JPH0633810A - Exhaust system protection control method for engine and device thereof - Google Patents

Exhaust system protection control method for engine and device thereof

Info

Publication number
JPH0633810A
JPH0633810A JP4189697A JP18969792A JPH0633810A JP H0633810 A JPH0633810 A JP H0633810A JP 4189697 A JP4189697 A JP 4189697A JP 18969792 A JP18969792 A JP 18969792A JP H0633810 A JPH0633810 A JP H0633810A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
gas temperature
exhaust system
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4189697A
Other languages
Japanese (ja)
Inventor
Makoto Shimizu
良 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP4189697A priority Critical patent/JPH0633810A/en
Publication of JPH0633810A publication Critical patent/JPH0633810A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation

Abstract

PURPOSE:To control the temperature of an exhaust system properly with no waste without deteriorating reliability of the exhaust system by estimating the temperature of the exhaust system, and not carrying out reduction control of the exhaust system temperature till the estimated value exceeds a set value. CONSTITUTION:An exhaust gas temperature is estimated on the basis of various kinds of parameters showing various engine data is and operating condition thereof (Step 60 and Step 80), and the wall temperature of an exhaust manifold is estimated on the basis of the estimated exhaust gas temperature and heat transfer element information of an exhaust manifold (Step 170). It is judged whether the estimated wall temperature of the exhaust manifold exceeds a prescribed allowable limit value or not (Step 200), and when it does not exceed, the limit valve an engine is F/B operated (Step 210), and when it exceeds the limit value the engine is operated in enrich condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの排気系保護
制御方法およびその装置に関する。さらに詳しくいえ
ば、エンジンの排気系のオーバーヒートを防止する新規
な制御方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust system protection control method and apparatus. More specifically, it relates to a novel control method and apparatus for preventing overheating of an exhaust system of an engine.

【0002】[0002]

【従来の技術】図8は、従来から一般的に採用されてい
る自動車用エンジンの電子制御装置の概略構成図であ
る。同図に示すように、エンジン2の吸気系4に設けら
れたインジェクタ6から噴射供給される燃料量はマイク
ロコンピュータでなるコントローラ8によって制御され
る。良く知られているようにコントローラ8はエアーフ
ローメーター10で検知した吸入空気量と回転センサ1
2で検知したエンジン回転数とに基づいて燃料供給量の
基本値を演算するとともに、水温センサ14,ノックセ
ンサ16,スロットル開度センサ18,吸気温センサ2
0,スロットル全開センサ22,空燃比センサ26等の
各種センサ類からの情報信号に基づいて、暖機増量補
正、始動後増量補正、加速増量補正、高負荷増量補正、
吸気温補正、空燃比のフイードバック補正等の各種補正
をエンジン2の運転状態に応じて適宜実行し、最終的な
燃料供給量を決定する。
2. Description of the Related Art FIG. 8 is a schematic block diagram of an electronic control unit for an automobile engine that has been generally adopted conventionally. As shown in the figure, the amount of fuel injected and supplied from the injector 6 provided in the intake system 4 of the engine 2 is controlled by the controller 8 which is a microcomputer. As is well known, the controller 8 is the intake air amount detected by the air flow meter 10 and the rotation sensor 1.
The basic value of the fuel supply amount is calculated based on the engine speed detected in 2 and the water temperature sensor 14, knock sensor 16, throttle opening sensor 18, intake air temperature sensor 2
0, throttle fully open sensor 22, air-fuel ratio sensor 26, and the like based on information signals from various sensors, warm-up increase correction, post-start increase correction, acceleration increase correction, high load increase correction,
Various corrections such as intake air temperature correction and air-fuel ratio feedback correction are appropriately executed according to the operating state of the engine 2 to determine the final fuel supply amount.

【0003】ここで、上記空燃比のフイードバック(F
/B)補正は、図6の空燃比制御マップに示すようにエ
ンジン回転数および負荷が所定のF/Bゾーン内にある
等、その実行条件が成立している場合に、排気系24に
設けられたO2 センサ26aなどの空燃比センサ26の
出力に基づいて、当該空燃比センサ26で検出した空燃
比値が理論空燃比値14.7の近傍に収束するよう燃料
供給量を補正する。
Here, the feedback (F
/ B) correction is provided in the exhaust system 24 when the execution conditions such as the engine speed and the load are within a predetermined F / B zone as shown in the air-fuel ratio control map of FIG. 6 are satisfied. Based on the output of the air-fuel ratio sensor 26 such as the O 2 sensor 26a, the fuel supply amount is corrected so that the air-fuel ratio value detected by the air-fuel ratio sensor 26 converges near the theoretical air-fuel ratio value 14.7.

【0004】また、エンジン回転数および負荷が上記F
/Bゾーンを外れて排気ガス温度が高温となるエンリッ
チゾーン内に入った場合には、図7のタイムチャートに
示すように、排気マニホールド24a等の排気系24の
温度が許容限界値Ta を超えてオーバーヒートしないよ
うに、例えば燃料供給量を高負荷増量補正してその空燃
比を理論空燃比値14.7よりもリッチ化させる等し
て、その排気ガス温度を低下させるようにしている。
Further, the engine speed and the load are F above.
When the exhaust gas temperature goes out of the / B zone and enters the enriched zone where the exhaust gas temperature becomes high, as shown in the time chart of FIG. 7, the temperature of the exhaust system 24 such as the exhaust manifold 24a falls below the allowable limit value T a . The exhaust gas temperature is lowered by, for example, correcting the fuel supply amount by increasing the high load so that the air-fuel ratio is made richer than the theoretical air-fuel ratio value of 14.7 so as not to overheat.

【0005】しかしながら、前記のようにエンジン2の
回転数及び負荷が所定のエンリッチゾーン内に入ると同
時に、排気ガス温度の低下制御を開始するようにしてい
ると、排気系24の壁温が実際にはまだその許容限界値
a に達する以前から時期尚早に排気ガス温度の低下制
御を開始することになるので、排気系24の壁温が前記
許容限界値Ta まで上昇する間(時刻t1 〜t3 )、無
駄にエンジン性能を損なわせてしまうことになり、特に
前述のように排気ガス温度の低下を燃料増量によって行
う場合には、これが燃費を悪化させる一因となってい
た。
However, as described above, if the engine speed and the load of the engine 2 enter the predetermined enriched zone and the exhaust gas temperature lowering control is started at the same time, the wall temperature of the exhaust system 24 is actually reduced. since still it will initiate the reduction control of the previous from prematurely exhaust gas temperature reaching the allowable limit value T a in, while the wall temperature of the exhaust system 24 is increased to the allowable limit value T a (time t 1 to t 3 ), the engine performance is unnecessarily impaired, and this is one of the causes of deteriorating the fuel economy, especially when the exhaust gas temperature is lowered by increasing the fuel amount as described above.

【0006】そこで、この問題点を改善し得るものとし
て、エンジン2の回転数及び負荷が所定のエンリッチゾ
ーン内に入った時点から所定のディレー時間の経過後に
燃料増量による排気温度低下制御を開始させるように
し、かつ前記ディレー時間を排気ガス温度の高低に応じ
て変えることにより、燃費の悪化を防ぎつつ排気系24
の保護を図るようにした空燃比制御装置が特開昭60−
43144号公報に提案されている。
In order to solve this problem, therefore, the exhaust temperature lowering control is started by increasing the fuel amount after a lapse of a predetermined delay time from the time when the engine speed and the load enter the predetermined enrichment zone. In addition, by changing the delay time according to the level of the exhaust gas temperature, the exhaust system 24 can be prevented while preventing deterioration of fuel efficiency.
Japanese Patent Laid-Open No. 60-
It is proposed in Japanese Patent No. 43144.

【0007】[0007]

【発明が解決しようとする課題】ところが、保護対象で
ある実際の排気系温度は排気ガス温度の変化に対して必
ず応答遅れを生じるので、当該提案のものにあっても、
燃料増量による排気ガス温度低下制御の開始時期を決定
づける前記ディレイ時間の設定を、排気ガス温度の高低
に応じて変えるようにしている限り、その実際の排気系
温度の変化に即した適切な制御を十分には行い得ず、改
善の余地があった。
However, since the actual exhaust system temperature to be protected always causes a delay in response to changes in the exhaust gas temperature, even in the case of the proposal,
As long as the setting of the delay time that determines the start timing of the exhaust gas temperature lowering control by increasing the fuel amount is changed according to the height of the exhaust gas temperature, appropriate control in accordance with the actual change of the exhaust system temperature We couldn't do it enough and there was room for improvement.

【0008】なお、保護対象である排気系温度を直接検
知し、それが許容限界値を超えたときに排気ガス温度の
低下制御を行う方法では、センサの検出遅れがあるた
め、排気ガス温度が極めて高く排気系温度の上昇が急な
場合におけるオーバーヒートの発生に対処するために
は、前記許容限界温度を低く設定せざるを得ないが、こ
のように許容限界温度を低く設定すると、逆に排気系温
度の上昇が緩やかである場合に、不必要な排気ガス温度
の低下制御を行ってしまうこととなる。
In the method of directly detecting the temperature of the exhaust system to be protected and controlling the decrease of the exhaust gas temperature when the exhaust system temperature exceeds the allowable limit value, there is a detection delay of the sensor, so the exhaust gas temperature is In order to deal with the occurrence of overheat when the temperature of the exhaust system is extremely high and suddenly rises, it is unavoidable to set the allowable limit temperature low.However, if the allowable limit temperature is set low in this way, exhaust gas will be adversely affected. If the system temperature rises slowly, unnecessary exhaust gas temperature reduction control will be performed.

【0009】この発明は前述した従来の問題点に鑑みて
なされたものであり、その目的は、排気系の熱的保護を
確実に図ってその信頼性を確保しつつ、可及的に無駄の
ない排気ガス温度低下制御を行い得るエンジンの排気系
保護制御方法およびその装置を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to ensure thermal protection of an exhaust system and ensure its reliability, while minimizing waste. (EN) An exhaust system protection control method for an engine and a device therefor capable of controlling exhaust gas temperature reduction.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のエンジンの排気系保護制御方法は、エン
ジンの諸元やその運転状態を示す各種パラメーターに基
づいて排気ガス温度を予測し、その予測された排気ガス
温度と排気系伝熱要素情報とに基づいて排気系温度を予
測し、その予測された排気系温度が所定の許容限界値以
上の時、排気ガス温度を低下方向に制御することを特徴
とする。
In order to achieve the above object, an engine exhaust system protection control method of the present invention predicts an exhaust gas temperature based on various parameters indicating engine specifications and operating conditions. Then, the exhaust system temperature is predicted based on the predicted exhaust gas temperature and the exhaust system heat transfer element information, and when the predicted exhaust system temperature is equal to or higher than a predetermined allowable limit value, the exhaust gas temperature decreases. It is characterized by controlling to.

【0011】また、上記の目的を達成するために、本発
明のエンジンの排気系保護制御装置は、エンジンの諸元
やその運転状態を示す各種パラメーターに基づいて排気
ガス温度を予測する排気ガス温度予測手段と、この予測
された排気ガス温度と排気系伝熱要素情報とに基づいて
排気系温度を予測する排気系温度予測手段と、予測され
た排気系温度が許容限界値以上の時、排気ガス温度を低
下方向に制御する排気ガス温度低下制御手段とを備える
ことを特徴とする。
Further, in order to achieve the above object, the exhaust system protection control device for an engine according to the present invention predicts the exhaust gas temperature based on various parameters indicating engine specifications and operating conditions. Prediction means, an exhaust system temperature prediction means for predicting the exhaust system temperature based on the predicted exhaust gas temperature and the exhaust system heat transfer element information, and when the predicted exhaust system temperature is equal to or higher than the allowable limit value, the exhaust gas An exhaust gas temperature decrease control means for controlling the gas temperature in a decreasing direction is provided.

【0012】ここで、前記排気ガス温度低下制御手段に
は燃料増量手段を採用することが望ましい。
Here, it is desirable to adopt a fuel increasing means as the exhaust gas temperature decrease control means.

【0013】さらに、上記の目的を達成するために、別
構成として本発明の排気系保護制御装置は、異種燃料判
定手段と、異種燃料判定手段からの出力値とエンジンの
諸元やその運転状態を示す各種パラメーターとに基づい
て排気ガス温度を予測する排気ガス温度予測手段と、予
測された排気ガス温度と排気系伝熱要素情報とに基づい
て排気系温度を予測する排気系温度予測手段と、予測さ
れた排気系温度が許容限界値以上の時、排気ガス温度を
低下方向に制御する排気ガス温度低下制御手段と、を備
えることを特徴とする。
Further, in order to achieve the above-mentioned object, as another constitution, an exhaust system protection control device of the present invention comprises a different fuel judging means, an output value from the different fuel judging means, an engine specification and its operating condition. Exhaust gas temperature predicting means for predicting exhaust gas temperature based on various parameters indicating, and exhaust system temperature predicting means for predicting exhaust system temperature based on predicted exhaust gas temperature and exhaust system heat transfer element information, An exhaust gas temperature decrease control means for controlling the exhaust gas temperature in a decreasing direction when the predicted exhaust system temperature is equal to or higher than an allowable limit value.

【0014】[0014]

【作用】上記構成の本発明によれば、エンジンの諸元
(圧縮比,S/B比(シリンダ径/ボア径),オーバー
ラップ等)やその運転状態を示す各種パラメーター(エ
ンジン回転数,空燃比,体積効率,点火時期等)に基づ
いて排気ガス温度予測手段で排気ガス温度を予測し,そ
の予測された排気ガス温度と排気系伝熱要素情報(熱容
量,熱抵抗、排気管表面積等)とに基づいて排気系温度
予測手段で更に排気系温度を予測し、この排気系温度の
予測値が所定の許容限界値を超えた場合に、排気ガス温
度低下制御手段が排気ガス温度を低下方向に制御するの
で、排気系の保護を確実に図り得、しかも当該排気系が
オーバーヒートを起こすほどの高温に達する以前に排気
ガス温度の低下制御が不必要に実行されることがなく、
エンジン性能が無駄に損なわれることがない。
According to the present invention having the above-described structure, various parameters (engine speed, empty speed, etc.) indicating the specifications of the engine (compression ratio, S / B ratio (cylinder diameter / bore diameter), overlap, etc.) and their operating states are provided. The exhaust gas temperature predicting means predicts the exhaust gas temperature based on the fuel ratio, volume efficiency, ignition timing, etc., and the predicted exhaust gas temperature and exhaust system heat transfer element information (heat capacity, thermal resistance, exhaust pipe surface area, etc.) The exhaust system temperature predicting means further predicts the exhaust system temperature based on the above, and when the predicted value of the exhaust system temperature exceeds a predetermined allowable limit value, the exhaust gas temperature decrease control means decreases the exhaust gas temperature. Since the exhaust system can be reliably protected, the exhaust gas temperature reduction control is not unnecessarily executed before the exhaust system reaches a temperature high enough to cause overheating.
The engine performance will not be wasted.

【0015】そして、前記排気ガス温度低下制御手段に
燃料増量制御手段を採用した場合には、燃料増量による
排気ガス温度低下制御が不必要に行われることがないの
で、燃費の低下を可及的に抑えつつ、排気系の保護を確
実に行うことができる。
Further, when the fuel amount increase control means is adopted as the exhaust gas temperature decrease control means, the exhaust gas temperature decrease control by the fuel increase is not unnecessarily performed, so that the fuel consumption can be reduced as much as possible. It is possible to reliably protect the exhaust system while suppressing the above.

【0016】更に、異種燃料の判定手段を付加して使用
燃料の種別を判定し、この判定結果の情報も加味して排
気ガス温度を予測するようにすれば、例えばハイオク仕
様のエンジンに誤ってレギュラーガソリンを混入させて
しまったような場合にも、適切な温度制御を行うことが
できる。
Further, if a means for determining different types of fuel is added to determine the type of fuel used, and the exhaust gas temperature is predicted by taking into consideration the information of this determination result, for example, a high-octane engine will be mistaken. Even if regular gasoline is mixed in, appropriate temperature control can be performed.

【0017】[0017]

【実施例】以下に、本発明の好適な一実施例を添付図面
に基づき詳述する。本発明のエンジンの排気系温度制御
装置の基本構成は、前述した図8の従来例の電子制御装
置と共通するものであるためその詳細な説明は省略す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings. The basic structure of the engine exhaust system temperature control device of the present invention is the same as that of the conventional electronic control device of FIG. 8 described above, and a detailed description thereof will be omitted.

【0018】本実施例と従来例とが相違する点は以下の
通りである。
The difference between this embodiment and the conventional example is as follows.

【0019】従来技術では、エンジン2の回転数及び負
荷が所定のエンリッチゾーン内に入った時点から所定の
ディレー時間の経過後に燃料の高負荷増量補正による排
気温度低下制御を開始し、かつそのディレー時間を排気
ガス温度の高低に応じて変えるようにしていた。
In the prior art, the exhaust temperature lowering control by the high load increase correction of the fuel is started after the elapse of a predetermined delay time from the time when the engine speed and the load enter the predetermined enriched zone, and the delay is performed. The time was changed according to the level of the exhaust gas temperature.

【0020】これに対し本実施例では、予めコントロー
ラのROMに記憶させたエンジン2の諸元(圧縮比,S
/B比,オーバーラップ等)や各種センサ10〜22,
26で検出したエンジン2の運転状態を示す各種パラメ
ーター(エンジン回転数,空燃比,体積効率,点火時期
等)に基づいて排気ガス温度を予測し、更にノックセン
サ16で検知したノッキング発生回数から使用燃料がレ
ギュラーガソリンであるかあるいはハイオクガソリンで
あるかを判定し、この判定結果により排気ガス温度の予
測値を補正する。そして、補正された排気ガス温度の予
測値とやはり予めROMに記憶させた排気系伝熱要素情
報(熱容量,熱抵抗,排気管表面積等)とに基づいて、
更に排気系をなす排気マニホールド24aの壁温を予測
し、この予測された排気マニホールド24aの壁温が許
容限界値Ta を超えるまでは、空燃比が理論空燃比値1
4.7の近傍に収束するようにエンジン2への燃料供給
量をF/B補正制御し、前記許容限界値Ta を超えたと
きにF/B補正制御を停止して高負荷増量補正を開始
し、エンジン2をエンリッチ運転させて排気ガス温度を
低下させるようにしている。
On the other hand, in the present embodiment, the specifications (compression ratio, S) of the engine 2 stored in the ROM of the controller in advance.
/ B ratio, overlap, etc.) and various sensors 10-22,
The exhaust gas temperature is predicted based on various parameters (engine speed, air-fuel ratio, volumetric efficiency, ignition timing, etc.) indicating the operating state of the engine 2 detected by 26, and is used from the number of knocking occurrences detected by the knock sensor 16. It is determined whether the fuel is regular gasoline or high-octane gasoline, and the predicted value of the exhaust gas temperature is corrected based on this determination result. Then, based on the corrected predicted value of the exhaust gas temperature and the exhaust system heat transfer element information (heat capacity, thermal resistance, exhaust pipe surface area, etc.) also stored in advance in the ROM,
It predicts further wall temperature of the exhaust manifold 24a which forms an exhaust system, until the wall temperature of the predicted exhaust manifold 24a exceeds the allowable limit value T a, the air-fuel ratio is the stoichiometric air-fuel ratio value 1
F / B correction control is performed on the fuel supply amount to the engine 2 so as to converge to the vicinity of 4.7, and when the allowable limit value T a is exceeded, the F / B correction control is stopped to perform high load increase correction. Starting, the engine 2 is made to perform an enriched operation to lower the exhaust gas temperature.

【0021】すなわち、図1は本発明に係る排気系保護
制御装置の制御概念図を示し、同図において30は排気
ガス温度予測手段で、この排気ガス温度予測手段30は
ノックセンサ16で検知したノッキングの発生回数から
判定されるハイオクガソリンあるいはレギュラーガソリ
ン等の燃料種別情報と、エンジン2の諸元情報(圧縮
比,S/B比,吸・排気弁のオーバーラップ等)やエン
ジン2の運転状態を示す各種パラメーター(体積効率,
エンジン回転数,空燃比,点火時期等)とに基づき、排
気ガス温度を予測するようになっている。また、同図に
おいて32は排気系温度予測手段で、予測された排気ガ
ス温度に基づき、排気マニホールド24aの壁温を予測
するようになっている。また、同図において排気ガス温
度低下制御手段34は比較手段36と判断手段38とか
らなり、比較手段36は前記予測した排気マニホールド
24aの壁温と予め設定されているその壁温の許容限界
値とを比較する。また、判断手段38は比較手段36の
比較結果に基づいてエンジン2の空燃比をF/B制御運
転するか、あるいはエンリッチ運転するかの判断を行
う。
That is, FIG. 1 is a control conceptual diagram of the exhaust system protection control device according to the present invention. In FIG. 1, 30 is an exhaust gas temperature predicting means, and this exhaust gas temperature predicting means 30 is detected by a knock sensor 16. Fuel type information such as high-octane gasoline or regular gasoline, which is determined from the number of times knocking has occurred, specification information of the engine 2 (compression ratio, S / B ratio, intake / exhaust valve overlap, etc.), and operating state of the engine 2. Parameters (volumetric efficiency,
The exhaust gas temperature is predicted based on the engine speed, air-fuel ratio, ignition timing, etc.). Further, in the figure, numeral 32 is an exhaust system temperature predicting means for predicting the wall temperature of the exhaust manifold 24a based on the predicted exhaust gas temperature. Further, in the figure, the exhaust gas temperature decrease control means 34 comprises a comparison means 36 and a judgment means 38, and the comparison means 36 is the above-mentioned predicted wall temperature of the exhaust manifold 24a and a preset allowable limit value of the wall temperature. Compare with. Further, the judging means 38 judges, based on the comparison result of the comparing means 36, whether the air-fuel ratio of the engine 2 should be F / B controlled or enriched.

【0022】図2は、本実施例の制御内容を示したフロ
ーチャートであり、起動されるとまず、制御ルーチンの
演算が一回目であることを示す初回演算フラグが1とさ
れる(S10)。次に、エンジン水温が所定値より高い
か否かを判定し、エンジン水温が所定値より低ければ
(S20,NO)、これが所定値以上になるまでこの判
定を繰り返し(S20)、エンジン水温が所定値より高
くなると(暖機終了、S20,YES)、エンジン2の
回転数や負荷形状等で定まる空燃比のF/B運転実行条
件を判定する(S30)。
FIG. 2 is a flow chart showing the control contents of this embodiment. When the control routine is started, the first calculation flag which indicates that the calculation of the control routine is the first time is set to 1 (S10). Next, it is determined whether the engine water temperature is higher than a predetermined value. If the engine water temperature is lower than the predetermined value (S20, NO), this determination is repeated until the engine water temperature is equal to or higher than the predetermined value (S20), and the engine water temperature is predetermined. When it becomes higher than the value (Warm-up completion, S20, YES), the F / B operation execution condition of the air-fuel ratio determined by the engine speed of the engine 2, load shape, etc. is determined (S30).

【0023】そして、前記F/B運転実行条件が成立し
ていれば(S30,YES)、目標空燃比を14.7と
してF/B補正制御を行う。一方、F/B運転条件が不
成立であれば(S30,NO)、空燃比値を所定のエン
リッチ目標値とし、エンリッチ運転を行う。
If the F / B operation execution condition is satisfied (S30, YES), the target air-fuel ratio is set to 14.7 and F / B correction control is performed. On the other hand, if the F / B operation condition is not satisfied (S30, NO), the air-fuel ratio value is set to a predetermined enrichment target value and the enrichment operation is performed.

【0024】つぎに、ハイオクガソリン使用時の排気ガ
ス温度予測モデルに基づいて排気ガス予測温度Tg を算
出する(S60)。ここで、排気ガス温度予測モデルの
算出式には、エンジンの諸元情報や運転状態を示す各種
パラメーター(S/B比,圧縮比,オーバーラップ,排
気管表面積,体積効率,およびエンジン回転数等)に基
づいて多変量解析を行うことによって得られた次式が採
用されている。
Next, the exhaust gas predicted temperature T g is calculated based on the exhaust gas temperature prediction model when using high-octane gasoline (S60). Here, in the calculation formula of the exhaust gas temperature prediction model, various parameters (S / B ratio, compression ratio, overlap, exhaust pipe surface area, volumetric efficiency, engine speed, etc.) indicating the specification information and operating state of the engine are used. ), The following equation obtained by performing multivariate analysis is adopted.

【0025】Tg =a1+(a2+a3*[体積効率]
+a4*[空燃費])*[エンジン回転数]+a5*
[体積効率]+a6*[空燃費]………(1) (ここで、a1〜a6はS/B比,圧縮比,オーバーラ
ップ,排気管表面積,体積効率,空燃比等から定まる定
数である。) なお、上記(1)式は実験によって得たデータから具体
的に次式のように変形して表し得る。但し、この例はM
BT(Minimum Spark Advance
for Best Torque)進角時の排気ガス温
度予測式である。
T g = a1 + (a2 + a3 * [volumetric efficiency]
+ A4 * [Air consumption]) * [Engine speed] + a5 *
[Volume efficiency] + a6 * [Air fuel economy] (1) (where a1 to a6 are constants determined from the S / B ratio, compression ratio, overlap, exhaust pipe surface area, volume efficiency, air-fuel ratio, etc. It should be noted that the above equation (1) can be specifically modified and expressed as the following equation from the data obtained by the experiment. However, this example is M
BT (Minimum Spark Advance)
for Best Torque) This is an exhaust gas temperature prediction formula when the lead angle is advanced.

【0026】Tg =(−79.917−0.02289
4*N)*[S/B比]+(3.097ー0.0002
88*N)*[体積効率]+(32.04−0.000
76*N)*[空燃比]+(−97.617+0.01
4526*N)*[圧縮比]+(5.564−0.00
0476*N)*[オーバーラップ]+(0.0000
4614−1.1*10-10 *N)*[排気管表面積]
+(867.17−0.03376*N)………(1)
´ (ここで、Nはエンジン回転数である。) つぎに、ノックセンサ16で検出したエンジン2のノッ
キング発生回数に基づいて、異種燃料判定条件が成立し
ているか否かの判定を行う(S70)。すなわち、ガソ
リン燃料がレギュラーであるか否かの燃料判定を行う。
そして、異種燃料判定条件が成立していれば(S70,
YES)、S60で求めたハイオク燃料使用時の排気ガ
ス温度予測値を補正して、適切な排気ガス予測温度を算
出し直す。この補正方法は前記排気ガス温度予測式にお
ける、項[体積効率]と定数項(867.17ー0.0
3376*N)との値を小さくして算出する。
T g = (-79.917-0.02289)
4 * N) * [S / B ratio] + (3.097-0.0002
88 * N) * [Volume efficiency] + (32.04-0.000
76 * N) * [air-fuel ratio] + (− 97.617 + 0.01
4526 * N) * [compression ratio] + (5.564-0.00
0476 * N) * [overlap] + (0.0000
4614-1.1 * 10 -10 * N) * [Exhaust pipe surface area]
+ (867.17-0.03376 * N) ... (1)
′ (Here, N is the engine speed.) Next, based on the knocking occurrence frequency of the engine 2 detected by the knock sensor 16, it is determined whether or not the different fuel determination condition is satisfied (S70). ). That is, the fuel determination is made as to whether or not the gasoline fuel is regular.
Then, if the different fuel determination condition is satisfied (S70,
YES), the exhaust gas temperature predicted value when using high-octane fuel obtained in S60 is corrected, and an appropriate exhaust gas predicted temperature is recalculated. This correction method uses the term [volumetric efficiency] and the constant term (867.17-0.0) in the exhaust gas temperature prediction equation.
3376 * N) and the value is reduced.

【0027】次に、異種燃料判定が初回の判定であるか
否かの判定を行い(S90)、異種燃料判定が初回であ
れば(S90,YES)、異種燃料判定初回フラグを1
とする(S100)。また、異種燃料判定が初回でなけ
れば(S90,NO)、異種燃料判定初回フラグはその
ままの数値とする。
Next, it is judged whether or not the different fuel judgment is the first judgment (S90), and if the different fuel judgment is the first judgment (S90, YES), the different fuel judgment first flag is set to 1.
(S100). If the different fuel determination is not the first time (S90, NO), the different fuel determination first time flag is left as it is.

【0028】次に、初回演算フラグが1であるか否かの
判定を行い(S110)、初回演算フラグが1であれば
(S110,YES),排気マニホールド24aの壁温
の値を排気ガス温度とし(S120)、初回演算フラッ
グを0とする(S130)。一方、初回演算フラグが1
でなければ(S110,NO),異種燃料判定初回フラ
グが1であるか否かの判定を行う(S140)。
Next, it is judged whether or not the initial operation flag is 1 (S110). If the initial operation flag is 1 (S110, YES), the value of the wall temperature of the exhaust manifold 24a is set to the exhaust gas temperature. (S120), and the initial operation flag is set to 0 (S130). On the other hand, the initial operation flag is 1
If not (S110, NO), it is determined whether or not the different fuel determination initial flag is 1 (S140).

【0029】そして、異種燃料判定初回フラグが1であ
れば(S140,YES),ノッキング発生回数より、
排気マニホールド24aの壁温の予測値を算出し(S1
50)、異種燃料判定初回フラグを0とする(S16
0)。また、異種燃料判定初回フラグが1でなければ
(S140,NO),予測された排気ガス温度と排気マ
ニホールド24aの伝熱要素情報(熱容量,熱抵抗,排
気管表面積等)とに基づいて、排気マニホールド24a
の壁温の予測値を算出する(S160)。このときの排
気マニホールド24aの壁温予測モデルの算出式は Tx =(1−(τ/Rt *C))*X+(K/C)*τ*Tg ………(2) として、与えられている。ここで、Rt ,C,Kは排気
マニホールドの熱容量,熱抵抗等から求まる定数、Tg
は排気ガス温度、τは演算周期である。なお、Rt
C,Kはパラメータ同程によって求められる。つまり、
排気マニホールド壁温の予測値と実測値との差の2乗和
が最小になるようにRt (熱容量相当の定数),C(熱
抵抗相当の定数),K(定数)を求める。
If the different fuel determination initial flag is 1 (S140, YES), from the number of knocking occurrences,
A predicted value of the wall temperature of the exhaust manifold 24a is calculated (S1
50), the different fuel determination initial flag is set to 0 (S16).
0). If the different fuel determination initial flag is not 1 (S140, NO), the exhaust gas is exhausted based on the predicted exhaust gas temperature and the heat transfer element information (heat capacity, thermal resistance, exhaust pipe surface area, etc.) of the exhaust manifold 24a. Manifold 24a
The predicted value of the wall temperature is calculated (S160). At this time, the calculation formula of the wall temperature prediction model of the exhaust manifold 24a is T x = (1− (τ / R t * C)) * X + (K / C) * τ * T g ... (2) Has been given. Here, R t , C, and K are constants obtained from the heat capacity and heat resistance of the exhaust manifold, T g
Is the exhaust gas temperature, and τ is the calculation cycle. Note that R t ,
C and K are obtained by the same parameters. That is,
R t (constant equivalent to heat capacity), C (constant equivalent to thermal resistance), and K (constant) are calculated so that the sum of squares of the difference between the predicted value and the measured value of the exhaust manifold wall temperature is minimized.

【0030】つぎに、スロットルバルブ28が全開か否
かの判定を行い(S180)、スロットルバルブ28が
全開であれば(S180,YES)、F/B運転からエ
ンリッチ運転に切り替える(S190)。一方、スロッ
トルバルブ28が全開でなければ(S180,NO)、
排気マニホールド24aの予測壁温が許容限界値Ta
超えているか否かの判定を行う(S200)。
Next, it is determined whether the throttle valve 28 is fully opened (S180). If the throttle valve 28 is fully opened (S180, YES), the F / B operation is switched to the enriched operation (S190). On the other hand, if the throttle valve 28 is not fully opened (S180, NO),
It is determined whether the predicted wall temperature of the exhaust manifold 24a exceeds the allowable limit value T a (S200).

【0031】そして、排気マニホールド24aの予測壁
温が許容限界値Ta を超えていれば(S200,YE
S)、空燃比のF/B運転を停止し、エンリッチ運転に
切り替える(S190)。そして、S20に戻る。
If the predicted wall temperature of the exhaust manifold 24a exceeds the allowable limit value T a (S200, YE
S), the air-fuel ratio F / B operation is stopped, and the operation is switched to the enriched operation (S190). Then, the process returns to S20.

【0032】また、排気マニホールド24aの予測壁温
が許容限界値Ta を超えていなければ(S200,N
O)、F/B運転を続行する(S210)。そして、S
210が終了するとS20に戻るといったルーチンを繰
り返す。
If the predicted wall temperature of the exhaust manifold 24a does not exceed the allowable limit value T a (S200, N
O), F / B operation is continued (S210). And S
When 210 ends, the routine of returning to S20 is repeated.

【0033】したがって、以上の説明から明らかなよう
に、本実施例では、エンジン2の諸元情報とその運転状
態に応じて各種センサ10〜22,26から出力される
各種パラメータとに基づいて排気ガス温度を予測するた
め、エンジン2の運転状態が変化しても、適切に排気ガ
ス温度を予測できる。
Therefore, as is apparent from the above description, in this embodiment, the exhaust gas is exhausted based on the specification information of the engine 2 and the various parameters output from the various sensors 10 to 22 and 26 according to the operating state thereof. Since the gas temperature is predicted, the exhaust gas temperature can be appropriately predicted even if the operating state of the engine 2 changes.

【0034】ここで、図3は前記の予測式(1)´で算
出した排気ガス温度の予測値データと、実際に測定した
排気ガス温度データとをそれぞれ横軸と縦軸とにとって
プロットしたグラフであり、このグラフからも明らかな
ように、予測値は誤差±25度の範囲内に収まってお
り、かなりの高精度で予測が可能となっている。なお、
このテスト条件は、エンジン回転数が4500〜600
0rpm,冷却水温が摂氏88度,空燃比が10〜1
5,吸気負圧が0〜−250mmHg,点火時期がMBTとな
っている。
Here, FIG. 3 is a graph in which the predicted value data of the exhaust gas temperature calculated by the above-mentioned prediction formula (1) 'and the actually measured exhaust gas temperature data are plotted on the horizontal axis and the vertical axis, respectively. As is clear from this graph, the predicted value is within the error range of ± 25 degrees, and the prediction can be performed with considerably high accuracy. In addition,
This test condition is that the engine speed is 4500-600.
0 rpm, cooling water temperature 88 degrees Celsius, air-fuel ratio 10-1
5, The intake negative pressure is 0 to -250 mmHg, and the ignition timing is MBT.

【0035】そして、前記排気ガス温度の予測値から更
に排気マニホールド温度を予測して、この排気マニホー
ルド温度が許容限界値Ta 以上になるまで、燃料増量に
よる排気ガス温度の低下制御を行わないため、図4のマ
ップにて示されるスロットルバルブの全開時以外は、空
燃比を可及的に長時間に亘ってF/B運転することがで
きる。
Then, the exhaust manifold temperature is further predicted from the predicted value of the exhaust gas temperature, and the decrease control of the exhaust gas temperature by the fuel increase is not performed until the exhaust manifold temperature becomes equal to or higher than the allowable limit value T a. The F / B operation can be performed with the air-fuel ratio as long as possible except when the throttle valve is fully opened as shown in the map of FIG.

【0036】つまり、図5のタイムチャートに示すよう
に、エンジン2が高負荷及び高回転領域で運転されて排
気ガス温度が上昇しても(時刻t1 )、空燃比A/Fは
理論空燃比値のままF/B補正制御され続け、排気マニ
ホールド24aの壁温予測値が許容限界値Ta に達した
時点(時刻t2 )で初めて燃料増量による排気ガス温度
低下制御が開始されて空燃比のエンリッチ運転がされ、
これにより排気ガス温度が低下されて、排気マニホール
ド24aの壁温が許容限界値Ta 以上に上昇することが
確実に抑制される。そして、排気マニホールド24aの
温度が許容限界値Ta に達するまでは排気ガス温度がい
かに高くても、不必要に燃料増量による排気ガス温度の
低下制御は行われないので、燃料の無駄な消費が可及的
に防止されて、燃費の向上を促すことができる。
That is, as shown in the time chart of FIG. 5, even if the engine 2 is operated in the high load and high rotation range and the exhaust gas temperature rises (time t1), the air-fuel ratio A / F is the theoretical air-fuel ratio. The F / B correction control is continued as it is, and when the predicted wall temperature of the exhaust manifold 24a reaches the allowable limit value T a (time t2), the exhaust gas temperature lowering control by the fuel increase is started for the first time and the air-fuel ratio of Enriched driving,
As a result, the exhaust gas temperature is lowered and the wall temperature of the exhaust manifold 24a is reliably suppressed from rising above the allowable limit value T a . And, no matter how high the exhaust gas temperature is, until the temperature of the exhaust manifold 24a reaches the allowable limit value T a , the exhaust gas temperature is not unnecessarily controlled to decrease by increasing the fuel amount, so that the fuel is wasted. It can be prevented as much as possible, and the improvement of fuel efficiency can be promoted.

【0037】なお、本発明は、前記実施例に限らず、排
気ガス温度予測モデルおよび排気系温度予測モデルを変
更することにより、各種エンジンの諸元に対応した排気
系温度の保護制御を行うことができる。また、排気ガス
温度低下制御手段には前記燃料増量制御手段に替えてそ
の他の手段,例えば2次エア供給制御手段を用いて排気
系に2次エアを供給すること等によって排気ガス温度の
低下を図っても良い。そして、この様に2次エア供給制
御手段等に替えても、排気ガス温度の低下制御は排気系
温度上昇の実情に可及的に促された状態で行われて、無
駄な低下制御の実行が可及的に取り除かれるので、エン
ジン性能を無駄に損なわせることがない。
The present invention is not limited to the above-described embodiment, but the exhaust gas temperature prediction model and the exhaust system temperature prediction model are changed to perform the exhaust system temperature protection control corresponding to the specifications of various engines. You can Further, the exhaust gas temperature decrease control means is replaced with the fuel increase control means, and other means, for example, secondary air supply control means is used to supply secondary air to the exhaust system to reduce the exhaust gas temperature. You may plan. Even if the secondary air supply control means or the like is replaced in this way, the exhaust gas temperature reduction control is performed in a state urged to the extent of the exhaust system temperature increase as much as possible, and wasteful reduction control is executed. Is removed as much as possible, so that engine performance is not unnecessarily impaired.

【0038】また、排気系温度の予測点は壁温が最も高
温となるヒートポイント,例えば排気マニホールドの曲
率の大きい湾曲部等にすることが望ましい。
Further, it is desirable that the prediction point of the exhaust system temperature is a heat point at which the wall temperature becomes the highest, for example, a curved portion having a large curvature of the exhaust manifold.

【0039】[0039]

【発明の効果】以上、実施例で詳細に説明したように、
本発明によれば、エンジンの諸元(圧縮比,S/B比,
オーバーラップ等)やその運転状態を示す各種パラメー
ター(エンジン回転数,空燃比,体積効率,点火時期
等)に基づいて排気ガス温度予測手段で排気ガス温度を
予測し,その予測された排気ガス温度と排気系伝熱要素
情報(熱容量,熱抵抗、排気管表面積等)とに基づいて
排気系温度予測手段で更に排気系温度を予測し、この排
気系温度の予測値が所定の許容限界値を超えた場合に、
排気ガス温度低下制御手段が排気ガス温度を低下方向に
制御するので、排気ガス温度の低下制御を排気系温度上
昇の実情に可及的に促した状態で行うことができ、もっ
て不必要に低下制御が実行されることを可及的に抑制し
て、エンジン性能が無駄に損なわれることを防止でき
る。
As described above in detail in the embodiments,
According to the present invention, engine specifications (compression ratio, S / B ratio,
The exhaust gas temperature is predicted by the exhaust gas temperature predicting means based on various parameters (engine speed, air-fuel ratio, volumetric efficiency, ignition timing, etc.) that indicate the operating conditions and the predicted exhaust gas temperature. And the exhaust system heat transfer element information (heat capacity, thermal resistance, exhaust pipe surface area, etc.), the exhaust system temperature predicting means further predicts the exhaust system temperature, and the predicted value of the exhaust system temperature is a predetermined allowable limit value. If it exceeds,
Since the exhaust gas temperature decrease control means controls the exhaust gas temperature in the decreasing direction, it is possible to control the decrease of the exhaust gas temperature as much as possible to the situation of the exhaust system temperature increase, and thus to reduce it unnecessarily. It is possible to prevent the control from being executed as much as possible and prevent the engine performance from being unnecessarily impaired.

【0040】また、前記排気ガス温度低下制御手段に燃
料増量制御手段を採用した場合には、燃料増量による排
気ガス温度低下制御が不必要に行われることがないの
で、燃費の低下を可及的に抑えつつ、排気系の保護を確
実に行うことができる。
Further, when the fuel amount increase control means is adopted as the exhaust gas temperature decrease control means, the exhaust gas temperature decrease control by the fuel increase is not performed unnecessarily, so that the fuel consumption can be reduced as much as possible. It is possible to reliably protect the exhaust system while suppressing the above.

【0041】更に、異種燃料の判定手段を付加して使用
燃料の種別を判定し、この判定結果の情報も加味して排
気ガス温度を予測するようにすれば、例えばハイオク仕
様のエンジンに誤ってレギュラーガソリンを混入させて
しまったような場合にも、適切な温度制御を行うことが
できる。
Further, if different fuel determining means is added to determine the type of fuel used, and the exhaust gas temperature is predicted by taking into consideration the information of this determination result, for example, a high-octane engine will be mistaken. Even if regular gasoline is mixed in, appropriate temperature control can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排気管温度制御装置の制御概念図
である。
FIG. 1 is a control conceptual diagram of an exhaust pipe temperature control device according to the present invention.

【図2】本発明の一実施例の制御内容を示すフローチャ
ートである。
FIG. 2 is a flowchart showing the control contents of one embodiment of the present invention.

【図3】本発明に係る排気ガス温度予測値の妥当性を示
すグラフである。
FIG. 3 is a graph showing the validity of an exhaust gas temperature predicted value according to the present invention.

【図4】本発明に係わる空燃比ゾーン設定を示すマップ
である。
FIG. 4 is a map showing an air-fuel ratio zone setting according to the present invention.

【図5】本発明に係る制御の作用を説明するタイムチャ
ートである。
FIG. 5 is a time chart explaining the operation of the control according to the present invention.

【図6】従来の空燃比ゾーン設定を示すマップである。FIG. 6 is a map showing a conventional air-fuel ratio zone setting.

【図7】従来の制御の作用を説明するタイムチャートで
ある。
FIG. 7 is a time chart illustrating the operation of conventional control.

【図8】従来のエンジンの電子制御装置を示す概略構成
図で、本発明に係るエンジンの排気系保護制御装置に共
通する図である。
FIG. 8 is a schematic configuration diagram showing a conventional electronic control device for an engine, which is common to an exhaust system protection control device for an engine according to the present invention.

【符号の説明】[Explanation of symbols]

2 エンジン 4 吸気系 6 インジェクタ 8 コントローラー 10 エアフローメーター 12 回転センサ 14 水温センサ 16 ノックセンサ(異種燃料判定手段) 18 スロットル開度センサ 20 吸気温センサ 22 スロットル全開センサ 24 排気系 24a 排気マニホ−ルド 26 空燃比センサ 28 スロットルバルブ 30 排気ガス温度予測手段 32 排気系温度予測手段 34 排気ガス温度低下制御手段 36 比較手段 38 判断手段 2 Engine 4 Intake System 6 Injector 8 Controller 10 Air Flow Meter 12 Rotation Sensor 14 Water Temperature Sensor 16 Knock Sensor (Different Fuel Judgment Means) 18 Throttle Opening Sensor 20 Intake Temperature Sensor 22 Throttle Full Open Sensor 24 Exhaust System 24a Exhaust Manifold 26 Empty Fuel ratio sensor 28 Throttle valve 30 Exhaust gas temperature prediction means 32 Exhaust system temperature prediction means 34 Exhaust gas temperature decrease control means 36 Comparison means 38 Judgment means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの諸元情報やその運転状態を示
す各種パラメーターに基づいて排気ガス温度を予測し、 その予測された排気ガス温度と排気系伝熱要素情報とに
基づいて排気系温度を予測し、 その予測された排気系温度が許容限界値以上のとき、排
気ガス温度を低下方向に制御する、 ことを特徴とする排気系保護制御方法。
1. An exhaust gas temperature is predicted based on various information indicating engine specifications and various operating conditions, and the exhaust system temperature is calculated based on the predicted exhaust gas temperature and exhaust system heat transfer element information. An exhaust system protection control method comprising: predicting and controlling the exhaust gas temperature in a decreasing direction when the predicted exhaust system temperature is equal to or higher than an allowable limit value.
【請求項2】 エンジンの諸元情報やその運転状態を示
す各種パラメーターに基づいて排気ガス温度を予測する
排気ガス温度予測手段と、 予測された排気ガス温度と排気系伝熱要素情報とに基づ
いて排気系温度を予測する排気系温度予測手段と、 予測された排気系温度が許容限界値以上のとき、排気ガ
ス温度を低下方向に制御する排気ガス温度低下制御手段
と、 を備えたことを特徴とするエンジンの排気系保護制御装
置。
2. An exhaust gas temperature predicting means for predicting an exhaust gas temperature on the basis of various parameters indicating engine specification information and its operating state, and based on the predicted exhaust gas temperature and exhaust system heat transfer element information. An exhaust system temperature predicting means for predicting the exhaust system temperature, and an exhaust gas temperature lowering controlling means for controlling the exhaust gas temperature in a decreasing direction when the predicted exhaust system temperature is equal to or higher than an allowable limit value. A characteristic engine exhaust system protection control device.
【請求項3】 前記排気ガス温度低下制御手段が燃料増
量制御手段である、 ことを特徴とする請求項2に記載のエンジンの排気系保
護制御装置。
3. The engine exhaust system protection control device according to claim 2, wherein the exhaust gas temperature decrease control means is a fuel increase control means.
【請求項4】 前記パラメーターが吸入空気量、エンジ
ン回転数、空燃比、点火時期のうち少なくとも一つであ
る、 ことを特徴とする請求項2〜3のいずれかに記載のエン
ジンの排気系保護制御装置。
4. The engine exhaust system protection according to claim 2, wherein the parameter is at least one of intake air amount, engine speed, air-fuel ratio, and ignition timing. Control device.
【請求項5】 異種燃料判定手段と、 異種燃料判定手段からの出力とエンジンの諸元情報やそ
の運転状態を示す各種パラメーターとに基づいて排気ガ
ス温度を予測する排気ガス温度予測手段と、 予測された排気ガス温度と排気系伝熱要素情報とに基づ
いて排気系温度を予測する排気系温度予測手段と、 予測された排気系温度が設定値以上のとき、排気ガス温
度を低下方向に制御する排気ガス温度低下制御手段と、 を備えたことを特徴とするエンジンの排気系保護制御装
置。
5. A different fuel judging means, an exhaust gas temperature predicting means for predicting an exhaust gas temperature based on an output from the different fuel judging means, engine specification information, and various parameters indicating its operating state, Exhaust system temperature predicting means that predicts the exhaust system temperature based on the exhaust gas temperature and the exhaust system heat transfer element information, and controls the exhaust gas temperature in the decreasing direction when the predicted exhaust system temperature is equal to or higher than the set value. An exhaust gas system protection control device for an engine, comprising:
JP4189697A 1992-07-16 1992-07-16 Exhaust system protection control method for engine and device thereof Pending JPH0633810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4189697A JPH0633810A (en) 1992-07-16 1992-07-16 Exhaust system protection control method for engine and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4189697A JPH0633810A (en) 1992-07-16 1992-07-16 Exhaust system protection control method for engine and device thereof

Publications (1)

Publication Number Publication Date
JPH0633810A true JPH0633810A (en) 1994-02-08

Family

ID=16245678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4189697A Pending JPH0633810A (en) 1992-07-16 1992-07-16 Exhaust system protection control method for engine and device thereof

Country Status (1)

Country Link
JP (1) JPH0633810A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210927A (en) * 1994-07-14 1996-08-20 Robert Bosch Gmbh Method and equipment for formation of simulation signal about exhaust system temperature of automobile
EP1091108A1 (en) * 1999-10-06 2001-04-11 MAGNETI MARELLI S.p.A. Method for estimating the temperature of the exhaust gases upstream from a pre-catalyser, disposed along an exhaust pipe of an internal-combustion engine
WO2008108426A1 (en) * 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
DE102004009646B4 (en) * 2003-02-28 2009-07-16 Mitsubishi Jidosha Kogyo K.K. Apparatus and method for estimating a catalyst temperature
EP2366879A2 (en) 2010-03-17 2011-09-21 Hitachi Automotive Systems, Ltd. Control method of internal combustion engine
CN106979086A (en) * 2015-10-12 2017-07-25 罗伯特·博世有限公司 The method and apparatus of the variable adjustment of compression ratio in diagnosis reciprocating IC engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210927A (en) * 1994-07-14 1996-08-20 Robert Bosch Gmbh Method and equipment for formation of simulation signal about exhaust system temperature of automobile
EP1091108A1 (en) * 1999-10-06 2001-04-11 MAGNETI MARELLI S.p.A. Method for estimating the temperature of the exhaust gases upstream from a pre-catalyser, disposed along an exhaust pipe of an internal-combustion engine
DE102004009646B4 (en) * 2003-02-28 2009-07-16 Mitsubishi Jidosha Kogyo K.K. Apparatus and method for estimating a catalyst temperature
WO2008108426A1 (en) * 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
EP2116706A4 (en) * 2007-03-06 2015-05-27 Toyota Motor Co Ltd Control device for internal combustion engine
EP2366879A2 (en) 2010-03-17 2011-09-21 Hitachi Automotive Systems, Ltd. Control method of internal combustion engine
CN102192023A (en) * 2010-03-17 2011-09-21 日立汽车系统株式会社 Control method of internal combustion engine
JP2011190782A (en) * 2010-03-17 2011-09-29 Hitachi Automotive Systems Ltd Control method for internal combustion engine
US8447500B2 (en) 2010-03-17 2013-05-21 Hitachi Automotive Systems, Ltd. Control method of internal combustion engine
CN106979086A (en) * 2015-10-12 2017-07-25 罗伯特·博世有限公司 The method and apparatus of the variable adjustment of compression ratio in diagnosis reciprocating IC engine
CN106979086B (en) * 2015-10-12 2021-07-13 罗伯特·博世有限公司 Method and device for diagnosing variable regulation of compression ratio in reciprocating piston internal combustion engine

Similar Documents

Publication Publication Date Title
JPS6213499B2 (en)
US6694246B2 (en) Controller of an internal combustion engine for determining a failure of a thermostat
JPH07229419A (en) Catalyst warming control device of internal combustion engine
US5000149A (en) Method for controlling ignition timing of an internal combustion engine
JPH0211729B2 (en)
JPH05172023A (en) Ignition timing control device for internal combustion engine
US5003955A (en) Method of controlling air-fuel ratio
JPH0633810A (en) Exhaust system protection control method for engine and device thereof
JPH04353233A (en) Programmed fuel injection device for internal combustion engine
EP0311097B1 (en) Fuel combustion control apparatus for engine
JPH07197877A (en) Control device for internal combustion engine
JPS6052301B2 (en) Air fuel ratio control device
JPS61185642A (en) Fuel injection timing controller for internal-combustion engine
JPH0742875B2 (en) Air-fuel ratio controller for engine
JPH06317200A (en) Protective control device for exhaust system of engine
JPS6314191B2 (en)
JPH07189797A (en) Air-fuel ratio controller of engine
JP3789336B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH11315741A (en) Ignition timing controller of internal combustion engine
JPH06307277A (en) Exhaust system temperature detection method and exhaust system protection controller for engine
JPH053746Y2 (en)
JPH05157033A (en) Ignition timing control device for internal combustion engine
JPH0826838B2 (en) Ignition timing control method for internal combustion engine
JP3055688B2 (en) Engine ignition timing learning control method
JPH06249020A (en) Furl supply controller of internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060404

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060417

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110512

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110512

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120512

LAPS Cancellation because of no payment of annual fees