communication. Therefore, the appearance of an SS demodulator capable of performing sufficient interference removal regardless of the degree of interference received in the carrier frequency band and the type of interference wave has been desired.

【0020】[0020]

【課題を解決するための手段】本発明のスペクトル拡散
復調装置は、クロック信号を入力して周期Lの拡散符号
を生成する拡散符号発生回路と、得られた拡散符号によ
りスペクトル拡散変調波を逆拡散復調する逆拡散復調回
路と、逆拡散復調により得られた角度変調波を復調して
元の情報信号を得る角度復調回路と、この角度復調出力
に含まれる干渉波成分を抽出するBPFと、クロック信
号の周波数を1/Lに分周する分周器と、この分周出力と
上記BPFの出力とを加算する加算回路と、この加算出
力を包絡線検波する包絡線検出回路と、包絡線検波出力
中より必要な周波数成分を抽出するLPFと、この低域
濾波出力と上記角度復調出力との減算を行なう引算回路
とを備えて構成することにより、上記課題を解決したも
のである。
A spread spectrum demodulating device of the present invention is a spread code generating circuit for inputting a clock signal to generate a spread code of period L, and a spread spectrum modulated wave is inversed by the obtained spread code. A despread demodulation circuit for spread demodulation, an angle demodulation circuit for demodulating an angle modulated wave obtained by despread demodulation to obtain an original information signal, and a BPF for extracting an interference wave component included in the angle demodulated output, A divider that divides the frequency of the clock signal into 1 / L, an adder circuit that adds the divided output and the output of the BPF, an envelope detection circuit that envelope-detects the added output, and an envelope curve. The above problem is solved by configuring the LPF that extracts a necessary frequency component from the detected output and a subtraction circuit that subtracts the low-pass filtered output and the angle demodulated output.

【0021】[0021]

【実施例】図2等を参照し乍ら、本発明のSS復調装置
の一実施例について説明する。図2は本発明のSS復調
装置1のブロック系統図であり、この図において、2
0,23はBPF(各通過特性は後述の通り)、21は
加算回路、22は分周器、24は包絡線(Env)検出回
路、25はLPF、26は引算回路である。その他の、
受信アンテナ11,BPF12,16;逆拡散復調回路
13,拡散符号発生回路15,角度復調回路17,LP
F18等は、図1(B) に示した従来装置と同一構成なの
で、同一符号を付してその詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the SS demodulator of the present invention will be described with reference to FIG. FIG. 2 is a block system diagram of the SS demodulation device 1 of the present invention. In FIG.
Reference numerals 0 and 23 are BPFs (each pass characteristic is described later), 21 is an adder circuit, 22 is a frequency divider, 24 is an envelope (Env) detection circuit, 25 is an LPF, and 26 is a subtraction circuit. Other,
Receiving antenna 11, BPF 12, 16; despreading demodulation circuit 13, spreading code generation circuit 15, angle demodulation circuit 17, LP
Since F18 and the like have the same configuration as the conventional device shown in FIG. 1B, the same reference numerals are given and detailed description thereof is omitted.

【0022】かかる構成の本発明のSS復調装置の動作
原理について、図3の信号波形図を併せ参照し乍ら説明
する。なお、角度復調回路17の出力Ds(t)は前記 (8)
式に、LPF18の出力は (9)式に、夫々示したものと
同じであるが、(8) 式においてPn(t)S(t) はレベル的
に小さくなるので省略してかまわない。従って、角度復
調出力Ds(t)は、
The principle of operation of the SS demodulation device of the present invention having such a configuration will be described with reference to the signal waveform diagram of FIG. The output Ds (t) of the angle demodulation circuit 17 is (8)
In the equation, the output of the LPF 18 is the same as that shown in the equation (9), respectively, but in the equation (8), Pn (t) S (t) becomes small in level and may be omitted. Therefore, the angle demodulation output Ds (t) is

【0023】[0023]

【数10】 ………………………… (10) 但し、Am(t)=Pn'(t)-Pn(t)(ωn0−ω0 ) となる。拡散成分Pn'(t) 及びPn(t)は、拡散符号の周
期Lの逆数である1/L付近の周波数帯域のみを伝送する
BPF20を通すと、上記(10)式の右辺第1項及び第2
項の低域周波数成分が除去されて、拡散干渉波成分Am
(t)の帯域制限された干渉成分が得られ、拡散成分Pn
(t)の中の連続した周波数成分が、干渉波の成分(ωn0
−ω0 ){図3(A)参照}により振幅変調を受けた信号と
なる。
[Equation 10] ………………………… (10) However, Am (t) = Pn ′ (t) −Pn (t) (ω n0 −ω 0 ). Spreading components Pn '(t) and Pn (t) pass through BPF 20 that transmits only a frequency band near 1 / L, which is the reciprocal of period L of the spreading code, and the first term on the right-hand side of equation (10) and Second
The low frequency component of the term is removed, and the diffuse interference component Am
A band-limited interference component of (t) is obtained, and the spread component Pn
The continuous frequency components in (t) are the components of the interference wave (ω n0
The signal is amplitude-modulated by −ω 0 ) {see FIG. 3 (A)}.

【0024】一方、入力端子In3 より供給されるクロッ
ク信号C(t−τ)を、拡散符号周期Lの逆数である1/
Lの分周数を持つ分周器22にも供給して分周クロック
信号を得、更にこの分周クロック信号を、その基本周波
数成分のみを通過するBPF23を伝送させることによ
り、拡散符号長の逆数と同じ周波数の信号,即ちキャリ
ヤ信号を生成している。得られたキャリヤ信号を上記B
PF20出力である振幅変調波(振幅変調を受けた信
号)共々加算回路21に供給して加算(合成)し、図3
(B)に示すような波形の信号を得る。これにより、BP
F20からの振幅変調波は、干渉波の振幅が大きくて変
調度が深くなる(過変調になる)場合でも、振幅変調波
として波形崩れが生じないようにしている。
On the other hand, the clock signal C (t-τ) supplied from the input terminal In3 is 1 / which is the reciprocal of the spread code period L.
It is also supplied to the frequency divider 22 having a frequency division number of L to obtain a frequency-divided clock signal, and further the frequency-divided clock signal is transmitted to the BPF 23 that passes only the fundamental frequency component of the frequency-divided clock signal. A signal having the same frequency as the reciprocal, that is, a carrier signal is generated. The obtained carrier signal is referred to as B above.
The amplitude-modulated wave that is the output of the PF 20 (the signal that has been subjected to the amplitude modulation) is supplied to the adder circuit 21 and added (synthesized),
A signal with a waveform as shown in (B) is obtained. As a result, BP
Even if the amplitude of the interference wave is large and the degree of modulation is deep (overmodulation), the amplitude-modulated wave from F20 is prevented from being distorted as an amplitude-modulated wave.

【0025】かかる加算回路21の出力(キャリヤ信号
が加算された振幅変調波)を、包絡線検出回路24に供
給してAM検波することにより図3(C)の如き波形の出
力信号を得、次にLPF25にて高い周波数成分を除去
し、更に図示しないコンデンサ等により直流分をカット
して、図3(D)に示すような波形の信号を生成してい
る。この信号はとりもなおさず図3(A)に示した干渉波
成分(ωn0−ω0 )と同じものであり、これを前記引算
回路26に供給することにより、前記LPF18の出力
D(t){第(10)式参照}に含まれる干渉波成分を打消す
(相殺する)。これにより、出力端子Out からは干渉波
成分が充分抑圧された出力が得られる。即ち、S/Nの
良好な情報S(t) が出力されるわけである。
The output of the adder circuit 21 (amplitude modulated wave to which the carrier signal is added) is supplied to the envelope detection circuit 24 and AM detection is performed to obtain an output signal having a waveform as shown in FIG. 3C. Next, the LPF 25 removes high frequency components, and the direct current component is cut by a capacitor or the like (not shown) to generate a signal having a waveform as shown in FIG. 3 (D). This signal is, of course, the same as the interference wave component (ω n0 −ω 0 ) shown in FIG. 3 (A). By supplying this to the subtraction circuit 26, the output D ( t) Cancel (cancel) the interference wave component included in {see Eq. (10)}. As a result, an output in which the interference wave component is sufficiently suppressed can be obtained from the output terminal Out. That is, the information S (t) with good S / N is output.

【0026】[0026]

【発明の効果】叙上の如く、本発明のSS復調装置によ
れば、復調情報周波数帯域内に存在する(落込む)干渉
波成分と、拡散符号の周期Lの逆数(1/L)の周波数に
より変調されている干渉波成分とを分離検出し、引算処
理により復調情報周波数帯域内に存在する干渉波成分を
相殺して、充分干渉抑圧した復調情報を出力している。
これにより、情報信号がアナログ信号の場合はS/Nが
良好となり、情報信号がデータ等のデジタル信号の場合
はデータ誤りを大幅に減らすことができるという優れた
特長を有する。
As described above, according to the SS demodulator of the present invention, the interference wave component existing (dropped) in the demodulation information frequency band and the reciprocal (1 / L) of the period L of the spread code are calculated. The interference wave component modulated by the frequency is separated and detected, the interference wave component existing in the demodulation information frequency band is canceled by the subtraction process, and the demodulation information in which the interference is sufficiently suppressed is output.
As a result, the S / N ratio is good when the information signal is an analog signal, and the data error can be greatly reduced when the information signal is a digital signal such as data.

【図面の簡単な説明】[Brief description of drawings]

【図1】SS通信におけるSS変調装置及び従来のSS
復調装置を示すブロック図。
FIG. 1 is an SS modulator in SS communication and a conventional SS.
The block diagram which shows a demodulator.

【図2】本発明のSS復調装置のブロック図。FIG. 2 is a block diagram of an SS demodulation device of the present invention.

【図3】本発明装置の動作説明用信号波形図(タイミン
グチャート)。
FIG. 3 is a signal waveform diagram (timing chart) for explaining the operation of the device of the present invention.

【符号の説明】[Explanation of symbols]

1…SS復調装置 2…角度変調回路 3…拡散変調回路 5,15…拡散符号発生回路 6,12,16,20,23…BPF(帯域濾波器) 7,11…アンテナ 13…逆拡散復調回路 17…角度復調回路 18,25…LPF(低域濾波器) 21…加算回路 22…分周器 24…包絡線検出回路 26…引算回路 1 ... SS demodulation device 2 ... angle modulation circuit 3 ... spreading modulation circuit 5,15 ... spreading code generation circuit 6,12,16,20,23 ... BPF (bandpass filter) 7,11 ... antenna 13 ... despreading demodulation circuit 17 ... Angle demodulation circuit 18, 25 ... LPF (low-pass filter) 21 ... Addition circuit 22 ... Frequency divider 24 ... Envelope detection circuit 26 ... Subtraction circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】スペクトル拡散変調装置側で情報信号を角
度変調し、更に周期Lの拡散符号で拡散変調して出力さ
れたスペクトル拡散変調波を、干渉波が混入し得る所定
の伝送路を介して入力し、元の情報信号を復調するスペ
クトル拡散復調装置において、 クロック信号を入力し
て周期Lの拡散符号を生成する拡散符号発生回路と、得
られた拡散符号により上記スペクトル拡散変調波を逆拡
散復調する逆拡散復調回路と、逆拡散復調により得られ
た角度変調波を復調して元の情報信号を得る角度復調回
路と、該角度復調回路の出力に含まれる干渉波成分を抽
出する帯域濾波器と、上記クロック信号の周波数を1/L
(L:拡散の周期)に分周する分周器と、該分周器の出
力と上記帯域濾波器の出力とを加算する加算回路と、該
加算回路の出力を包絡線検波する包絡線検出回路と、該
包絡線検出回路の出力より必要な周波数成分を抽出する
低域濾波器と、該低域濾波器の出力と上記角度復調回路
の出力との減算を行なう引算回路とを備えたスペクトル
拡散復調装置。
1. A spread spectrum modulated wave output by angularly modulating an information signal on the side of a spread spectrum modulator and further spread-modulated with a spread code having a period L via a predetermined transmission line into which an interference wave can be mixed. In a spread spectrum demodulation device for inputting a clock signal and generating a spread code of a period L, a spread code demodulation circuit for inputting a clock signal and generating a spread code of the period L, and the spread spectrum modulated wave is inverted by the obtained spread code. Despread demodulation circuit for spread demodulation, angle demodulation circuit for demodulating an angle modulated wave obtained by despread demodulation to obtain the original information signal, and band for extracting an interference wave component included in the output of the angle demodulation circuit The frequency of the above clock signal is 1 / L
(L: spreading period), a frequency divider, an adder circuit for adding the output of the frequency divider and the output of the bandpass filter, and an envelope detection for performing envelope detection of the output of the adder circuit. A circuit, a low-pass filter that extracts a necessary frequency component from the output of the envelope detection circuit, and a subtraction circuit that subtracts the output of the low-pass filter and the output of the angle demodulation circuit. Spread spectrum demodulator.
JP14980593A 1993-05-31 1993-05-31 Spread spectrum demodulator Expired - Lifetime JP2679576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14980593A JP2679576B2 (en) 1993-05-31 1993-05-31 Spread spectrum demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14980593A JP2679576B2 (en) 1993-05-31 1993-05-31 Spread spectrum demodulator

Publications (2)

Publication Number Publication Date
JPH06338871A true JPH06338871A (en) 1994-12-06
JP2679576B2 JP2679576B2 (en) 1997-11-19

Family

ID=15483104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14980593A Expired - Lifetime JP2679576B2 (en) 1993-05-31 1993-05-31 Spread spectrum demodulator

Country Status (1)

Country Link
JP (1) JP2679576B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032348A1 (en) * 2002-08-28 2004-04-15 Agency For Science, Technlogy And Research Method for dynamic range reduction in a wideband receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032348A1 (en) * 2002-08-28 2004-04-15 Agency For Science, Technlogy And Research Method for dynamic range reduction in a wideband receiver

Also Published As

Publication number Publication date
JP2679576B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US4922506A (en) Compensating for distortion in a communication channel
JP3814688B2 (en) Transmission method and apparatus for carrying out the method
JPH09181648A (en) Synchronous duplex channel qpsk modem in cdma system and modulation and demodulation method therefor
JP4343116B2 (en) Multimode receiver
US5852636A (en) Method of and apparatus for modulation of FSK carrier in a very narrow band
JP2679576B2 (en) Spread spectrum demodulator
JP3197581B2 (en) Spread spectrum receiver, spread spectrum transmitter, and spread spectrum communication system
JPS5821462B2 (en) Reception method with other station signal removal effect
JP2556141B2 (en) Spread spectrum communication system
JPH0779176A (en) Spread spectrum radio equipment
KR20020050241A (en) Spread spectrum receiver
RU2188504C1 (en) Data transmitting and receiving equipment
RU2205509C2 (en) Digital and analog data transmission equipment
JP2650553B2 (en) Spread spectrum demodulator
JP3310545B2 (en) Spread spectrum demodulator and spread spectrum communication apparatus using the same
JPH04339433A (en) Spectrum diffusing demodulator
JP2540962B2 (en) Spread spectrum wireless communication equipment
JPH04828A (en) Spread spectrum modulating/demodulating system
JP3686817B2 (en) Code division multiple access communication method
RU2204206C2 (en) Transceiving device
JPH0378336A (en) Spread spectrum communication system
JPH0738467A (en) Transmitter-receiver
JPH04365237A (en) Spread spectrum demodulator
JPH02154545A (en) Spread spectrum demodulation system
JPH11112463A (en) Spread spectrum communication equipment