JPH06337245A - Emission spectrochemical analysis - Google Patents

Emission spectrochemical analysis

Info

Publication number
JPH06337245A
JPH06337245A JP12661793A JP12661793A JPH06337245A JP H06337245 A JPH06337245 A JP H06337245A JP 12661793 A JP12661793 A JP 12661793A JP 12661793 A JP12661793 A JP 12661793A JP H06337245 A JPH06337245 A JP H06337245A
Authority
JP
Japan
Prior art keywords
gas
component
analysis
sample
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12661793A
Other languages
Japanese (ja)
Inventor
Yoshiro Matsumoto
義朗 松本
Kazuya Ishii
一也 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12661793A priority Critical patent/JPH06337245A/en
Publication of JPH06337245A publication Critical patent/JPH06337245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To utilize an analyzing method as a method for managing and analyzing adapted, for example, for an iron steel process, etc., in which contents of an N component, an O component and/or a C component in a solid sample to be analyzed can be rapidly and accurately measured. CONSTITUTION:A method for emission spectrochemically analyzing a solid sample to be analyzed and placed on a sample base 12 by discharging between an analyzing surface of the sample 13 and electrodes 15 oppositely disposed on the analyzing surface, spectrally analyzing a generated spectrum from components in the sample 13 comprises the steps of correcting spectra according to concentrations of N2 gas, O2 gas and CO2 gas existing in an atmosphere to be discharged, and deciding contents of an N component, an 0 component and/or a C component in the sample 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光分光分析方法に関
し、より詳細には主として鉄鋼業等で微量成分の分析に
用いられる発光分光分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical emission spectroscopic analysis method, and more particularly to an optical emission spectroscopic analysis method mainly used for the analysis of trace components in the steel industry.

【0002】[0002]

【従来の技術】近年、鉄鋼品種の多様化、高品質化及び
製鋼加工技術の進歩に伴い、鉄鋼中に含まれる微量成
分、特に窒素成分、酸素成分及び炭素成分等の量を厳密
にコントロールする技術が進歩してきたが、一方これら
の技術の裏付けとして前記微量成分の定量分析が重要に
なってきている。
2. Description of the Related Art In recent years, with the diversification of steel types, the improvement of quality, and the progress of steelmaking processing technology, the amounts of trace components, especially nitrogen, oxygen and carbon components contained in steel have been strictly controlled. Although technology has advanced, on the other hand, quantitative analysis of the above-mentioned trace components has become important as a proof of these technologies.

【0003】また、製鋼、精練工程はオンライン操業で
あるので、前記微量成分の分析は迅速かつ正確に行わ
れ、その分析結果が速やかに製鋼、精練工程にフィード
バックされる必要がある。
Further, since the steel making and refining processes are on-line operations, it is necessary that the analysis of the trace components is carried out quickly and accurately, and the analysis results are promptly fed back to the steel making and refining processes.

【0004】従来から鉄鋼中の微量成分を分析する方法
として、以下のような方法がある。まず、微量成分の化
学分析法に関しては、例えばC成分の分析法として、固
体試料から少量(0.5〜3g)の試料を採取し、重量
法やガス容量法等の燃焼法によって分析する方法があ
り、N成分の分析法として、固体試料から少量(0.5
〜1g)の試料を採取し、湿式法(水蒸気蒸留中和滴定
法、水蒸気蒸留ビスピラゾロン吸光光度法、水蒸気蒸留
インドフェノール吸光光度法)あるいは乾式法(不活性
ガス搬送−溶融熱伝導法)により分析する方法等があ
る。
Conventionally, the following methods have been known as methods for analyzing trace components in steel. First, regarding a chemical analysis method for a trace component, for example, as a C component analysis method, a small amount (0.5 to 3 g) of a sample is collected from a solid sample and analyzed by a combustion method such as a weight method or a gas volume method. There is a small amount (0.5
~ 1g) sample is taken by wet method (steam distillation neutralization titration method, steam distillation bispyrazolone absorption spectrophotometry, steam distillation indophenol absorption spectrophotometry) or dry method (inert gas transfer-melt heat conduction method) There is a method of analysis.

【0005】一方、これらの微量成分を同時に分析でき
る分析法として、固体試料を切断、研磨し、試料の研磨
面を放電させることにより発光させてそのスペクトルを
分析する発光分光分析方法がある。
On the other hand, as an analytical method capable of simultaneously analyzing these trace components, there is an emission spectroscopic analysis method in which a solid sample is cut and polished, and the polished surface of the sample is discharged to emit light to analyze its spectrum.

【0006】前者の化学分析法は高い精度が得られると
いう長所がある反面、試料の調製が煩雑であり、分析に
長時間を要するという短所がある。
The former chemical analysis method has the advantage that high accuracy can be obtained, but has the disadvantage that the sample preparation is complicated and the analysis requires a long time.

【0007】一方、発光分光分析方法は迅速に分析を行
うことができるという長所があり、しかも最近のエレク
トロニクス技術等の技術の進歩に伴いその分析精度も進
歩してきている。
On the other hand, the emission spectroscopic analysis method has an advantage that analysis can be carried out quickly, and further, the accuracy of analysis has been improved with the recent progress of the technology such as electronic technology.

【0008】従って、高度の分析精度と分析の迅速性が
必須要件とされる製鋼プロセスの管理分析における鉄鋼
中の微量成分の分析には、このような必須要件を満足す
る発光分光分析方法が広く利用されるようになってきて
いる。
Therefore, for the analysis of trace components in steel in the control analysis of the steelmaking process, in which a high degree of analytical precision and a rapidness of analysis are essential requirements, an emission spectroscopic analysis method satisfying such essential requirements is widely used. It is being used.

【0009】[0009]

【発明が解決しようとする課題】しかし、上記発光分光
分析方法を現実の製造現場に適用した場合、分析すると
きが異なると、発光スタンド内の雰囲気中に存在するN
2 ガス、O2 ガス及びCO2 ガスの濃度が異なるため、
分析する固体試料中のN成分、O成分及びC成分に対応
する発光スペクトルの強度が前記N2 ガス等による発光
スペクトルに影響され、分析値に誤差が生じるという課
題があった。
However, when the above-mentioned emission spectroscopic analysis method is applied to an actual manufacturing site, if the analysis time is different, the N existing in the atmosphere inside the light emission stand is different.
Since the concentrations of 2 gas, O 2 gas and CO 2 gas are different,
There is a problem that the intensity of the emission spectrum corresponding to the N component, the O component, and the C component in the solid sample to be analyzed is influenced by the emission spectrum due to the N 2 gas or the like, and an error occurs in the analysis value.

【0010】本発明はこのような課題に鑑みなされたも
のであり、発光スペクトルの分析時にその分析精度を劣
化させるN2 ガス、O2 ガス及びCO2 ガスによる発光
スペクトルの影響を排除し、良好な分析精度を維持する
ことができる発光分光分析方法を提供することを目的と
している。
The present invention has been made in view of the above problems, and eliminates the influence of the emission spectrum due to N 2 gas, O 2 gas and CO 2 gas which deteriorates the accuracy of analysis at the time of emission spectrum analysis. It is an object of the present invention to provide an emission spectroscopic analysis method capable of maintaining high analysis accuracy.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る発光分光分析方法は、試料台に載置した
分析用固体試料の分析面と、該分析面に対向配置された
電極との間で放電させ、発生したスペクトルを分光して
固体試料中の成分の分析を行う発光分光分析方法におい
て、放電させる雰囲気中に存在するN2 ガス、O2 ガス
及びCO2 ガスの濃度により分光スペクトルの補正を行
い、前記固体試料中のN成分、O成分及び/又はC成分
の含有量を決定することを特徴としている。
In order to achieve the above object, an emission spectroscopic analysis method according to the present invention is directed to an analysis surface of a solid sample for analysis mounted on a sample stage and an electrode arranged to face the analysis surface. In the emission spectroscopic analysis method in which a discharge spectrum is generated by analyzing the components in a solid sample by analyzing the generated spectrum, the concentration of N 2 gas, O 2 gas and CO 2 gas existing in the atmosphere to be discharged It is characterized in that the content of N component, O component and / or C component in the solid sample is determined by correcting the spectral spectrum.

【0012】[0012]

【作用】上記発光分光分析方法によれば、試料台に載置
した分析用固体試料の分析面と、該分析面に対向配置さ
れた電極との間で放電させ、発生したスペクトルを分光
して固体試料中の成分の分析を行う発光分光分析方法に
おいて、放電させる雰囲気中に存在するN2 ガス、O2
ガス及びCO2 ガスの濃度により分光スペクトルの補正
を行い、前記固体試料中のN成分、O成分及び/又はC
成分の含有量を決定するので、放電させる雰囲気中に存
在する前記N2 ガス、O2 ガス及びCO2ガスの濃度に
影響されず、前記固体試料中のN成分、O成分及び/又
はC成分の含有量が迅速に、かつ精度良く測定される。
According to the above-mentioned emission spectroscopic analysis method, discharge is generated between the analysis surface of the solid sample for analysis placed on the sample table and the electrode arranged opposite to the analysis surface, and the generated spectrum is dispersed. In an emission spectroscopic analysis method for analyzing components in a solid sample, N 2 gas and O 2 existing in an atmosphere to be discharged
The spectral spectrum is corrected by the concentrations of the gas and the CO 2 gas, and the N component, O component and / or C in the solid sample is corrected.
Since the contents of the components are determined, the N component, the O component and / or the C component in the solid sample are not affected by the concentrations of the N 2 gas, O 2 gas and CO 2 gas existing in the atmosphere to be discharged. The content of is measured quickly and accurately.

【0013】[0013]

【実施例】以下本発明に係る発光分光分析方法の実施例
を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an emission spectroscopic analysis method according to the present invention will be described below with reference to the drawings.

【0014】図1は実施例に係る方法に用いる発光分光
分析装置の主要部を示した概略図であり、図中、11は
発光スタンドを示している。
FIG. 1 is a schematic view showing the main part of an emission spectroscopic analysis apparatus used in the method according to the embodiment. In the figure, 11 indicates a light emission stand.

【0015】発光分光分析装置を構成する発光スタンド
11の端部は水平面に対し斜め下方に突出形成されてお
り、その突出部上面に試料台12が配設され、試料台1
2の中央部には試料台孔12aが形成されている。試料
台12の上面には、試料台孔12aを閉じるように試料
台12に密着して分析用固体試料13が配置されてお
り、分析用固体試料13の上には分析用固体試料13を
試料台12上に密着、固定させるための試料押え14が
配設されている。
The end of the light emission stand 11 which constitutes the emission spectroscopic analysis device is formed so as to project obliquely downward with respect to the horizontal plane, and the sample table 12 is disposed on the upper surface of the projecting part.
A sample stand hole 12a is formed in the center of the sample 2. On the upper surface of the sample table 12, a solid sample 13 for analysis is arranged in close contact with the sample table 12 so as to close the sample hole 12a, and the solid sample 13 for analysis is placed on the solid sample 13 for analysis. A sample retainer 14 is provided on the table 12 for closely contacting and fixing.

【0016】一方、発光スタンド11内部には、試料台
孔12aと対向する位置に所定の間隔をおいて対電極1
5が配設されており、これら対電極15及び試料台12
等が配設されている位置の反対側には集光レンズ16が
配設されている。対電極15は電源21に接続されてお
り、電源21は制御線を介してコンピュータ22に接続
されている。
On the other hand, inside the light emitting stand 11, the counter electrode 1 is provided at a position facing the sample stand hole 12a with a predetermined interval.
5 are provided, and the counter electrode 15 and the sample table 12 are provided.
A condenser lens 16 is arranged on the opposite side of the position where the above are arranged. The counter electrode 15 is connected to a power source 21, and the power source 21 is connected to a computer 22 via a control line.

【0017】また、発光スタンド11内部の雰囲気を一
定のガス雰囲気に保つために、集光レンズ16付近及び
対電極15付近にそれぞれガス導入管17a、17bが
接続されており、試料台12の先端側付近にはガス排出
管18が接続されている。さらに放電させる雰囲気中の
ガス成分を分析するためにガス濃度分析用配管19が発
光スタンド11に接続され、このガス濃度分析用配管1
9はガス濃度測定器20に接続され、発光スタンド11
内のガス成分及びその濃度を分析することができるよう
になっている。
Further, in order to keep the atmosphere inside the light emitting stand 11 at a constant gas atmosphere, gas introducing tubes 17a and 17b are connected near the condenser lens 16 and near the counter electrode 15, respectively, and the tip of the sample table 12 is connected. A gas exhaust pipe 18 is connected near the side. Further, a gas concentration analysis pipe 19 is connected to the light emitting stand 11 in order to analyze a gas component in the atmosphere to be discharged.
9 is connected to a gas concentration measuring device 20, and a light emitting stand 11
It is possible to analyze the gas components and their concentrations.

【0018】以上のように構成された発光分光分析装置
を用い、以下のようにして分析用固体試料13中のN成
分、O成分及び/又はC成分の発光分光分析を行う。
Using the emission spectroscopic analyzer configured as described above, the emission spectroscopic analysis of the N component, the O component and / or the C component in the analytical solid sample 13 is performed as follows.

【0019】まず、分析用固体試料13を試料台孔12
aを閉じるように試料台12に載置し、試料押え14に
より分析用固体試料13を押え、分析用固体試料13を
試料台12に密着させる。このようにして分析用固体試
料13を試料台12にセットした後、ガス導入管17a
又はガス導入管17bより純度99.999vol%の
Arガス又は純度99.999vol%のHeガスを例
えば13リットル/分の流量で導入し、放電させる雰囲
気を前記ガスの雰囲気にする。所定時間経過後にガス濃
度分析用配管19を用いて放電させる雰囲気のガスをガ
ス濃度測定器20内に導入し、放電させる雰囲気のガス
成分の濃度を分析する。ガス濃度測定器20は、実際に
はガスクロマトグラフィー装置及び赤外線吸収測定装置
からなり、ガスクロマトグラフィー装置によりN2 ガス
やO2 ガスの濃度を分析し、赤外線吸収測定装置により
CO2 ガス濃度を分析する。
First, the solid sample 13 for analysis is placed in the sample holder hole 12.
It is placed on the sample table 12 so as to close a, and the analysis solid sample 13 is pressed by the sample holder 14 to bring the analysis solid sample 13 into close contact with the sample table 12. After the solid sample 13 for analysis is set on the sample table 12 in this manner, the gas introduction pipe 17a
Alternatively, an Ar gas having a purity of 99.999 vol% or a He gas having a purity of 99.999 vol% is introduced from the gas introduction pipe 17b at a flow rate of, for example, 13 liter / min, and the atmosphere for discharging is set to the atmosphere of the gas. After the elapse of a predetermined time, the gas in the atmosphere for discharging is introduced into the gas concentration measuring device 20 by using the gas concentration analysis pipe 19, and the concentration of the gas component in the atmosphere for discharging is analyzed. The gas concentration measuring device 20 actually comprises a gas chromatography device and an infrared absorption measuring device. The gas chromatography device analyzes the concentrations of N 2 gas and O 2 gas, and the infrared absorption measuring device measures the CO 2 gas concentration. analyse.

【0020】その後、分析用固体試料13を一定の温度
になるように加熱手段(図示せず)により加熱し、分析
用固体試料13が所定の温度に到達すると、その温度を
検知した温度検出装置(図示せず)はコンピュータ22
に信号を送信し、この信号を受け取ったコンピュータ2
2は電源21に信号を送り、所定のタイミングで対電極
15と分析用固体試料13との間に電圧を印加し、分析
用固体試料13と対電極15との間で放電させる。この
時の放電はトリプルコンバインドスパーク放電で行われ
る。
After that, the solid sample for analysis 13 is heated by a heating means (not shown) so as to have a constant temperature, and when the solid sample for analysis 13 reaches a predetermined temperature, a temperature detecting device for detecting the temperature. Computer 22 (not shown)
Computer 2 which sends a signal to and receives this signal
2 sends a signal to the power supply 21, applies a voltage between the counter electrode 15 and the solid sample 13 for analysis at a predetermined timing, and discharges between the solid sample 13 for analysis and the counter electrode 15. The discharge at this time is performed by triple combined spark discharge.

【0021】図2はトリプルコンバインドスパーク放電
の電流波形図であり、横軸に時間、縦軸に電流値をとっ
ている。トリプルコンバインドスパーク放電では、初め
にハイパワースパーク放電を15μs間行い、次にスパ
ーク放電を20μs間行い、最後にアークライク放電を
120μs間行う。測光はスパーク放電の時に行われ
る。
FIG. 2 is a current waveform diagram of triple combined spark discharge, in which the horizontal axis represents time and the vertical axis represents current value. In triple combined spark discharge, high-power spark discharge is first performed for 15 μs, then spark discharge is performed for 20 μs, and finally arc-like discharge is performed for 120 μs. Photometry is performed during spark discharge.

【0022】この放電により生じた発光は、集光レンズ
16により集光され、図示しない分光器に送られてその
スペクトル線が選択され、その測光値23がコンピュー
タ22にインプットされる。
The light emitted by this discharge is condensed by the condenser lens 16 and sent to a spectroscope (not shown) to select its spectral line, and its photometric value 23 is input to the computer 22.

【0023】本実施例において鉄鋼中のN成分、O成分
及びC成分の分析を行う場合、Nのスペクトル線(分析
線)として149.2nm、Oのスペクトル線として1
30.2nm、Cのスペクトル線として165.8nm
をそれぞれ選択し、Feの内標準線として287.2n
mを選択する。測光は時間分解測光法を用いて行い、ト
リプルコンバインドスパーク放電のスパーク放電におけ
る前記各成分のスペクトル線と鉄287.2nmとの発
光強度比をPDA(Pulse-Height DistributionAnalysis
)処理し、前記方法により処理されたパルス分布の中
央値を測定強度として求める。この時、予備放電パルス
数を1000パルスとし、PDA測光パルス数を150
0パルスとする。
In the present embodiment, when the N component, the O component and the C component in steel are analyzed, the N spectrum line (analysis line) is 149.2 nm and the O spectrum line is 1
30.2 nm, 165.8 nm as the spectrum line of C
As the Fe internal standard line, 287.2n
Select m. The photometry is performed using a time-resolved photometric method, and the emission intensity ratio between the spectral line of each component in the spark discharge of triple combined spark discharge and iron 287.2 nm is measured by PDA (Pulse-Height Distribution Analysis).
), And obtain the median value of the pulse distribution processed by the above method as the measurement intensity. At this time, the number of preliminary discharge pulses is set to 1000 and the number of PDA photometric pulses is set to 150.
Set to 0 pulse.

【0024】コンピュータ22内では、上記した方法に
より得られた鉄鋼試料中の前記N成分、O成分及びC成
分に対応するスペクトル線の強度をArガスやHeガス
中のN2 ガス、O2 ガス及びCO2 ガスの濃度に基づい
て補正する処理が行われるが、その方法を以下に説明す
る。
In the computer 22, the intensities of the spectral lines corresponding to the N, O and C components in the steel sample obtained by the above-mentioned method are determined by the N 2 gas and O 2 gas in Ar gas and He gas. The correction process is performed based on the CO 2 gas concentration and the CO 2 gas concentration. The method will be described below.

【0025】鉄鋼中のi成分の含有量Wiは、基本的に
は下記の数1式により求めることができる。
The content Wi of the i component in the steel can be basically obtained by the following formula 1.

【0026】[0026]

【数1】 [Equation 1]

【0027】上記したi成分のネット発光強度Ii(N)
は、発光分光分析装置で測光されるi成分のピーク発光
強度Ii(P)とi成分のバックグランド発光強度Ii(B)と
から下記の数2式で表される。
Net emission intensity I i (N) of the above-mentioned i component
Is expressed by the following formula 2 from the peak emission intensity I i (P) of the i component and the background emission intensity I i (B) of the i component measured by the emission spectroscopic analyzer.

【0028】[0028]

【数2】 [Equation 2]

【0029】ここで、数2式中のi成分のバックグラン
ド発光強度Ii(B)が放電させる雰囲気中のN2 ガス、O
2 ガス及びCO2 ガスの濃度に影響される。その影響を
考慮すると、前記i成分のバックグランド発光強度I
i(B)を、放電させる雰囲気中のN2 ガス、O2 ガス及び
CO2 ガスの濃度の関数として下記の数3式で表すこと
ができる。
Here, the background emission intensity I i (B) of the i component in the equation (2) is N 2 gas and O in the atmosphere to be discharged.
It is affected by the concentrations of 2 gas and CO 2 gas. Considering its influence, the background emission intensity I of the i component is
i (B) can be expressed by the following formula 3 as a function of the concentrations of N 2 gas, O 2 gas and CO 2 gas in the atmosphere to be discharged.

【0030】[0030]

【数3】 [Equation 3]

【0031】上記した数3式中のa、b、c、dの定数
は、以下のような方法により求めることができる。
The constants a, b, c and d in the above equation 3 can be obtained by the following method.

【0032】放電させる雰囲気をArガスとし、分析す
る鉄鋼試料中のi成分をN成分とした場合を例にとって
説明する。まずArガス以外に他のN2 等のガスを含有
しない雰囲気になるように放電させる雰囲気を調製し、
N成分の含有量が既知の鉄鋼試料を用意し、そのピーク
発光強度Ii(P)を測定する。N成分の含有量が異なる鉄
鋼試料について何回か前記実験を繰り返し、鉄鋼試料中
のN成分の含有量とN成分のピーク発光強度IN(P)との
関係をグラフにプロットする。
An example will be described in which the atmosphere for discharging is Ar gas and the i component in the steel sample to be analyzed is the N component. First, an atmosphere for discharging is prepared so as to be an atmosphere containing no gas other than Ar gas such as N 2 .
A steel sample having a known content of N component is prepared, and its peak emission intensity I i (P) is measured. The above experiment is repeated several times for steel samples having different N component contents, and the relationship between the N component content in the steel samples and the peak emission intensity I N (P) of the N component is plotted in a graph.

【0033】図3は鉄鋼試料中のN成分の含有量とピー
ク発光強度IN(P)との関係を示すグラフであり、直線
A、B、C、Dは放電させる雰囲気での発光強度を示し
たものである。直線Aは前記した純度99.999vo
l%のArガスでのピーク発光強度IN(P)のプロットを
結んだ線であり、N成分の含有量が0となる場合の発光
強度、すなわち縦軸と直線Aの交わった点が、この場合
のバックグランド発光強度IN(B)となる。前記Arガス
では、X(N2)=X(O2)=X(CO2) =0とし、数3式より
前記したN成分のバックグランド発光強度IN(B)がdの
値となり、図3よりd=0.31となる。
FIG. 3 is a graph showing the relationship between the content of the N component in the steel sample and the peak emission intensity I N (P). The straight lines A, B, C and D show the emission intensity in the discharge atmosphere. It is shown. The straight line A indicates the above-mentioned purity of 99.999vo.
It is a line connecting the plots of the peak emission intensity I N (P) in 1% Ar gas, and the emission intensity when the content of the N component is 0, that is, the intersection of the vertical axis and the straight line A is The background emission intensity I N (B) in this case is obtained. In the Ar gas, X (N 2 ) = X (O 2 ) = X (CO 2 ) = 0, and the background emission intensity I N (B) of the N component described above from Equation 3 becomes the value of d, From FIG. 3, d = 0.31.

【0034】次に直線BはCO2 ガスのみが1ppm含
まれているArガスについて、直線Aの場合と同様にN
成分の含有量とピーク発光強度IN(P)との関係を示した
グラフであり、この場合のバックグランド発光強度I
N(B)はAの場合と同様にして求めると0.28となる。
この場合、X(N2)=X(O2)=0であるので、数3式に代
入すると、結果は下記の数4式のようになる。
Next, the straight line B is the same as in the case of the straight line A for the Ar gas containing only 1 ppm of CO 2 gas.
6 is a graph showing the relationship between the content of components and the peak emission intensity I N (P), showing the background emission intensity I in this case.
N (B) is 0.28 when calculated in the same manner as in the case of A.
In this case, X (N 2 ) = X (O 2 ) = 0, so when substituting into Equation 3, the result is as shown in Equation 4 below.

【0035】[0035]

【数4】 [Equation 4]

【0036】同様にN2 ガス及びO2 ガスを含有するA
rガスの系についても、バックグランド発光強度IN(B)
を求め、数3式に代入すると、下記の数5式及び数6式
のようになる。
Similarly, A containing N 2 gas and O 2 gas
The background emission intensity I N (B) is also observed for the r gas system.
Then, by substituting into Equation 3, the following Equation 5 and Equation 6 are obtained.

【0037】[0037]

【数5】 [Equation 5]

【0038】[0038]

【数6】 [Equation 6]

【0039】このようにしてa、b、c、dの定数を求
めることができ、その結果数3式は下記の数7式で表さ
れる。
In this way, the constants a, b, c, d can be obtained, and as a result, the equation (3) is expressed by the following equation (7).

【0040】[0040]

【数7】 [Equation 7]

【0041】上記方法と同様にして、O成分やC成分に
ついても数3式に相当するバックグランド発光強度I
i(B)についての式を求めることができる。数7式の導出
について図3を用いて説明したが、コンピュータでは回
帰式を用いることにより求めることができる。
Similar to the above method, the background emission intensity I corresponding to the equation (3) is also applied to the O and C components.
The formula for i (B) can be found. Although the derivation of Equation 7 has been described with reference to FIG. 3, it can be obtained by using a regression equation in a computer.

【0042】このようにして得られたi成分のバックグ
ランド発光強度Ii(B)の式を用いることにより数2式の
i成分のネット発光強度Ii(N)を求めることができ、こ
れより数1式の検量線定数kも求めることができる。
The net emission intensity I i (N) of the i component of the equation 2 can be obtained by using the formula of the background emission intensity I i (B) of the i component thus obtained. Therefore, the calibration curve constant k of the equation 1 can also be obtained.

【0043】以上のようにして、鉄鋼試料中のi成分の
含有量とi成分に対応する発光スペクトルの強度と放電
させる雰囲気中のN2 ガス、O2 ガス及びCO2 ガスの
濃度との関係式が求められ、これにより放電させる雰囲
気中のN2 ガス、O2 ガス及びCO2 ガスの濃度を考慮
に入れた補正が可能となり、鉄鋼試料中のN成分、O成
分及びC成分のより正確な含有量を求めることができ
る。
As described above, the relationship between the content of the i component in the steel sample and the intensity of the emission spectrum corresponding to the i component and the concentrations of N 2 gas, O 2 gas and CO 2 gas in the atmosphere to be discharged. A formula is obtained, which enables correction taking into consideration the concentrations of N 2 gas, O 2 gas, and CO 2 gas in the atmosphere to be discharged, and more accurate N, O, and C components in a steel sample. Can be obtained.

【0044】次に、上記の方法を用いて、実際に鉄鋼試
料中のN成分、O成分及びC成分を分析した結果を以下
に説明する。
Next, the results of actual analysis of the N, O and C components in a steel sample using the above method will be described below.

【0045】まず、放電させるガス雰囲気としてArガ
スを用い、放電させる雰囲気中に所定のN2 ガス及びO
2 ガスの濃度を有するArガスを導入し、ガス濃度分析
用配管19よりサンプリングし、ガスクロマトグラフィ
ー装置によりN2 ガス及びO2 ガスの分析を行った。こ
の場合、ガスクロマトグラフィー装置の分離カラムには
長さ3mのモレキュラーシーブ5A型を用い、検出器に
は熱伝導セルを用い、分析条件として分離カラムの温度
が70℃、検出器の温度が70℃、検出器の電流が70
mA、サンプリング間隔が5分及びサンプリング量が2
ミリリットルの条件で測定を行った。
First, Ar gas was used as a gas atmosphere for discharging, and a predetermined N 2 gas and O were added in the atmosphere for discharging.
Ar gas having a concentration of 2 gases was introduced, sampling was performed from the gas concentration analysis pipe 19, and N 2 gas and O 2 gas were analyzed by a gas chromatography device. In this case, a 3 m long molecular sieve 5A type was used for the separation column of the gas chromatography device, a heat conduction cell was used for the detector, and the separation column temperature was 70 ° C. and the detector temperature was 70 ° C. as analysis conditions. ℃, the detector current is 70
mA, sampling interval is 5 minutes and sampling amount is 2
The measurement was performed under the condition of milliliter.

【0046】図4は前記測定により得られた結果の一例
を示すガスクロマトグラフであり、縦軸に検知器の信号
(任意単位)、横軸に保持時間をとっている。
FIG. 4 is a gas chromatograph showing an example of the results obtained by the above measurement, in which the ordinate represents the signal of the detector (arbitrary unit) and the abscissa represents the retention time.

【0047】図4に示したように、前記条件によりO2
ガスのピークとN2 ガスのピークとがはっきりと分離さ
れており、前記した条件を用いて通常の方法で分析する
ことによりそれぞれの成分の定量を行うことができた。
As shown in FIG. 4, under the above conditions, O 2
The gas peak and the N 2 gas peak were clearly separated from each other, and the respective components could be quantified by performing an analysis by a usual method using the above-mentioned conditions.

【0048】同様にCO2 の濃度は赤外線吸収測定装置
を使用した非分散形赤外線吸収法により、4.3μmに
おけるCO2 の赤外線吸収ピークを用いて定量すること
ができた。
[0048] Similarly the CO 2 concentration by nondispersive infrared absorption method using the infrared absorption measuring device, could be quantified by using an infrared absorption peak of CO 2 in the 4.3 [mu] m.

【0049】前記方法により放電させる雰囲気ガス中の
2 ガス、O2 ガス及びCO2 ガスの濃度を定量し、成
分が既知の分析用鉄鋼試料の発光分光分析を行い、N成
分、O成分及びC成分について数7式に相当する式を
得、これより上記した数1式に相当する鉄鋼中のi成分
の含有量と、i成分に対応する発光スペクトルの強度
と、放電させる雰囲気中のN2 ガス、O2 ガス及びCO
2 ガスの濃度との関係式を求めた。
The concentrations of N 2 gas, O 2 gas and CO 2 gas in the atmosphere gas to be discharged by the above method were quantified, and the emission spectroscopic analysis of the steel samples for analysis whose components were already known was conducted. A formula corresponding to the formula 7 is obtained for the C component, and from this, the content of the i component in the steel corresponding to the formula 1 described above, the intensity of the emission spectrum corresponding to the i component, and the N in the atmosphere to be discharged. 2 gas, O 2 gas and CO
The relational expression with the concentration of two gases was obtained.

【0050】次に、N成分、O成分及びC成分の含有量
が未知の鉄鋼試料を用い、上記方法により放電させる雰
囲気中のN2 ガス、O2 ガス及びCO2 ガスの濃度を求
めた後、その値よりバックグランド発光強度Ii(B)を求
め、最終的に鉄鋼試料中のN成分、O成分及びC成分の
含有量を求めた。得られた分析値及び前記分析値の繰り
返し分析精度を表1に示す。また、比較例としてArガ
ス雰囲気中のN2 ガス、O2 ガス及びCO2 ガスの濃度
補正を行わずに発光強度だけで定量した従来の方法によ
る結果も同時に表1に示す。分析は1時間おきに5回繰
り返して行った。なお、表1及び表2中の分析試料含有
量は化学分析により求めた各成分の分析値であり、この
場合、N成分の分析法としてインパルス溶融熱伝導度
法、O成分の分析法としてインパルス溶融赤外線法、C
の分析法として高周波燃焼赤外線法を用いた。
Next, using the steel samples of which the contents of N component, O component and C component are unknown, the concentrations of N 2 gas, O 2 gas and CO 2 gas in the atmosphere to be discharged by the above method were determined. The background emission intensity I i (B) was obtained from the value, and finally the contents of N component, O component and C component in the steel sample were obtained. Table 1 shows the obtained analytical values and the accuracy of repeated analysis of the analytical values. Further, as a comparative example, Table 1 also shows the results obtained by the conventional method of quantifying only the emission intensity without correcting the concentrations of N 2 gas, O 2 gas and CO 2 gas in the Ar gas atmosphere. The analysis was repeated 5 times every hour. In addition, the content of the analysis sample in Table 1 and Table 2 is the analysis value of each component obtained by the chemical analysis. In this case, the impulse melting thermal conductivity method is used as the analysis method for the N component, and the impulse is used as the analysis method for the O component. Fusion infrared method, C
The high-frequency combustion infrared method was used as the analysis method.

【0051】[0051]

【表1】 [Table 1]

【0052】表1より明らかなように、実施例の分析方
法によると、従来の分析方法の場合と比較して、N成
分、O成分及びC成分のいずれもより高精度で分析する
ことができた。
As is clear from Table 1, according to the analysis method of the embodiment, it is possible to analyze each of the N component, the O component and the C component with higher accuracy as compared with the case of the conventional analysis method. It was

【0053】また雰囲気ガスとしてArガスより励起効
率が優れているHeガスを用い、C成分の含有量を求め
なかった他は上記したArの場合と同様にして鉄鋼試料
中のN成分及びO成分の含有量を求めた。得られた分析
値及び前記分析値の繰り返し分析精度を表2に示す。分
析は1時間おきに5回繰り返して行った。
He gas, which has a higher excitation efficiency than Ar gas, was used as the atmosphere gas, and the content of the C component was not determined. The N and O components in the steel sample were the same as in the case of Ar described above. Was determined. Table 2 shows the analytical values obtained and the accuracy of repeated analysis of the analytical values. The analysis was repeated 5 times every hour.

【0054】[0054]

【表2】 [Table 2]

【0055】表1の場合と同様に、実施例の分析方法に
よると、従来の分析方法の場合と比較して、N成分及び
O成分のいずれもより高精度で分析することができた。
As in the case of Table 1, according to the analysis method of the example, both the N component and the O component could be analyzed with higher accuracy as compared with the case of the conventional analysis method.

【0056】[0056]

【発明の効果】以上詳述したように本発明に係る発光分
光分析方法にあっては、試料台に載置した分析用固体試
料の分析面と、該分析面に対向配置された電極との間で
放電させ、発生したスペクトルを分光して固体試料中の
成分の分析を行う発光分光分析方法において、放電させ
る雰囲気中に存在するN2 ガス、O2 ガス及びCO2
スの濃度により分光スペクトルの補正を行い、前記分析
用固体試料中のN成分、O成分及び/又はC成分の含有
量を決定するので、放電させる雰囲気中に存在する前記
2 ガス、O2 ガス及びCO2 ガスの濃度に影響され
ず、分析用固体試料中の前記N成分、O成分及び/又は
C成分の含有量を迅速に、かつ精度良く測定することが
でき、例えば鉄鋼プロセス等における好適な管理分析の
方法として本発明の分析方法を利用することができる。
As described in detail above, in the emission spectroscopic analysis method according to the present invention, the analysis surface of the solid sample for analysis placed on the sample table and the electrode arranged opposite to the analysis surface are provided. In an emission spectroscopic analysis method in which the components in a solid sample are analyzed by discharging the generated spectrum and analyzing the generated spectrum, the spectrum according to the concentrations of N 2 gas, O 2 gas and CO 2 gas present in the atmosphere to be discharged. Of the N component, the O component and / or the C component in the solid sample for analysis is determined, the N 2 gas, the O 2 gas and the CO 2 gas present in the atmosphere to be discharged are It is possible to measure the content of the N component, O component and / or C component in the solid sample for analysis quickly and accurately without being affected by the concentration. For example, a suitable management analysis method in a steel process or the like. Analysis of the present invention as The law can be utilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る方法に用いる発光分光分
析装置の主要部を示した概略図である。
FIG. 1 is a schematic diagram showing a main part of an emission spectroscopic analyzer used in a method according to an example of the present invention.

【図2】トリプルコンバインド放電の電流波形図であ
る。
FIG. 2 is a current waveform diagram of triple combined discharge.

【図3】鉄鋼試料中のN成分の含有量とピーク発光強度
N(P)との関係を示すグラフであり、直線A、B、C、
Dは放電させる雰囲気での発光強度を示したものであ
る。
FIG. 3 is a graph showing the relationship between the content of N component in a steel sample and the peak emission intensity I N (P), showing straight lines A, B, C,
D shows the light emission intensity in the atmosphere for discharging.

【図4】放電させる雰囲気ガス中のN2 ガス及びO2
スをガスクロマトグラフィーにより分析した際に得られ
たガスクロマトグラフの一例である。
FIG. 4 is an example of a gas chromatograph obtained when N 2 gas and O 2 gas in an atmosphere gas to be discharged are analyzed by gas chromatography.

【符号の説明】[Explanation of symbols]

12 試料台 13 分析用固体試料 15 対電極 12 sample stage 13 solid sample for analysis 15 counter electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料台に載置した分析用固体試料の分析
面と、該分析面に対向配置された電極との間で放電さ
せ、発生したスペクトルを分光して固体試料中の成分の
分析を行う発光分光分析方法において、放電させる雰囲
気中に存在するN2 ガス、O2 ガス及びCO2 ガスの濃
度により分光スペクトルの補正を行い、前記固体試料中
のN成分、O成分及び/又はC成分の含有量を決定する
ことを特徴とする発光分光分析方法。
1. An electric discharge is made between an analysis surface of a solid sample for analysis mounted on a sample stage and an electrode arranged opposite to the analysis surface, and the generated spectrum is dispersed to analyze the components in the solid sample. In the emission spectroscopic analysis method, the spectral spectrum is corrected according to the concentrations of N 2 gas, O 2 gas and CO 2 gas existing in the atmosphere to be discharged, and the N component, O component and / or C in the solid sample is corrected. A method for emission spectroscopic analysis, which comprises determining the content of a component.
JP12661793A 1993-05-28 1993-05-28 Emission spectrochemical analysis Pending JPH06337245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12661793A JPH06337245A (en) 1993-05-28 1993-05-28 Emission spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12661793A JPH06337245A (en) 1993-05-28 1993-05-28 Emission spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPH06337245A true JPH06337245A (en) 1994-12-06

Family

ID=14939642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12661793A Pending JPH06337245A (en) 1993-05-28 1993-05-28 Emission spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPH06337245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056110A1 (en) * 1998-04-28 1999-11-04 Kawasaki Steel Corporation Method of analyzing oxygen and oxide in metallic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056110A1 (en) * 1998-04-28 1999-11-04 Kawasaki Steel Corporation Method of analyzing oxygen and oxide in metallic material
US6480274B1 (en) 1998-04-28 2002-11-12 Kawasaki Steel Corporation Method of analyzing oxygen and oxide in metallic material

Similar Documents

Publication Publication Date Title
Amos et al. Carbon rod atomizer in atomic absorption and fluorescence spectrometry and its clinical application
Body et al. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system
Salin et al. Signal-to-noise ratio performance characteristics of an inductively coupled plasma
US10024802B2 (en) Method for laser-induced breakdown spectroscopy and calibration
DK1380833T3 (en) Apparatus for spectrometric measurement of an isotope-containing gas
CN103792215B (en) A kind of method of carbon element content in quick measurement iron and steel
CN113324973B (en) Multi-factor correction Raman spectrum quantitative analysis method combined with spectrum internal standard
CN102410993A (en) Element measurement method based on laser-induced plasma emission spectral standardization
Harville et al. Line selection and evaluation of radio frequency glow discharge atomic emission spectrometry for the analysis of copper and aluminum alloys
JPH06337245A (en) Emission spectrochemical analysis
CN109975275B (en) Method for improving precision of measuring nitrogen element in coal by laser-induced breakdown spectroscopy
Edel et al. Simultaneous multielement determination in complex matrices using frequency-modulated electrothermal atomic absorption spectrometry
Marshall et al. Myers-Tracy signal compensation in inductively coupled plasma atomic emission spectrometry with high dissolved solids solutions
Alvarado et al. Peak-area measurements in electrothermal atomisation inductively coupled plasma atomic emission spectrometry
Salin et al. Design and Performance of a Time Multiplex Multiple Slit Multielement Flameless Atomic Absorption Spectrometer
JPH08114550A (en) Method and device for separately or simultaneosuly measuring nitrogen gas and steam in argon gas
JPH08114549A (en) Method and device for emission spectral analysis
JPH0317215A (en) Method for detecting end stage in molten steel tapping
Black et al. Atomic fluorescence spectrometry with continuous nebulization into a platinum furnace
JPH02110350A (en) Quick analyzing method of high purity gas
Elsherif et al. Rapid and direct determination of Bi, Sb, and Cd in Biological samples by multi-element graphite furnace atomic absorption spectrometer
JP2722852B2 (en) Emission spectral analysis method and emission spectral analyzer
Edel et al. Frequency-modulated simultaneous multielement atomic absorption spectrometry using electrothermal atomizer and deuterium background correction
JPH0213834A (en) Method and apparatus for analyzing trichlorosilane and tetrachlorosilane
Sneddon et al. Multielement graphite furnace and flame atomic absorption spectrometry