JPH06337280A - Method for detecting defect of power cable line - Google Patents

Method for detecting defect of power cable line

Info

Publication number
JPH06337280A
JPH06337280A JP12715693A JP12715693A JPH06337280A JP H06337280 A JPH06337280 A JP H06337280A JP 12715693 A JP12715693 A JP 12715693A JP 12715693 A JP12715693 A JP 12715693A JP H06337280 A JPH06337280 A JP H06337280A
Authority
JP
Japan
Prior art keywords
voltage
power cable
wave
defect
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12715693A
Other languages
Japanese (ja)
Inventor
Katsumi Uchida
克己 内田
Nobuhiro Hirata
宜弘 平田
Hideo Tanaka
秀郎 田中
Susumu Sakuma
進 佐久間
Osamu Fujii
治 藤井
Teruyoshi Tanabe
輝義 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Furukawa Electric Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Chubu Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP12715693A priority Critical patent/JPH06337280A/en
Publication of JPH06337280A publication Critical patent/JPH06337280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To provide a method for detecting the defect of power cable line by which the detection of defective part (foreign matter) in the insulator, void, protrusion on the surface of semiconductor layer, etc.) can be facilitated. CONSTITUTION:Damping vibration wave is applied one or a plurality of times in the first step and an ultralow frequency voltage is applied in the second step. The set of first and second steps is repeated one or a plurality of times to break down the cable and then the defective part of cable is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゴム、プラスチック絶
縁電力ケーブル(以下電力ケーブルと称する)の電気絶
縁性能に有害となる欠陥部(絶縁体中の異物、ボイド、
半導電層表面上の突起等)を検出する電力ケーブル線路
の欠陥検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect portion (foreign matter in an insulator, void, etc.) that is harmful to the electric insulation performance of rubber and plastic insulated power cables (hereinafter referred to as power cables).
The present invention relates to a method for detecting defects in a power cable line, which detects protrusions on the surface of a semiconductive layer.

【0002】[0002]

【従来技術】従来、長距離送電に用いられる電力ケーブ
ルの電気絶縁性能に有害となる絶縁体中の異物やボイド
等の欠陥部を検出する方法として、直流電圧による課電
が行われてきたが、直流電圧ではこのような欠陥を検出
する能力が低く、商用周波電圧で運転を開始した直後に
直流電圧で検出されなかった欠陥部から絶縁破壊が起こ
ることがあった。そこで、商用周波交流電圧、減衰振動
波電圧、超低周波電圧(明細書中超低周波とは1Hz以
下の周波数のものをいう)等の課電による検出方法が提
案されている。
2. Description of the Related Art Hitherto, as a method of detecting a defect such as a foreign substance or a void in an insulator, which is harmful to the electric insulation performance of a power cable used for long-distance power transmission, a DC voltage has been applied. However, the DC voltage has a low ability to detect such defects, and dielectric breakdown may occur from a defect not detected by the DC voltage immediately after starting operation at the commercial frequency voltage. Therefore, a detection method by applying a commercial frequency AC voltage, a damped oscillatory wave voltage, an ultra low frequency voltage (in the specification, an ultra low frequency means a frequency of 1 Hz or less), etc. has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記の
ような提案の検出方法単独では、長距離送電線路に適用
することを考慮すると種々の問題がある。
However, the proposed detection method alone as described above has various problems when it is applied to a long-distance transmission line.

【0004】商用周波交流電圧の課電による場合は、欠
陥部の検出能力は優れているものの、長距離送電線路の
場合充電電流が非常に大きくなるため課電用の電源装置
が非常に巨大なものとなり、該装置の運搬等が困難であ
る。
When the commercial frequency AC voltage is applied, the defect detection capability is excellent, but in the case of a long-distance power transmission line, the charging current becomes very large, so that the power supply device for power application is very huge. However, it is difficult to transport the device.

【0005】また、減衰振動波電圧の場合長距離線路へ
の適用は、装置のサイズから考えても十分可能であり、
欠陥部からトリーを発生させる能力は十分高いが、最終
的に欠陥部の検出を行う(トリーをさせてから破壊に至
らしめるまで)ための課電回数が不明であったり、部分
放電の測定が困難であったりするため、この電圧波形単
独の検出ではその遂行上の問題点が多々ある。
Further, in the case of a damped oscillatory wave voltage, application to a long distance line is sufficiently possible considering the size of the device,
Although the ability to generate a tree from a defective part is sufficiently high, the number of times the voltage is applied to finally detect the defective part (from the time the tree is made until it is destroyed) or the partial discharge measurement is not possible. Since it is difficult, the detection of the voltage waveform alone has many problems in its execution.

【0006】また、超低周波電圧の課電による場合は、
課電の周波数を低くすることで充電電流を大幅に低減さ
せることが可能なため長距離線路への適用は可能であ
り、部分放電の測定も行うことができるが、単独で課電
を行う場合欠陥部の検出を行うための課電電圧が高くな
る傾向があり、運用上の問題、課電装置の出力電圧が高
くなる等の問題点がある。
Further, in the case of applying an ultra low frequency voltage,
By lowering the frequency of charging, the charging current can be significantly reduced, so it can be applied to long-distance lines, and partial discharge can be measured. The voltage applied to detect a defective portion tends to be high, which causes operational problems and increases in the output voltage of the power applying device.

【0007】[0007]

【発明の目的】本発明は上述の問題点を一掃し、電力ケ
ーブルの前記欠陥部の検出を確実かつ容易に行うことの
できる電力ケーブル線路の欠陥検出方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned problems and to provide a method of detecting a defect in a power cable line which can reliably and easily detect the defective portion of the power cable.

【0008】[0008]

【課題を解決するための手段】本発明は上述の目的を達
成するため、ケーブルの欠陥部を減衰振動波電圧、超低
周波電圧の課電により検出する電力ケーブル線路の欠陥
検出方法において、第1ステップで減衰振動波を1また
は複数回印加し、第2ステップで超低周波電圧波を印加
し、第1ステップと第2ステップを一組とした課電を1
または複数回繰り返して行い、この課電によりケーブル
を破壊させ、ケーブルの欠陥部を検出することを特徴と
する。また、前記第1のステップと第2のステップとを
一組とした課電を1または複数回繰り返して行い、各第
2ステップにおいて部分放電測定を行い、電気トリーの
進展に伴う部分放電信号を検知してケーブルの欠陥部を
検出することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a method for detecting a defect in a power cable line, which detects a defect in a cable by applying a damped oscillatory wave voltage or an ultra-low frequency voltage. The damping vibration wave is applied one or more times in one step, the ultra low frequency voltage wave is applied in the second step, and the voltage application with the first step and the second step as one set is 1
Alternatively, it is repeated a plurality of times to break the cable by this voltage application and detect a defective portion of the cable. In addition, the charging with the combination of the first step and the second step is repeated one or more times, the partial discharge is measured in each second step, and the partial discharge signal accompanying the progress of the electrical tree is obtained. It is characterized by detecting and detecting a defective portion of the cable.

【0009】[0009]

【作用】本発明は、第1ステップで減衰振動波を1また
は複数回印加し、第2ステップで超低周波電圧波を印加
し、第1ステップと第2ステップを一組とした課電を1
または複数回繰り返して行うので、電気トリーを発生さ
せる能力の高い減衰振動波で欠陥部から電気トリーを発
生させ、超低周波電圧で前記発生した電気トリーが容易
に進展させられ、また一回で発生しなかった電気トリー
を確実に発生させる。また、前記第1のステップと第2
のステップとを一組とした課電を1または複数回繰り返
して行い、各第2ステップにおいて部分放電測定を行う
ことにより電気トリーの進展に伴う部分放電信号を検知
するので、部分放電が容易に測定できる。
According to the present invention, the damping vibration wave is applied once or a plurality of times in the first step, and the ultra low frequency voltage wave is applied in the second step. 1
Alternatively, since it is repeated a plurality of times, the electrical tree is generated from the defect portion with a damped oscillatory wave having a high ability to generate the electrical tree, and the generated electrical tree can be easily developed with an ultra-low frequency voltage. Reliably generate the electric tree that did not occur. Also, the first step and the second step
The partial discharge is easily performed because the partial discharge signal accompanying the progress of the electrical tree is detected by performing the partial charge measurement by repeating the step 1 and multiple times one or more times and measuring the partial discharge in each second step. Can be measured.

【0010】[0010]

【実施例】以下本発明の実施例を詳細に説明する。本実
施例で使用した電力ケーブルは絶縁厚10mm、長さ2
0mのCVケーブルであり、前記電力ケーブル中央部に
模擬突起として、金属針をケーブル外部より絶縁体中に
深さ2mm挿入したものである。
EXAMPLES Examples of the present invention will be described in detail below. The power cable used in this example has an insulation thickness of 10 mm and a length of 2
This is a 0 m CV cable in which a metal needle is inserted into the insulator from the outside of the cable to a depth of 2 mm as a simulated protrusion at the center of the power cable.

【0011】この電力ケーブルに第1ステップとして図
1(a)に示すような−400kvのピーク値を持つ減
衰振動波を20回印加し、続いて第2ステップとして図
1(b)に示すような130kvのピーク値を持つ繰り
返し周波数0.1Hzの三角波電圧を印加して同時に部
分放電の測定を行う。この結果三角波電圧の印加開始と
同時に部分放電の発生が確認された。このことは第1ス
テップの減衰振動波の印加により、電力ケーブルの模擬
突起部分から電気トリーが発生したことを示す。更に、
三角波の課電を継続したところ、前記三角波印加開始よ
り11分で部分放電が急増して破壊が発生した。
As a first step, a damped oscillatory wave having a peak value of -400 kv as shown in FIG. 1 (a) was applied to this power cable 20 times, and then as a second step, as shown in FIG. 1 (b). The partial discharge is simultaneously measured by applying a triangular wave voltage having a repeating frequency of 0.1 Hz having a peak value of 130 kv. As a result, it was confirmed that the partial discharge was generated at the same time when the application of the triangular wave voltage was started. This indicates that the electrical tree was generated from the simulated protrusion portion of the power cable by the application of the damping vibration wave in the first step. Furthermore,
When the triangular wave was continuously applied, the partial discharge rapidly increased 11 minutes after the start of the application of the triangular wave, and the destruction occurred.

【0012】次に本発明の他実施例について説明する。
前記電力ケーブルに第1ステップで−280kvのピー
ク値を持つ減衰振動波を10回印加し、続いて第2ステ
ップで130kvのピーク値を持つ繰り返し周波数0.
1Hzの三角波電圧を10分間印加して同時に部分放電
の測定を行い、この課電サイクルを数回繰り返す(図2
参照)。この結果課電サイクル5回目の三角波印加開始
と同時に部分放電の発生が確認された。これは部分放電
発生の直前の減衰振動波印加により欠陥部から電気トリ
ーが発生したことを示す。更に、三角波の課電を継続す
ると、前記三角波印加開始より9分後に絶縁破壊が発生
した。
Next, another embodiment of the present invention will be described.
In the first step, a damped oscillatory wave having a peak value of −280 kv was applied to the power cable 10 times, and then in a second step, a repetition frequency of 0.
A triangular wave voltage of 1 Hz was applied for 10 minutes to measure partial discharge at the same time, and this charging cycle was repeated several times (Fig. 2).
reference). As a result, it was confirmed that partial discharge was generated at the same time when the triangular wave application was started for the fifth time of the charging cycle. This indicates that an electrical tree was generated from the defect due to the application of the damping oscillatory wave immediately before the occurrence of partial discharge. Further, when the triangular wave was continuously applied, dielectric breakdown occurred 9 minutes after the start of the triangular wave application.

【0013】以上示したように、本発明の検出方法で
は、電圧の印加時間、印加回数および電圧波のピーク値
をいずれも低減することができ、装置の低電圧化、コン
パクト化、試験運用の効率化等で著しい効果を持つこと
がわかる。
As described above, according to the detection method of the present invention, it is possible to reduce the voltage application time, the number of times of application, and the peak value of the voltage wave. It can be seen that there is a remarkable effect in improving efficiency.

【0014】次に本発明との比較例(従来例)について
説明する。実験に用いた電力ケーブルは本発明の上記2
つの実施例で用いたものと同じ構造、サイズのものであ
る。第1比較例は、減衰振動波のみ印加し欠陥を検出す
るもので、−400kvのピーク値を持つ波形(図4参
照)を繰り返し印加する。この結果印加58回目に模擬
突起から絶縁破壊が発生した。そこで部分放電の検出を
試みたが、減衰振動波発生時のインパルス性のノイズの
ため測定できなかった。
Next, a comparative example (conventional example) with the present invention will be described. The power cable used in the experiment is the above-mentioned 2 of the present invention.
It has the same structure and size as those used in the one embodiment. In the first comparative example, only a damped oscillatory wave is applied to detect a defect, and a waveform having a peak value of −400 kv (see FIG. 4) is repeatedly applied. As a result, dielectric breakdown occurred from the simulated protrusion at the 58th application. Therefore, we tried to detect the partial discharge, but could not measure it because of impulsive noise when the damped oscillatory wave was generated.

【0015】また第2比較例は超低周波のみを印加し欠
陥を検出するもので、350kvのピーク値を持つ繰り
返し周波数0.1Hzの三角波電圧(図5参照)を印加
する。該三角波を印加しながら同時に部分放電の測定を
行うと課電を開始してから15分後に部分放電が発生
し、課電を継続するとその後37分して絶縁破壊が発生
した。
In the second comparative example, only a very low frequency is applied to detect a defect, and a triangular wave voltage having a peak value of 350 kv and a repetition frequency of 0.1 Hz (see FIG. 5) is applied. When the partial discharge was simultaneously measured while applying the triangular wave, a partial discharge occurred 15 minutes after the start of voltage application, and a dielectric breakdown occurred 37 minutes after the voltage application was continued.

【0016】以上示したように、従来の減衰振動波単独
の印加による検出方法では部分放電の測定が困難である
ばかりでなく、絶縁破壊までの印加回数が多くなり、ま
た超低周波単独の印加による検出方法では絶縁破壊が発
生するまでの印加時間および印加電圧が共に増加し、装
置の低電圧化、コンパクト化、試験運用の効率化等で問
題が多いことがわかる。
As described above, not only is it difficult to measure partial discharge by the conventional detection method by applying a damped oscillatory wave alone, but the number of applications until dielectric breakdown increases, and the application of an ultra-low frequency alone is applied. It can be seen that the detection method according to (1) increases both the application time and the applied voltage until dielectric breakdown occurs, and there are many problems in reducing the voltage of the device, making it compact, and improving the efficiency of test operation.

【0017】なお、本実施例では超低周波として0.1
Hzの三角波を用いたが、超低周波としては他に1Hz
以下の周波数である三角波、矩形波(図3(a)参
照)、正弦波(図3(b)参照)等の波形を用いること
もできる。また、減衰振動波の充電電圧は負極性のみを
用いたが、正極性を用いるもしくは、負極性と正極性を
交互に用いる方法等さまざまな組合わせが考えられる
が、これらのいずれでも適用することができる。さらに
減衰振動波電圧の印加回数、超低周波電圧の印加時間等
も適宜選択しうる。
In this embodiment, the ultra low frequency is 0.1.
I used a triangular wave of 1Hz, but as an ultra-low frequency, another 1Hz
Waveforms such as a triangular wave, a rectangular wave (see FIG. 3A), and a sine wave (see FIG. 3B) having the following frequencies can also be used. Also, although only the negative polarity was used for the charging voltage of the damped oscillatory wave, various combinations such as the method of using the positive polarity or the method of alternately using the negative polarity and the positive polarity are conceivable. Any of these may be applied. You can Further, the number of times the damping vibration wave voltage is applied, the application time of the ultra-low frequency voltage, and the like can be appropriately selected.

【0018】また、減衰振動波の振動周波数は、電力ケ
ーブル全長に対する波形の一様性の面から1〜10KH
zの範囲に含まれることが望ましい。さらに、部分放電
測定は必要に応じて省略することもよい。
The vibration frequency of the damped vibration wave is 1 to 10 KH in terms of waveform uniformity with respect to the entire length of the power cable.
It is desirable to be included in the range of z. Further, the partial discharge measurement may be omitted if necessary.

【0019】[0019]

【発明の効果】本発明の電力ケーブル線路の欠陥検出方
法は、第1ステップで減衰振動波を1または複数回印加
し、第2ステップで超低周波電圧波を印加し、第1ステ
ップと第2ステップを一組とした課電を1または複数回
繰り返して行うので、電気トリーを発生させる能力の高
い減衰振動波で欠陥部から電気トリーを発生させ、超低
周波電圧で前記発生した電気トリーが容易に進展させら
れ、また一回で発生しなかった電気トリーを確実に発生
させる。また、前記第1のステップと第2のステップと
を一組とした課電を1または複数回繰り返して行い、各
第2ステップにおいて部分放電測定を行うことにより電
気トリーの進展に伴う部分放電信号を検知するので、部
分放電が容易に測定できる。したがって、試験電圧を低
電圧化でき、装置がコンパクト化でき、また試験運用が
効率よくできる等の効果を発揮する。
According to the defect detecting method of the power cable line of the present invention, the damping vibration wave is applied one or more times in the first step, and the ultra low frequency voltage wave is applied in the second step. Since the electric power application consisting of two steps is repeated one or more times, the electric tree is generated from the defective portion by the damped oscillatory wave having a high ability to generate the electric tree, and the generated electric tree is generated by the super low frequency voltage. Can be easily developed, and an electric tree that has not been generated at one time can be reliably generated. In addition, a partial discharge signal associated with the progress of the electric tree is obtained by performing the electric charging with the set of the first step and the second step once or a plurality of times and measuring the partial discharge in each second step. Is detected, the partial discharge can be easily measured. Therefore, the test voltage can be lowered, the device can be made compact, and the test operation can be efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いる課電波形で、(a)は
減衰振動波、(b)は超低周波である。
FIG. 1 is a waveform of a voltage applied in an embodiment of the present invention, in which (a) is a damping vibration wave and (b) is an extremely low frequency.

【図2】本発明の他実施例で用いる課電波形を示すもの
である。
FIG. 2 is a diagram showing an applied waveform used in another embodiment of the present invention.

【図3】本発明に用いる超低周波の変形例を示すもの
で、(a)は矩形波、(b)は正弦波である。
3A and 3B show modifications of an ultralow frequency used in the present invention, where FIG. 3A is a rectangular wave and FIG. 3B is a sine wave.

【図4】従来の減衰振動波電圧の課電による波形を示す
ものである。
FIG. 4 shows a conventional waveform of a damped oscillatory voltage caused by charging.

【図5】従来の超低周波電圧の課電による三角波形を示
すものである。
FIG. 5 is a diagram showing a triangular waveform due to charging of a conventional ultra-low frequency voltage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 秀郎 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 佐久間 進 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 藤井 治 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 田辺 輝義 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Tanaka 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Susumu Sakuma 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Osamu Fujii 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Teruyoshi Tanabe 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電力ケーブルの欠陥部を減衰振動波電
圧、超低周波電圧の課電により検出する電力ケーブル線
路の欠陥検出方法において、第1ステップで減衰振動波
を1または複数回印加し、第2ステップで超低周波電圧
波を印加し、第1ステップと第2ステップを一組とした
課電を1または複数回繰り返して行い、この課電により
ケーブルを破壊させ、ケーブルの欠陥部を検出すること
を特徴とする電力ケーブル線路の欠陥検出方法。
1. A defect detection method for a power cable line, which detects a defective portion of a power cable by applying a damped vibration wave voltage or an ultra-low frequency voltage, wherein the damped vibration wave is applied one or more times in a first step, In the second step, an ultra-low frequency voltage wave is applied, and the voltage application with the first step and the second step as one set is repeated one or more times, and the cable is destroyed by this voltage application, and the defective portion of the cable is removed. A method for detecting a defect in a power cable line, which is characterized by detecting.
【請求項2】前記第1のステップと第2のステップとを
一組とした課電を1または複数回繰り返して行い、各第
2ステップにおいて部分放電測定を行い、電気トリーの
進展に伴う部分放電信号を検知してケーブルの欠陥部を
検出することを特徴とする請求項1記載の電力ケーブル
線路の欠陥検出方法。
2. A method in which the first step and the second step are electrically charged as one set is repeated one or more times, and partial discharge measurement is performed in each second step. The method for detecting a defect in a power cable line according to claim 1, wherein a defective portion of the cable is detected by detecting a discharge signal.
JP12715693A 1993-05-28 1993-05-28 Method for detecting defect of power cable line Pending JPH06337280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12715693A JPH06337280A (en) 1993-05-28 1993-05-28 Method for detecting defect of power cable line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12715693A JPH06337280A (en) 1993-05-28 1993-05-28 Method for detecting defect of power cable line

Publications (1)

Publication Number Publication Date
JPH06337280A true JPH06337280A (en) 1994-12-06

Family

ID=14953025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12715693A Pending JPH06337280A (en) 1993-05-28 1993-05-28 Method for detecting defect of power cable line

Country Status (1)

Country Link
JP (1) JPH06337280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1593981A2 (en) * 2004-05-04 2005-11-09 General Electric Company Partial discharge detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1593981A2 (en) * 2004-05-04 2005-11-09 General Electric Company Partial discharge detection device
JP2005345465A (en) * 2004-05-04 2005-12-15 General Electric Co <Ge> Low current ac partial discharge diagnosing system for wiring diagnosis

Similar Documents

Publication Publication Date Title
Okamoto et al. Novel partial discharge measurement computer-aided measuremnet systems
Okubo et al. The relationship between partial discharge current pulse waveforms and physical mechanisms
Ren et al. Research on the effect of unipolar pulse wave voltage on space charge characteristics for high-frequency equipment insulation
JPH0551105B2 (en)
JPH07311236A (en) Method for detecting defect of power cable line
JPH06337280A (en) Method for detecting defect of power cable line
Kagawa et al. Acoustic emission associated with tree growth in polymeric materials
JP4101120B2 (en) Test method for solid insulated cable
JPH11202019A (en) Test method for withstand voltage of power cable
US4135130A (en) Method of testing gas insulated systems for the presence of conducting particles utilizing a gas mixture of nitrogen and sulfur hexafluoride
Wada et al. Partial discharge inception voltage for two insulating materials (PVC and PE) under inverter surge voltage
JP2562490B2 (en) Insulation performance test method for plastic insulated cables
JP3197000B2 (en) Field test method for special high-voltage line using switching surge
JP3524320B2 (en) Withstand voltage test method for rubber and plastic insulated power cables
JP3524345B2 (en) Withstand voltage test method for rubber and plastic insulated power cables
Zhou et al. The influence of thermal aging on space charge distribution in oil-impregnated paper under AC field
Takeda et al. Assessment of Charge Behavior in Electrical Tree Tube Based on Characteristics of Partial Discharge Waveform
JPS6330584B2 (en)
JPS62273469A (en) Method and apparatus for detection and forecasting of external partial discharge and creeping flashover at withstand voltage test of electric equipment
JPH07159478A (en) Method for detecting defect of power cable line
JP2010261735A (en) Method for testing quality of solid insulation cable
JPS6378061A (en) Detection of defective part of plastic-insulated cable
Zouaghi et al. Analysis of Corona and Surface Discharge Signals from Different Non-Intrusive Sensors under HVDC
Hongyi Analysis of partial discharge characteristics under lightning impulse voltage in GIS
JP2003028914A (en) Method of evaluating and testing polarity inverting ability of high-voltage insulated equipment for dc power transmission