JPH06337452A - Non-linear optical material and short wavelength laser oscillator using the same - Google Patents

Non-linear optical material and short wavelength laser oscillator using the same

Info

Publication number
JPH06337452A
JPH06337452A JP12875693A JP12875693A JPH06337452A JP H06337452 A JPH06337452 A JP H06337452A JP 12875693 A JP12875693 A JP 12875693A JP 12875693 A JP12875693 A JP 12875693A JP H06337452 A JPH06337452 A JP H06337452A
Authority
JP
Japan
Prior art keywords
crystal
wavelength
optical material
light
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12875693A
Other languages
Japanese (ja)
Inventor
Yusuke Ozaki
尾▲崎▼祐介
Takashi Minemoto
尚 峯本
Nobuo Sonoda
信雄 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12875693A priority Critical patent/JPH06337452A/en
Publication of JPH06337452A publication Critical patent/JPH06337452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide a non-linear optical material made of a crystal which has a sufficient dimension and hardness to work to a crystal for a device, has high efficiency of optical wavelength transmission caused by second higher harmonic wave generation, has a light absorption end existing in the short wavelength, and has almost no absorption in the region of blue color which is a second higher harmonic wave of a semiconductor laser. CONSTITUTION:A non-linear optical material made of a dipotassium 4, 4'- oxodiphenoxide crystal is obtained by neutralization reaction. The crystal obtained is suitably sticked with quartz glass with nonreflective coating through matching oil or a resin to obtain a light wavelength changing device 4. This device is inserted into a photoresonator 6 composed with the edge of fundmental wave oscillator crystal 3 and the surface of a mirror 5 to make a short wavelength laser oscillator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2次の非線形光学特性
を有する非線形光学材料及びそれを光波長変換素子に用
いた短波長レーザー発振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonlinear optical material having a second-order nonlinear optical characteristic and a short wavelength laser oscillator using the nonlinear optical material.

【0002】[0002]

【従来の技術】近年、従来の無機非線形光学材料に比
べ、大きな2次の非線形光学定数を有する有機結晶に関
して盛んに研究ならびに開発が行われている。これらの
有機結晶は、大きく分子結晶と、塩などのイオン結晶と
に対別される。イオン結晶を作る化合物としては、例え
ば、trans−4’−ジメチルアミノ−N−メチル−
4−スチルバゾリウム−メチル硫酸塩(エー・シー・エ
ス・シンポジウムシリーズ233(1983年)109(ACS Symp.Se
r.233(1983)109) )、L−アルギニンフォスフェート一
水和物(略称LAP)、重水素化されたLAP(略称D
LAP)(日本結晶成長学会誌16(1989 年) 第34〜41
頁)等が知られている。
2. Description of the Related Art In recent years, active research and development have been conducted on organic crystals having a large quadratic nonlinear optical constant as compared with conventional inorganic nonlinear optical materials. These organic crystals are roughly classified into molecular crystals and ionic crystals such as salts. Examples of compounds that form ionic crystals include trans-4′-dimethylamino-N-methyl-
4-Stilbazolium-methylsulfate (ACS Symposium Series 233 (1983) 109 (ACS Symp. Se
r.233 (1983) 109)), L-arginine phosphate monohydrate (abbreviation LAP), deuterated LAP (abbreviation D).
LAP) (Journal of Japan Society for Crystal Growth 16 (1989) 34-41)
Page) is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の2
次の非線形光学特性を有する有機結晶については、分子
結晶の場合、結晶中で分子同士がファンデルワールス力
や水素結合等で結びついており、また分子の対称性も悪
いため、凝集力が弱く、素子用結晶に加工するのに十分
な大きさと硬度を持つ結晶を得ることが一般に困難であ
るという課題があった。また、一般に結晶が柔らかいた
め、結晶中での熱伝導が悪く、第2高調波発生による光
波長変換に用いた場合、結晶中に大きな温度勾配が生
じ、基本波と第2高調波の位相整合条件が大きく変化
し、高変換効率が得られないという課題があった。
However, the above-mentioned conventional method 2
Regarding the organic crystal having the following nonlinear optical characteristics, in the case of a molecular crystal, the molecules are bound to each other by Van der Waals force, hydrogen bond, etc. in the crystal, and the symmetry of the molecule is poor, so the cohesive force is weak, There is a problem that it is generally difficult to obtain a crystal having a size and hardness sufficient for processing into a device crystal. In addition, since the crystal is generally soft, heat conduction in the crystal is poor, and when used for optical wavelength conversion by generating the second harmonic, a large temperature gradient is generated in the crystal, and the phase matching of the fundamental wave and the second harmonic is generated. There was a problem that the conditions changed significantly and high conversion efficiency could not be obtained.

【0004】一方、塩などのイオン結晶の場合、結晶中
でファンデルワールス力や水素結合より強固な凝集力と
なる静電引力が生ずるため、大型で硬度が大きく、熱伝
導性の良い結晶を比較的簡単に得ることができる。
On the other hand, in the case of an ionic crystal such as a salt, an electrostatic attractive force, which is a stronger cohesive force than a Van der Waals force or a hydrogen bond, is generated in the crystal. It can be obtained relatively easily.

【0005】しかし、従来知られている2次の非線形光
学特性を有する有機イオン結晶においても、以下に示す
ように、レーザー光の第2高調波発生による波長変換に
関して課題があった。
However, even in the conventionally known organic ionic crystal having a second-order nonlinear optical characteristic, there is a problem in wavelength conversion by generation of the second harmonic of laser light, as shown below.

【0006】まず、trans−4’−ジメチルアミノ
−N−メチル−4−スチルバゾリウム−メチル硫酸塩結
晶では化合物のπ電子共役長が非常に長いため、光の吸
収極大波長がNd:YAGレーザー光や半導体レーザー
光の第2高調波と同程度の波長になるため、波長変換さ
れた光が材料に吸収され、効率よく波長変換できないと
いう課題があった。
First, in trans-4'-dimethylamino-N-methyl-4-stilbazolium-methylsulfate crystal, the compound has a very long π-electron conjugation length, so that the maximum absorption wavelength of light is Nd: YAG laser light or Since the wavelength is about the same as the second harmonic of the semiconductor laser light, there is a problem that the wavelength-converted light is absorbed by the material and the wavelength cannot be efficiently converted.

【0007】また、LAP結晶、DLAP結晶では2次
の非線形光学定数が小さい(日本結晶成長学会誌16(198
9 年) 第34〜41頁)ため特に低パワーのレーザー光の変
換効率が小さく、半導体レーザー光等の波長変換には使
用できないという課題があった。
In addition, LAP crystals and DLAP crystals have small second-order nonlinear optical constants.
Therefore, there is a problem that the conversion efficiency of low power laser light is particularly small and it cannot be used for wavelength conversion of semiconductor laser light.

【0008】本発明は、前記従来の課題を解決するもの
で、素子用結晶に加工するのに十分な大きさと硬度を持
ち、第2高調波発生による光波長変換特性に優れ、半導
体レーザー光等の低パワーのレーザー光の変換効率も良
好で、吸収端が短波長にあり、半導体レーザーの第2高
調波である青色領域において吸収がほとんどない結晶か
らなる非線形光学材料、及びそれを光波長変換素子に用
いた発振光強度特性に優れた短波長レーザー発振装置を
提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, has a size and hardness sufficient for processing into a device crystal, is excellent in light wavelength conversion characteristics due to generation of second harmonics, and is a semiconductor laser light or the like. Has a good conversion efficiency for low power laser light, has an absorption edge at a short wavelength, and has almost no absorption in the blue region, which is the second harmonic of the semiconductor laser, and a nonlinear optical material made of such a crystal. It is an object of the present invention to provide a short-wavelength laser oscillating device having excellent oscillating light intensity characteristics used for an element.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明の非線形光学材料は、4,4’−ジヒドロキ
シベンゾフェノンの少なくとも一つのヒドロキシル基か
らプロトンが失われてできる陰イオンと金属の陽イオン
とからなる塩を含む結晶から成るという構成を備えたも
のである。
To achieve the above object, the non-linear optical material of the present invention is provided with an anion and a metal cation formed by the loss of a proton from at least one hydroxyl group of 4,4'-dihydroxybenzophenone. It is provided with a structure that it is composed of crystals containing a salt composed of ions.

【0010】前記構成においては、金属がアルカリ金属
及びアルカリ土類金属から選ばれることが好ましい。ア
ルカリ金属としては、例えばリチウム、ナトリウム、カ
リウム、ルビジウム、セシウム等があげられる。またア
ルカリ土類金属としては、例えばベリリウム、マグネシ
ウム、カルシウム、ストロンチウム、バイウム等があげ
られる。
In the above structure, the metal is preferably selected from alkali metals and alkaline earth metals. Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium and the like. Examples of the alkaline earth metal include beryllium, magnesium, calcium, strontium, and bium.

【0011】前記において、金属がアルカリ金属である
場合、カリウム、ナトリウム、リチウムから選ばれる少
なくとも一つであることが好ましい。また前記構成にお
いては、4,4’−ジヒドロキシベンゾフェノンの二つ
のヒドロキシル基の水素がカリウムで置換された塩(ジ
カリウム4,4’−オキソジフェノキシド)、及び結晶
水を含む結晶から成ることが好ましい。
In the above, when the metal is an alkali metal, it is preferably at least one selected from potassium, sodium and lithium. Further, in the above-mentioned constitution, it is preferable that it is composed of a salt in which hydrogen of two hydroxyl groups of 4,4′-dihydroxybenzophenone is replaced by potassium (dipotassium 4,4′-oxodiphenoxide), and a crystal containing water of crystallization. .

【0012】また前記構成においては、4,4’−ジヒ
ドロキシベンゾフェノンの二つのヒドロキシル基の水素
がカリウムで置換された塩(ジカリウム4,4’−オキ
ソジフェノキシド)、及び水素原子がジューテリウム原
子に置換された結晶水を含む結晶から成ることが好まし
い。
In the above constitution, a salt in which hydrogen of two hydroxyl groups of 4,4'-dihydroxybenzophenone is replaced by potassium (dipotassium 4,4'-oxodiphenoxide), and a hydrogen atom is replaced by a deuterium atom. It is preferably composed of crystals containing water of crystallization.

【0013】次に本発明の短波長レーザー発振装置は、
半導体レーザーと、光共振器と、前記光共振器中に存在
する光波長変換素子とを少なくとも備えたレーザー発振
装置であって、前記光波長変換素子に、前記のいずれか
の非線形光学材料が用いられていることを特徴とする。
Next, the short wavelength laser oscillator of the present invention is
What is claimed is: 1. A laser oscillation device comprising at least a semiconductor laser, an optical resonator, and an optical wavelength conversion element existing in the optical resonator, wherein the optical wavelength conversion element is made of any one of the above-mentioned nonlinear optical materials. It is characterized by being.

【0014】[0014]

【作用】前記本発明の構成によれば、非線形光学材料は
塩であるため、素子用結晶に加工するのに十分な硬度を
持った結晶が容易に得られる。また、4,4’−ジヒド
ロキシベンゾフェノンの少なくとも一つのヒドロキシル
基からプロトンが取れてできる陰イオンは、適当な電子
供与能を持つ電子供与性基がp−位に結合したフェニレ
ン基が、適当な電子受容能を持つ電子受容性基であるカ
ルボニル基を介して結合した構造であり、大きな分子超
分極率βと光に対する吸収端の短波長化を同時に実現で
きる。また、アルカリ金属陽イオン及び/またはアルカ
リ土類金属陽イオンも可視光線の波長領域に殆ど光吸収
を持たないため、本発明の非線形光学材料において光吸
収端の短波長化が実現される。さらに、結晶が硬いた
め、結晶中での熱伝導がよいことから、第2高調波発生
による光波長変換に用いた場合、結晶中に生じる温度勾
配は小さく、基本波と第2高調波の位相整合条件のゆら
ぎはより小さくなり、高変換効率が得られる。
According to the structure of the present invention, since the non-linear optical material is a salt, it is possible to easily obtain a crystal having a hardness sufficient for processing into a device crystal. The anion formed by removing a proton from at least one hydroxyl group of 4,4′-dihydroxybenzophenone is a phenylene group having an electron donating group having an appropriate electron donating ability bonded to the p-position, It has a structure in which it is bonded via a carbonyl group, which is an electron-accepting group having acceptability, and can simultaneously realize a large molecular hyperpolarizability β and a shorter wavelength absorption edge for light. Further, since the alkali metal cations and / or the alkaline earth metal cations also hardly absorb light in the visible light wavelength region, the wavelength of the light absorption edge can be shortened in the nonlinear optical material of the present invention. Furthermore, since the crystal is hard and the heat conduction in the crystal is good, the temperature gradient generated in the crystal is small when used for optical wavelength conversion by generating the second harmonic, and the phase of the fundamental wave and the second harmonic is small. The fluctuation of the matching condition becomes smaller, and high conversion efficiency can be obtained.

【0015】以上、述べたように本発明によれば、素子
用結晶に加工するのに十分な大きさと硬度を持ち、第2
高調波発生による光波長変換特性に優れ、半導体レーザ
ー光等の低パワーのレーザー光の変換効率も良好で、吸
収端が短波長にあり(即ち、半導体レーザーの第2高調
波である青色領域において吸収がない)、優れた結晶か
らなる非線形光学材料を得ることができる。
As described above, according to the present invention, it has a sufficient size and hardness to be processed into a device crystal, and
It has excellent optical wavelength conversion characteristics due to the generation of harmonics, has good conversion efficiency for low-power laser light such as semiconductor laser light, and has an absorption edge at a short wavelength (that is, in the blue region that is the second harmonic of the semiconductor laser). It is possible to obtain a non-linear optical material composed of excellent crystals (without absorption).

【0016】また、金属がアリカリ金属であるという本
発明の好ましい構成によれば、アルカリ金属はアルカリ
土類金属より陽性が強く、イオン結晶をより作りやすい
ため、より容易に前記非線形材料を作ることができる。
Further, according to the preferable constitution of the present invention in which the metal is alkaline metal, the alkali metal is more positive than the alkaline earth metal, and it is easier to form an ionic crystal, so that the non-linear material can be produced more easily. You can

【0017】また、金属がアルカリ金属であるという構
成のうち、アルカリ金属がカリウムであるという本発明
の好ましい構成によれば、カリウムは天然に比較的多量
に存在し原料を安価に入手できることから容易に前記非
線形光学材料を得ることができるとともに、カリウムは
アルカリ金属の中でも比較的原子容が小さいため、前記
非線形光学材料の結晶において、第2高調波発生特性に
寄与する大きな超分子分極率βを有する前記陰イオンの
全体に対する体積比は大きくなり、結晶としてより優れ
た第2高調波発生による光波長変換特性が実現される。
Further, among the constitutions in which the metal is an alkali metal, according to the preferable constitution of the present invention in which the alkali metal is potassium, potassium is naturally present in a relatively large amount and the raw material can be easily obtained at a low cost. In addition to being able to obtain the above-mentioned nonlinear optical material, potassium has a relatively small atomic volume among alkali metals, so that in the crystal of the nonlinear optical material, a large supramolecular polarizability β that contributes to the second harmonic generation characteristic is obtained. The volume ratio of the anions to the whole becomes large, and the light wavelength conversion characteristic by generation of the second harmonic, which is more excellent as a crystal, is realized.

【0018】また、金属がアルカリ金属であるという構
成のうち、アルカリ金属がナトリウムであるという本発
明の好ましい構成によれば、ナトリウムは天然に比較的
多量に存在し原料を安価に入手できることから容易に前
記非線形光学材料を得ることができるとともに、ナトリ
ウムはアルカリ金属の中でもリチウムについで原子容が
小さいため、前記非線形光学材料の結晶において、第2
高調波発生特性に寄与する大きな超分子分極率βを有す
る前記陰イオンの全体に対する体積比は大きくなり、結
晶としてより優れた第2高調波発生による光波長変換特
性が実現される。
Further, among the constitutions in which the metal is an alkali metal, according to the preferable constitution of the present invention in which the alkali metal is sodium, sodium is naturally present in a relatively large amount and the raw material can be easily obtained at low cost. In addition to being able to obtain the above-mentioned nonlinear optical material, sodium has the second smallest atomic volume next to lithium among alkali metals.
The volume ratio of the anion having the large supramolecular polarizability β contributing to the harmonic generation characteristic to the whole is large, and the light wavelength conversion characteristic by the second harmonic generation, which is more excellent as a crystal, is realized.

【0019】また、金属がアルカリ金属であるという構
成のうち、アルカリ金属がリチウムであるという本発明
の好ましい構成によれば、リチウムはアルカリ金属の中
でも最も原子容が小さいため、前記非線形光学材料の結
晶において、第2高調波発生特性に寄与する大きな超分
子分極率βを有する前記陰イオンの全体に対する体積比
は大きくなり、結晶として非常に優れた第2高調波発生
による光波長変換特性が実現される。
Further, according to the preferable constitution of the present invention in which the alkali metal is lithium among the constitutions in which the metal is the alkali metal, lithium has the smallest atomic volume among the alkali metals. In the crystal, the volume ratio of the anion having a large supramolecular polarizability β that contributes to the second harmonic generation characteristic becomes large, and the light wavelength conversion characteristic by the second harmonic generation that is very excellent as a crystal is realized. To be done.

【0020】また、金属がアルカリ金属であるという構
成のうち、4,4’−ジヒドロキシベンゾフェノンの二
つのヒドロキシル基の水素をカリウムで置換して得られ
る塩(ジカリウム4,4’−オキソジフェノキシド)と
結晶水を含む結晶から成るという本発明の好ましい構成
によれば、4,4’−ジヒドロキシベンゾフェノンの二
つのヒドロキシル基がイオン化していることから一つの
ヒドロキシル基がイオン化している場合に比べ結晶中で
働く靜電引力はより大きくなり凝集力もより大きくな
る。また結晶水を含むことから結晶中で水素結合が発達
し結晶中で働く凝集力はさらに大きくなると考えられ、
結晶の硬度もより大きくなり結晶中での熱伝導もより大
きくなると考えられる。
Further, in the constitution in which the metal is an alkali metal, a salt obtained by substituting hydrogen for two hydroxyl groups of 4,4'-dihydroxybenzophenone with potassium (dipotassium 4,4'-oxodiphenoxide). According to a preferred structure of the present invention, which comprises a crystal containing water and water of crystallization, the crystal structure is different from that in the case where one hydroxyl group is ionized because two hydroxyl groups of 4,4′-dihydroxybenzophenone are ionized. The electrostatic attraction that works inside becomes larger and the cohesive force also becomes larger. In addition, since it contains water of crystallization, it is considered that hydrogen bonding develops in the crystal and the cohesive force acting in the crystal becomes even greater.
It is considered that the hardness of the crystal becomes larger and the heat conduction in the crystal also becomes larger.

【0021】したがって、4,4’−ジヒドロキシベン
ゾフェノンの二つのヒドロキシル基の水素をカリウムで
置換して得られる塩(ジカリウム4,4’−オキソジフ
ェノキシド)と結晶水を含む結晶から成る非線形光学材
料によれば、より硬度が大きく、より素子用結晶に加工
するのが容易で、より光波長変換特性に優れた非線形光
学材料が得られる。また結晶水は可視光線の波長領域に
殆ど光吸収を持たないため結晶の光吸収端の短波長化は
実現される。
Therefore, a non-linear optical material consisting of a crystal containing a salt (dipotassium 4,4'-oxodiphenoxide) obtained by substituting hydrogen for two hydroxyl groups of 4,4'-dihydroxybenzophenone with potassium and crystal water. According to this, a non-linear optical material having higher hardness, easier to process into a device crystal, and more excellent in light wavelength conversion characteristics can be obtained. Further, since water of crystallization has almost no light absorption in the visible light wavelength region, the light absorption edge of the crystal can be shortened.

【0022】また、4,4’−ジヒドロキシベンゾフェ
ノンの二つのヒドロキシル基の水素をカリウムで置換し
て得られる塩(ジカリウム4,4’−オキソジフェノキ
シド)と水素原子がジューテリウム原子に置換された結
晶水を含む結晶から成るという本発明の好ましい構成に
よれば、4,4’−ジヒドロキシベンゾフェノンの二つ
のヒドロキシル基がイオン化していることから一つのヒ
ドロキシル基がイオン化している場合に比べ結晶中で働
く靜電引力はより大きくなり凝集力もより大きくなる。
また水素原子が同位体であるジューテリウム原子に置換
された結晶水を含むことから結晶中で水素結合様の結合
が発達し結晶中で働く凝集力はさらに大きくなると考え
られる。
Further, a salt (dipotassium 4,4'-oxodiphenoxide) obtained by substituting hydrogen in two hydroxyl groups of 4,4'-dihydroxybenzophenone with potassium and a crystal in which a hydrogen atom is replaced by a deuterium atom According to the preferred constitution of the present invention, which comprises a crystal containing water, the two hydroxyl groups of 4,4'-dihydroxybenzophenone are ionized, so that in the crystal compared to the case where one hydroxyl group is ionized. The electromotive force that works becomes larger and the cohesive force also becomes larger.
In addition, since the hydrogen atom contains water of crystallization in which isotope deuterium atom is substituted, it is considered that a hydrogen bond-like bond develops in the crystal and the cohesive force acting in the crystal further increases.

【0023】さらに、4,4’−ジヒドロキシベンゾフ
ェノンの二つのヒドロキシル基の水素をカリウムで置換
して得られる塩(ジカリウム4,4’−オキソジフェノ
キシド)と結晶水を含む結晶は結晶水の分子振動による
光の吸収の高調波成分が波長1064nm付近にわずか
に現われるため、この波長付近の波長を持つ基本波、例
えばNd:YAGレーザー、の第2高調波発生による波
長変換の効率が減少するのに対し、4,4’−ジヒドロ
キシベンゾフェノンの二つのヒドロキシル基の水素をカ
リウムで置換して得られる塩(ジカリウム4,4’−オ
キソジフェノキシド)と水素原子がジューテリウム原子
に置換された結晶水を含む結晶は、結晶水の分子振動の
様子が変化し光の吸収が波長1064nm付近にほとん
ど現われないため、この波長付近の波長を持つ基本波、
例えばNd:YAGレーザー、の第2高調波発生による
波長変換の効率はほとんど減少しない。したがって、
4,4’−ジヒドロキシベンゾフェノンの二つのヒドロ
キシル基の水素をカリウムで置換して得られる塩(ジカ
リウム4,4’−オキソジフェノキシド)と水素原子が
ジューテリウム原子に置換された結晶水を含む結晶から
なる非線形光学材料によれば、より大きな硬度を持ち、
より素子用結晶に加工するのが容易で、より光波長変換
特性に優れ、特に1064nm付近の波長の基本波の第
2高調波発生による光波長変換の効率がより高い非線形
光学材料を得ることができる。
Further, a crystal obtained by substituting hydrogen for two hydroxyl groups of 4,4'-dihydroxybenzophenone with potassium (dipotassium 4,4'-oxodiphenoxide) and crystal water is a molecule of crystal water. Since a harmonic component of light absorption due to vibration slightly appears near the wavelength of 1064 nm, the efficiency of wavelength conversion due to generation of the second harmonic of a fundamental wave having a wavelength near this wavelength, for example, Nd: YAG laser is reduced. On the other hand, a salt (dipotassium 4,4′-oxodiphenoxide) obtained by substituting hydrogen for two hydroxyl groups of 4,4′-dihydroxybenzophenone with potassium and crystal water in which a hydrogen atom is substituted with a deuterium atom are used. In the containing crystal, the state of molecular vibration of crystal water changes and light absorption hardly appears near the wavelength of 1064 nm. A fundamental wave with a wavelength near the wavelength,
For example, the efficiency of wavelength conversion due to the generation of the second harmonic of the Nd: YAG laser hardly decreases. Therefore,
From a crystal containing a salt (dipotassium 4,4'-oxodiphenoxide) obtained by substituting hydrogen for two hydroxyl groups of 4,4'-dihydroxybenzophenone with potassium and water of crystallization in which a hydrogen atom is replaced by a deuterium atom. According to the non-linear optical material, which has a greater hardness,
It is possible to obtain a non-linear optical material that is easier to process into a crystal for an element, has better optical wavelength conversion characteristics, and particularly has a higher optical wavelength conversion efficiency due to the generation of the second harmonic of the fundamental wave having a wavelength near 1064 nm. it can.

【0024】次に本発明の短波長レーザー発振装置の構
成によれば、前記の非線形光学材料はいずれも、上記の
とおり優れた光波長変換特性を持つとともに、Nd:Y
AGレーザーや半導体レーザーなどの波長変換に関し、
基本波および高調波に対する十分高い透過率を持ち、加
工特性に優れる(光学特性の乱れの少ない素子用結晶が
得られる)ことから大きな発振光強度が実現される。
Next, according to the constitution of the short-wavelength laser oscillator of the present invention, all of the above-mentioned nonlinear optical materials have excellent light wavelength conversion characteristics as described above and, at the same time, Nd: Y.
Regarding wavelength conversion of AG laser and semiconductor laser,
High oscillating light intensity is realized because it has a sufficiently high transmittance for the fundamental wave and harmonics and has excellent processing characteristics (a crystal for an element with less disordered optical characteristics can be obtained).

【0025】[0025]

【実施例】以下、実施例を用いて本発明をさらに具体的
に説明する。本発明で使用できる非線形光学材料は塩を
含み、その塩は例えば下記式(化1〜4)に示される構
造式を持つ。
EXAMPLES The present invention will be described in more detail below with reference to examples. The nonlinear optical material that can be used in the present invention contains a salt, and the salt has, for example, a structural formula represented by the following formulas (Formulas 1 to 4).

【0026】[0026]

【化1】 [Chemical 1]

【0027】[0027]

【化2】 [Chemical 2]

【0028】[0028]

【化3】 [Chemical 3]

【0029】[0029]

【化4】 [Chemical 4]

【0030】前記式(化1〜2)において、Mは、リチ
ウム、ナトリウム、カリウム、ルビジウム、セシウムな
どのアルカリ金属を示し、Nはベリリウム、マグネシウ
ム、カルシウム、ストロンチウム、バイウム等のアルカ
リ土類金属を示す。特別な例としては、Nはマンガン等
の陽イオンであっても良い。また本発明で使用できる非
線形工学材料は、塩のほかに例えば結晶水または水素原
子がジューテリウム原子に置換された結晶水を含んでい
てもよい。
In the above formulas (Formula 1 and 2), M represents an alkali metal such as lithium, sodium, potassium, rubidium and cesium, and N represents an alkaline earth metal such as beryllium, magnesium, calcium, strontium and bium. Show. As a special example, N may be a cation such as manganese. In addition to the salt, the non-linear engineering material that can be used in the present invention may contain, for example, water of crystallization or water of crystallization in which hydrogen atoms are replaced by deuterium atoms.

【0031】(実施例1)市販の4,4’−ジヒドロキ
シベンゾフェノン(含量98.0%以上)2.14gに
水15mlを加え、市販の水酸化カリウム2.24gを
水10mlに溶解させ調整した水溶液を室温下で滴下し
たところ、黄色の溶液となった。ph値は10から11
であった。この溶液をろ過しビーカーに移し市販のセル
ロースワイパーで蓋をして室温下で放置し、水を徐々に
蒸発させていったところ、約21日間で比較的透明性に
優れた淡黄色の結晶が得られた。これを乾燥し試料とし
た。
Example 1 15 ml of water was added to 2.14 g of commercially available 4,4'-dihydroxybenzophenone (content of 98.0% or more), and 2.24 g of commercially available potassium hydroxide was dissolved in 10 ml of water to prepare the solution. When the aqueous solution was added dropwise at room temperature, it became a yellow solution. ph value is 10 to 11
Met. This solution was filtered, transferred to a beaker, covered with a commercially available cellulose wiper, and allowed to stand at room temperature to gradually evaporate water. As a result, pale yellow crystals with relatively excellent transparency were formed in about 21 days. Was obtained. This was dried and used as a sample.

【0032】試料のジメチルスルホキシド−d6溶液の
1H−NMRスペクトル(内部標準:テトラメチルシラ
ン)には試料に関しては4,4’−オキソジフェノキシ
ド陰イオンのベンゼン環に結合した水素原子に基ずく2
個のシグナルが6.45ppm及び7.38ppmに
(積分強度比は1:1)認められ、4.5ppm付近に
は水分子に基ずく非常にブロードなシグナルが認められ
た。ベンゼン環に結合した水酸基に基ずくシグナル等他
のシグナルは認められなかった。前記溶液の13C−NM
Rスペクトルには試料に関しては、前記陰イオンのベン
ゼン環の炭素原子に基ずくシグナルが116.1pp
m、123.7ppm、131.7ppm及び169.
0ppmに4個認められ、前記陰イオンのカルボニル基
の炭素に基ずくシグナルが191.6ppmに認められ
た。これらの結果から試料は対称形をしたジカリウム
4,4’−オキソジフェノキシドと水を含むと考えられ
る。
Of a sample of dimethylsulfoxide-d6 solution
The 1 H-NMR spectrum (internal standard: tetramethylsilane) was based on the hydrogen atom bonded to the benzene ring of the 4,4′-oxodiphenoxide anion for the sample.
Individual signals were observed at 6.45 ppm and 7.38 ppm (integrated intensity ratio was 1: 1), and a very broad signal based on water molecules was observed at around 4.5 ppm. No other signal such as a signal based on the hydroxyl group bonded to the benzene ring was observed. 13 C-NM of the solution
In the R spectrum, for the sample, the signal based on the carbon atom of the benzene ring of the anion was 116.1 pp.
m, 123.7 ppm, 131.7 ppm and 169.
Four were observed at 0 ppm, and a signal based on the carbon of the carbonyl group of the anion was observed at 191.6 ppm. From these results, it is considered that the sample contains symmetrically shaped dipotassium 4,4′-oxodiphenoxide and water.

【0033】試料を昇温速度10℃/分で窒素雰囲気下
で熱重量分析したところ、温度121℃までに2.1%
の第1段階の減量が起こり、121℃から156℃まで
に第2段階の減量(第1段階及び第2段階で7.2%の
減量)が起こった。また試料の示差走査熱分析(昇温
(降温)速度:5℃/分、窒素雰囲気下)によると試料
を30℃から−50℃まで冷却した際、および試料を−
50℃から加熱した際に水の氷結(氷の融解)による熱
の出入りがほとんど観測されなかった。
The sample was thermogravimetrically analyzed in a nitrogen atmosphere at a temperature rising rate of 10 ° C./min.
The first-stage weight loss of the above occurred, and the second-stage weight loss (7.2% weight loss in the first and second stages) occurred from 121 ° C to 156 ° C. In addition, according to the differential scanning calorimetry (temperature rising (cooling) rate: 5 ° C./min, under nitrogen atmosphere) of the sample, when the sample was cooled from 30 ° C. to −50 ° C.
When heated from 50 ° C., almost no heat input or output due to freezing of water (melting of ice) was observed.

【0034】これらの結果から試料には7.2%の水が
含まれ、そのかなりの部分が結晶水であると考えられ
る。試料に対して、ジャーナル オブ アプライド フ
ィジックス39(1968年)第3798頁に記載され
ている、クルツ(Kurtz)の方法にしたがって、粉
末法によって第2高調波発生(SHG)効率を測定し
た。試料はメノウ乳鉢により粉末化して用い、光源には
Nd:YAGレーザー(波長1064nm)を用いた。
SHG効率は尿素の値の約5倍となり、優れた第2高調
波発生特性が観測された。なお、原料の4,4’−ジヒ
ドロキシベンゾフェノン及び水酸化カリウムに関しては
SHG効率は測定限界以下であった。
From these results, it is considered that the sample contains 7.2% of water, and a considerable part thereof is crystal water. The second harmonic generation (SHG) efficiency was measured on the sample by the powder method according to the Kurtz method described in Journal of Applied Physics 39 (1968), page 3798. The sample was powdered in an agate mortar and used, and an Nd: YAG laser (wavelength 1064 nm) was used as a light source.
The SHG efficiency was about 5 times that of urea, and excellent second harmonic generation characteristics were observed. The SHG efficiency of the raw materials 4,4′-dihydroxybenzophenone and potassium hydroxide was below the measurement limit.

【0035】実施例2 市販の4,4’−ジヒドロキシベンゾフェノン(含量9
8.0%以上)2.14gに水15mlを加え、これに
市販の水酸化ナトリウム(含量97.0%以上)0.8
92gを水10mlに溶解させ調整した水溶液を室温下
で滴下したところ、黄色の溶液となった。ph値は10
から11であった。この溶液をろ過しビーカーに移し市
販のセルロースワイパーで蓋をして室温下で放置し、水
を徐々に蒸発させていったところ、約23日間で淡黄色
の沈澱が得られた。これを乾燥し、試料とした。この試
料に対して、実施例1と同様の方法によってSHG効率
を測定したところ尿素の値程度であり、優れた第2高調
波発生特性が観測された。なお、原料の4,4’−ジヒ
ドロキシベンゾフェノン及び水酸化ナトリウムに関して
はSHG効率は測定限界以下であった。
Example 2 Commercially available 4,4'-dihydroxybenzophenone (content 9
15 ml of water was added to 2.14 g (8.0% or more), and commercially available sodium hydroxide (content 97.0% or more) 0.8
An aqueous solution prepared by dissolving 92 g in 10 ml of water was added dropwise at room temperature to give a yellow solution. ph value is 10
It was from 11 to 11. The solution was filtered, transferred to a beaker, covered with a commercially available cellulose wiper, and allowed to stand at room temperature to evaporate water gradually. As a result, a pale yellow precipitate was obtained in about 23 days. This was dried and used as a sample. When the SHG efficiency of this sample was measured by the same method as in Example 1, it was about the value of urea, and an excellent second harmonic generation characteristic was observed. The SHG efficiency of the raw materials 4,4′-dihydroxybenzophenone and sodium hydroxide was below the measurement limit.

【0036】実施例3 市販の4,4’−ジヒドロキシベンゾフェノン(含量9
8.0%以上)2.14gに水10mlを加え、これに
市販の水酸化リチウム一水和物0.839gを水10m
lに溶解させ調整した水溶液を室温下で滴下したとこ
ろ、濃黄色の溶液となった。ph値は9から10であっ
た。この溶液をろ過しビーカーに移し市販のセルロース
ワイパーで蓋をして室温下で放置し、水を徐々に蒸発さ
せていったところ、約20日間で黄色の沈澱が得られ
た。これを乾燥し、試料とした。この試料に対して、実
施例1と同様の方法によってSHG効率を測定したとこ
ろ、尿素の値程度であり、優れた第2高調波発生特性が
観測された。なお、原料の4,4’−ジヒドロキシベン
ゾフェノン及び水酸化リチウム一水和物に関してはSH
G効率は測定限界以下であった。
Example 3 Commercially available 4,4'-dihydroxybenzophenone (content 9
(8.0% or more) 2.14 g of water was added to 10 ml of water, and 0.839 g of commercially available lithium hydroxide monohydrate was added to 10 m of water.
When an aqueous solution prepared by dissolving in 1 was added dropwise at room temperature, it became a deep yellow solution. The ph value was 9 to 10. The solution was filtered, transferred to a beaker, covered with a commercially available cellulose wiper, and allowed to stand at room temperature to evaporate water gradually. As a result, a yellow precipitate was obtained in about 20 days. This was dried and used as a sample. When the SHG efficiency of this sample was measured by the same method as in Example 1, it was about the value of urea, and excellent second harmonic generation characteristics were observed. Regarding the raw material 4,4′-dihydroxybenzophenone and lithium hydroxide monohydrate, SH
The G efficiency was below the measurement limit.

【0037】実施例4 実施例1と同様にしてジカリウム4,4’−オキソジフ
ェノキシドの結晶育成を行なった。約20日間で大き
な、例えば、7mm×6mm×4mmの、結晶が得られ
た。この結晶を試料1とした。試料1の光吸収端波長
は、分光光度計を用いて透過法により測定した結果、約
420nmであった。
Example 4 Crystals of dipotassium 4,4'-oxodiphenoxide were grown in the same manner as in Example 1. Large crystals, for example 7 mm × 6 mm × 4 mm, were obtained in about 20 days. This crystal was designated as Sample 1. The light absorption edge wavelength of Sample 1 was about 420 nm as a result of measurement by a transmission method using a spectrophotometer.

【0038】実施例5 実施例1の水のかわりに重水(99.9%原子D)を用
い、同様にしてジカリウム4,4’−オキソジフェノキ
シドの結晶育成を行なった。約20日間で大きな、例え
ば、9mm×7mm×5mmの、結晶が得られた。この
結晶を試料2とした。試料2の光吸収端波長は、分光光
度計を用いて透過法により測定した結果、約420nm
であった。
Example 5 Instead of the water used in Example 1, heavy water (99.9% atom D) was used to grow crystals of dipotassium 4,4'-oxodiphenoxide in the same manner. Large crystals, eg 9 mm × 7 mm × 5 mm, were obtained in about 20 days. This crystal was designated as Sample 2. The light absorption edge wavelength of Sample 2 was about 420 nm as a result of measurement by a transmission method using a spectrophotometer.
Met.

【0039】なお、本実施例の結晶育成は溶媒蒸発法に
よったが、温度降下法を用いてもよい。結晶育成を行う
ための溶媒蒸発法、温度降下法については通常の手法が
用いられ、特に限定するものではないが、例えば、溶媒
蒸発法は、通常結晶となる成分を適宜の溶媒に溶解した
飽和溶液を用い徐々に溶媒を蒸発させて、目的の結晶を
析出・育成する方法である。
Although the crystal growth in this embodiment was performed by the solvent evaporation method, the temperature drop method may be used. The solvent evaporation method for performing crystal growth, an ordinary method is used for the temperature drop method, and is not particularly limited, but, for example, the solvent evaporation method is a saturated solution in which a component that normally becomes a crystal is dissolved in an appropriate solvent. It is a method of gradually evaporating a solvent using a solution to precipitate and grow a target crystal.

【0040】実施例6 図1を用いて本発明の短波長レーザー発振装置の説明を
行う。図1は短波長レーザー発振装置の構成模式図であ
り、1は半導体レーザー、2は半導体レーザー集光用の
レンズ系、3は基本波発振用結晶、4は光波長変換素
子、5はミラー(この例では凹面鏡)、6は光共振器、
7は出力光を示す。本実施例では基本波発振用結晶3の
端面とミラー5の面で構成されている光共振器6内に、
光波長変換素子4(厚み1〜5mm)が挿入される。
尚、ミラー5の表面は基本波発振用結晶が励起されて発
振された基本波の波長の光は反射するが4の光波長変換
用素子によって波長変換されて生じる第2高調波の波長
の光は透過することができる誘電帯多層膜が形成されて
おり、また、レーザー発振用結晶3の端面(レンズ系2
側の面)には、1の半導体レーザーから発振される波長
の光は透過するが基本波の波長の光および第2高調波の
波長の光は反射し得る誘電体多層膜が形成されている。
Embodiment 6 A short wavelength laser oscillator according to the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram of the configuration of a short-wavelength laser oscillation device. 1 is a semiconductor laser, 2 is a lens system for condensing a semiconductor laser, 3 is a crystal for fundamental wave oscillation, 4 is an optical wavelength conversion element, 5 is a mirror ( (In this example, a concave mirror), 6 is an optical resonator,
Reference numeral 7 indicates output light. In this embodiment, in the optical resonator 6 constituted by the end face of the crystal 3 for fundamental wave oscillation and the face of the mirror 5,
The light wavelength conversion element 4 (thickness 1 to 5 mm) is inserted.
The surface of the mirror 5 reflects the light of the wavelength of the fundamental wave oscillated by exciting the crystal for oscillating the fundamental wave, but the light of the wavelength of the second harmonic generated by wavelength conversion by the light wavelength conversion element 4 Is formed with a dielectric multi-layered film that is transparent, and the end face of the laser oscillation crystal 3 (lens system 2
On the side surface), a dielectric multilayer film is formed which can transmit light having a wavelength emitted from one semiconductor laser but reflect light having a fundamental wavelength and light having a second harmonic wavelength. .

【0041】光波長変換素子4は、表面に基本波の波長
及び第2高調波の波長の光が透過しやすいように無反射
コートがなされた石英ガラスがマッチングオイルまたは
樹脂を介して第2高調波発生用結晶に貼りつけられたも
のである。樹脂を用いる場合には、例えば、エポキシ系
樹脂で屈折率が第2高調波発生用結晶に近いものなどが
用いられる。第2高調波発生用結晶は光波長変換(第2
高調波発生)において、位相整合が起こるような条件で
切り出された本発明の非線形光学材料のいずれかであ
る。
The optical wavelength conversion element 4 is made of quartz glass coated with a non-reflective coating so as to easily transmit the light of the fundamental wave wavelength and the second harmonic wave to the surface thereof through the matching oil or the resin. It is attached to a wave generating crystal. When a resin is used, for example, an epoxy resin having a refractive index close to that of the second harmonic generation crystal is used. The second harmonic generation crystal is used for optical wavelength conversion (second
Any of the nonlinear optical materials of the present invention cut out under the condition that phase matching occurs in the generation of harmonics.

【0042】半導体レーザー1を用いて発振されたレー
ザー光は、レンズ系2で集光されて基本波発振用結晶3
に入射し基本波発振用結晶3を励起し、基本波となるレ
ーザー光を発振させる。この基本波は、光波長変換素子
4を通過することによりその一部が波長変換されて第2
高調波を発生する。これらのレーザー光はミラー5に到
達し、波長変換されていない基本波はここで反射され、
波長変換された第2高調波はミラー5を通過する。ミラ
ー5で反射された基本波は、再び光波長変換素子4を通
過し、その一部が波長変換されて第2高調波が発生す
る。これらのレーザー光は基本波発振用結晶3の端面
(レンズ系2側の面)で反射され、光波長変換素子を通
過する。このような行程が繰り返され、基本波が幾度も
光波長変換素子4を通過し、波長変換された第2高調波
が出力光7として出力される。
The laser light oscillated using the semiconductor laser 1 is condensed by the lens system 2 and the crystal 3 for oscillating the fundamental wave is generated.
To oscillate the fundamental wave oscillating crystal 3 to oscillate a laser beam serving as a fundamental wave. A part of the fundamental wave is wavelength-converted by passing through the optical wavelength conversion element 4, and the second wavelength is converted into the second wavelength.
Generate harmonics. These laser lights reach the mirror 5, and the fundamental wave whose wavelength has not been converted is reflected here,
The wavelength-converted second harmonic wave passes through the mirror 5. The fundamental wave reflected by the mirror 5 passes through the optical wavelength conversion element 4 again, and a part of the fundamental wave is wavelength-converted to generate a second harmonic. These laser lights are reflected by the end surface (surface on the lens system 2 side) of the fundamental wave oscillating crystal 3 and pass through the light wavelength conversion element. Such steps are repeated, the fundamental wave passes through the optical wavelength conversion element 4 many times, and the wavelength-converted second harmonic is output as the output light 7.

【0043】以上のような本発明の短波長レーザー発振
装置においては、光共振器6内の非常に強い電界強度を
基本波として波長変換が行なわれるため、大きな波長変
換効率、発振強度が期待される。
In the short-wavelength laser oscillator of the present invention as described above, wavelength conversion is performed by using a very strong electric field intensity in the optical resonator 6 as a fundamental wave, so that large wavelength conversion efficiency and oscillation intensity are expected. It

【0044】なお、有機結晶に直接無反射コートできる
材料があればそれを用いても良い。半導体レーザー1の
波長が808nmでパワーが1W、基本波発振用結晶3
がNd:YAG結晶で波長1064nmのレーザー光を
基本波とし、第2高調波発生用結晶を試料1から切り出
し、マッチングオイルを介して無反射コートがなされた
石英ガラスを貼り付けて、厚さ3mmの光波長変換素子
4とした場合、0.2mWという大きな出力の出力光を
得た。
If there is a material that can directly coat the organic crystal with antireflection, it may be used. The semiconductor laser 1 has a wavelength of 808 nm, a power of 1 W, and a crystal 3 for fundamental wave oscillation.
Is a Nd: YAG crystal with laser light having a wavelength of 1064 nm as a fundamental wave, a crystal for second harmonic generation is cut out from sample 1, and quartz glass coated with an antireflection coating is attached through a matching oil to have a thickness of 3 mm. When the optical wavelength conversion element 4 of No. 2 was used, a large output light of 0.2 mW was obtained.

【0045】半導体レーザー1の波長が808nmでパ
ワーが1W、レーザー発振用結晶3がNd:YAG結晶
で波長1064nmのレーザー光を基本波とし、第2高
調波発生用結晶を試料2から切り出し、マッチングオイ
ルを介して無反射コートがなされた石英ガラスを貼り付
けて、厚さ3mmの光波長変換素子4とした場合、2m
Wという大きな出力の出力光を得た。
The semiconductor laser 1 has a wavelength of 808 nm and a power of 1 W, the laser oscillating crystal 3 is an Nd: YAG crystal, and the laser light having a wavelength of 1064 nm is used as the fundamental wave. The second harmonic generating crystal is cut out from the sample 2 and matched. When quartz glass coated with an anti-reflection coating through oil is pasted to form a light wavelength conversion element 4 having a thickness of 3 mm, 2 m
Output light with a large output of W was obtained.

【0046】[0046]

【発明の効果】本発明の非線形光学材料によれば、素子
用結晶に加工するのに十分な硬度を持ち、第2高調波発
生による光波長変換特性に優れ、半導体レーザー光等の
低パワーのレーザー光の変換効率も良好で、吸収端が短
波長にある(即ち、半導体レーザーの第2高調波である
青色領域において吸収がほとんどない)結晶からなる優
れた非線形光学材料を提供できる。
According to the non-linear optical material of the present invention, it has sufficient hardness to be processed into a device crystal, has an excellent wavelength conversion characteristic due to the generation of the second harmonic, and has a low power of semiconductor laser light or the like. It is possible to provide an excellent non-linear optical material made of a crystal which has a good conversion efficiency of laser light and has an absorption edge at a short wavelength (that is, almost no absorption in the blue region which is the second harmonic of a semiconductor laser).

【0047】次に本発明の短波長レーザー発振装置によ
れば、非線形光学材料は優れた光波長変換特性を持つと
ともに、基本波および高調波に対する十分高い透過率を
持ち、加工特性に優れる(光学特性の乱れの少ない素子
用結晶が得られる)ことから、大きな発振光強度が実現
される。
Next, according to the short-wavelength laser oscillating device of the present invention, the non-linear optical material has an excellent optical wavelength conversion characteristic and also has a sufficiently high transmittance for the fundamental wave and the higher harmonic wave, and is excellent in the processing characteristics. Since a device crystal with less disordered characteristics can be obtained), a large oscillation light intensity can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における短波長レーザー発振
装置の構成模式図である。
FIG. 1 is a schematic diagram of a configuration of a short wavelength laser oscillator according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体レーザー 2 半導体レーザー集光用のレンズ系 3 基本波発振用結晶 4 光波長変換素子 5 ミラー 6 光共振器 7 光出力 1 Semiconductor Laser 2 Lens System for Focusing Semiconductor Laser 3 Crystal for Fundamental Wave Oscillation 4 Optical Wavelength Converter 5 Mirror 6 Optical Resonator 7 Optical Output

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 4,4’−ジヒドロキシベンゾフェノン
の少なくとも一つのヒドロキシル基からプロトンが失わ
れてできる陰イオンと金属の陽イオンとからなる塩を含
む結晶から成る非線形光学材料。
1. A nonlinear optical material comprising a crystal containing a salt of an anion formed by loss of a proton from at least one hydroxyl group of 4,4′-dihydroxybenzophenone and a metal cation.
【請求項2】 金属がアルカリ金属及びアルカリ土類金
属から選ばれる請求項1に記載の非線形光学材料。
2. The nonlinear optical material according to claim 1, wherein the metal is selected from alkali metals and alkaline earth metals.
【請求項3】 アルカリ金属が、カリウム、ナトリウ
ム、リチウムから選ばれる少なくとも一つである請求項
2に記載の非線形光学材料。
3. The nonlinear optical material according to claim 2, wherein the alkali metal is at least one selected from potassium, sodium and lithium.
【請求項4】 4,4’−ジヒドロキシベンゾフェノン
の二つのヒドロキシル基の水素がカリウムで置換された
塩、及び結晶水を含む結晶から成る請求項2に記載の非
線形光学材料。
4. The nonlinear optical material according to claim 2, which comprises a salt in which hydrogen of two hydroxyl groups of 4,4′-dihydroxybenzophenone is replaced by potassium, and a crystal containing water of crystallization.
【請求項5】 4,4’−ジヒドロキシベンゾフェノン
の二つのヒドロキシル基の水素がカリウムで置換された
塩、及び水素原子がジューテリウム原子に置換された結
晶水を含む結晶から成る請求項2に記載の非線形光学材
料。
5. The salt according to claim 2, which comprises a salt in which hydrogen of two hydroxyl groups of 4,4′-dihydroxybenzophenone is replaced by potassium, and a crystal containing water of crystallization in which hydrogen atom is replaced by deuterium atom. Non-linear optical material.
【請求項6】 半導体レーザーと、光共振器と、前記光
共振器中に存在する光波長変換素子とを少なくとも備え
た短波長レーザー発振装置であって、前記光波長変換素
子に、請求項1から請求項5までのいずれかに記載の非
線形光学材料が用いられていることを特徴とする短波長
レーザー発振装置。
6. A short wavelength laser oscillating device comprising at least a semiconductor laser, an optical resonator, and an optical wavelength conversion element existing in the optical resonator, wherein the optical wavelength conversion element comprises: A short-wavelength laser oscillating device comprising the nonlinear optical material according to any one of claims 1 to 5.
JP12875693A 1993-05-31 1993-05-31 Non-linear optical material and short wavelength laser oscillator using the same Pending JPH06337452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12875693A JPH06337452A (en) 1993-05-31 1993-05-31 Non-linear optical material and short wavelength laser oscillator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12875693A JPH06337452A (en) 1993-05-31 1993-05-31 Non-linear optical material and short wavelength laser oscillator using the same

Publications (1)

Publication Number Publication Date
JPH06337452A true JPH06337452A (en) 1994-12-06

Family

ID=14992694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12875693A Pending JPH06337452A (en) 1993-05-31 1993-05-31 Non-linear optical material and short wavelength laser oscillator using the same

Country Status (1)

Country Link
JP (1) JPH06337452A (en)

Similar Documents

Publication Publication Date Title
WO2010007938A1 (en) Ultraviolet laser device
US5123022A (en) Frequency mixing crystal
WO2020024179A1 (en) Alkali metal monohydrogen cyanurate compound, crystal thereof, preparation method therefor and use thereof
JP2866547B2 (en) Laser device
JPH06337452A (en) Non-linear optical material and short wavelength laser oscillator using the same
US5229038A (en) Organic nonlinear optical material and method of converting the wavelength of light using said material
US5347394A (en) Nonlinear optical materials, method of manufacturing the same, and optical wavelength converter
Sudharsana et al. Hydroxyethylammonium maleate (HEAM) single crystal for optical limiting applications
JPH06167727A (en) Nonlinear optical material and optical wavelength conversion element formed by using the material
US5397508A (en) 2-amino-5-nitropyridinium salts usable in non-linear optics and in electroptics and a process for preparing the same
JPS6321627A (en) Deuterium substituted organic nonlinear optical compound
US5310918A (en) 1-aryl-substituted azole, non-linear optical material and novel molecular crystal containing same and method and module for the conversion of light wavelength using same
Sprague et al. The synthesis and infrared and nuclear magnetic resonance spectra of ammonium dicyanamide
EP0573041B1 (en) Nonlinear optical material, method of manufacturing the same, and wavelength converter
JP2898176B2 (en) Optical wavelength conversion material and optical wavelength conversion element using the same
JP2724641B2 (en) Molecular crystal and method of converting light wavelength using the same
JP2541090B2 (en) Laser oscillator
JPH0682857A (en) Optical wavelength conversion element
JPH04326339A (en) Laser device
JPH05134279A (en) Nonlinear optical material and wavelength conversion element
Arkhipkin et al. Frequency conversion of cw CO2 laser radiation from λ= 10.6 μ to the 276.8 nm range in a mixture of thallium and cesium vapor
JPS62162374A (en) Method of generating coherent ultraviolet radiation
Gandhimathi et al. INVESTIGATIONS ON THE GROWTH AND PROPERTIES OF PURE AND L-HISTIDINE DOPED ADP CRYSTAL
JPH03112981A (en) New compound and nonlinear optical material
JPH07111356A (en) Frequency upward conversion solid-state laser device