JPH06336944A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPH06336944A
JPH06336944A JP5129538A JP12953893A JPH06336944A JP H06336944 A JPH06336944 A JP H06336944A JP 5129538 A JP5129538 A JP 5129538A JP 12953893 A JP12953893 A JP 12953893A JP H06336944 A JPH06336944 A JP H06336944A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
injection
cylinder
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5129538A
Other languages
Japanese (ja)
Inventor
Kazushi Nakajima
一志 中島
Tomoaki Abe
知明 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5129538A priority Critical patent/JPH06336944A/en
Publication of JPH06336944A publication Critical patent/JPH06336944A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To supply an appropriate quantity of fuel to appropriately control an air/fuel ratio by providing an injection quantity computing means computing the fuel injection quantity of a fuel injecting means in consideration of supplied fuel quantity according to the suction stroke of a cylinder. CONSTITUTION:The fuel injection control device of an internal combustion engine is provided with a fuel injection means M1 communicated with the plural cylinders of the internal combustion engine to inject and supply the fuel concurrently to respective cylinders. Also a driving control means M2 is provided which is drive-controlling the fuel injection means M1 to perform fuel injection respectively in the suction strokes of the respective cylinders. In an injection quantity computing means M3, the fuel injection quantity of the fuel injecting means M1 is computed in consideration of supplied the fuel quantity according to the suction strokes of other cylinders for satisfying the fuel requisition quantity of a cylinder performing its suction stroke based on a fuel distribution ratio to the respective cylinders at the time of fuel injection. Consequently, an appropriate quantity of fuel according to fuel requisition quantity can be supplied to plural cylinders from a common fuel injection valve, appropriately controlling the air/fuel ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の燃料噴射制御
装置に関するものであり、特に内燃機関の複数の気筒に
対して共通の燃料噴射弁により燃料を噴射・供給する燃
料噴射制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a fuel injection control device for injecting and supplying fuel to a plurality of cylinders of the internal combustion engine by a common fuel injection valve. Is.

【0002】[0002]

【従来の技術】従来のこの種の内燃機関の燃料噴射制御
装置として、例えば、実公昭33−3202号公報及び
実開昭53−140810号公報に記載のものを挙げる
ことができる。
2. Description of the Related Art As a conventional fuel injection control device for this kind of internal combustion engine, for example, those described in Japanese Utility Model Publication No. 33-3202 and Japanese Utility Model Publication No. 53-140810 can be cited.

【0003】これらの燃料噴射制御装置では、燃料噴射
弁の数を減少してコスト低減を図るべく、内燃機関の近
接する2気筒の吸気管の間に共通の燃料噴射弁を設け
て、この燃料噴射弁から両吸気管内に同時に燃料を噴射
するように構成されている。
In these fuel injection control devices, in order to reduce the number of fuel injection valves and reduce the cost, a common fuel injection valve is provided between the intake pipes of two adjacent cylinders of the internal combustion engine, and this fuel injection control device is used. The injection valve is configured to inject fuel into both intake pipes at the same time.

【0004】[0004]

【発明が解決しようとする課題】ところで、周知のよう
に内燃機関の吸気負圧は吸気・圧縮・燃焼・排気の各行
程に応じて変動するため、上記のように共通の燃料噴射
弁から2気筒の吸気管内に燃料噴射した場合には、負圧
が大きい側の気筒に対してより多量の燃料が供給されて
しまう。したがって、それぞれの気筒の燃料要求量が満
たされずに、空燃比を的確に制御できない場合があっ
た。
As is well known, the intake negative pressure of the internal combustion engine varies depending on the intake, compression, combustion, and exhaust strokes. When fuel is injected into the intake pipe of a cylinder, a larger amount of fuel is supplied to the cylinder having the higher negative pressure. Therefore, the fuel demand amount of each cylinder is not satisfied, and the air-fuel ratio may not be accurately controlled.

【0005】そこで、本発明は、共通の燃料噴射弁から
複数の気筒に対して燃料要求量に応じた適切な量の燃料
を供給し、もって空燃比を的確に制御することができる
内燃機関の燃料噴射制御装置の提供を課題とするもので
ある。
Therefore, the present invention provides an internal combustion engine capable of supplying an appropriate amount of fuel from a common fuel injection valve to a plurality of cylinders in accordance with a required fuel amount, and thereby accurately controlling the air-fuel ratio. An object is to provide a fuel injection control device.

【0006】[0006]

【課題を解決するための手段】請求項1にかかる内燃機
関の燃料噴射制御装置は、図1に示すように、内燃機関
の複数の気筒と連通し、各気筒に同時に燃料を噴射・供
給する燃料噴射手段M1と、前記燃料噴射手段M1を駆
動制御して、前記各気筒の吸気行程でそれぞれ燃料噴射
を実行させる駆動制御手段M2と、前記燃料噴射時にお
ける各気筒への燃料分配率に基づき、吸気行程を実行中
の気筒の燃料要求量を満たすべく、他の気筒の吸気行程
に伴って供給済みの燃料量を加味して前記燃料噴射手段
M1の燃料噴射量を算出する噴射量算出手段M3とを具
備するものである。
As shown in FIG. 1, a fuel injection control device for an internal combustion engine communicates with a plurality of cylinders of the internal combustion engine and injects and supplies fuel to each cylinder at the same time. Based on a fuel injection means M1, a drive control means M2 for driving and controlling the fuel injection means M1 to execute fuel injection in the intake stroke of each cylinder, and a fuel distribution ratio to each cylinder at the time of the fuel injection. , An injection amount calculation means for calculating the fuel injection amount of the fuel injection means M1 in consideration of the amount of fuel already supplied in accordance with the intake strokes of the other cylinders so as to satisfy the fuel demand amount of the cylinder in which the intake stroke is being executed. And M3.

【0007】請求項2にかかる内燃機関の燃料噴射制御
装置は、図1に示すように、内燃機関の複数の気筒と連
通し、各気筒に同時に燃料を噴射・供給する燃料噴射手
段M1と、前記燃料噴射手段M1を駆動制御して、前記
各気筒への燃料分配率がほぼ等しい時期に燃料噴射を実
行させる駆動制御手段M2と、前記各気筒の総燃料要求
量を算出して、前記燃料噴射手段M1の燃料噴射量とし
て設定する噴射量算出手段M3とを具備するものであ
る。
As shown in FIG. 1, a fuel injection control device for an internal combustion engine according to a second aspect of the present invention includes a fuel injection means M1 which communicates with a plurality of cylinders of the internal combustion engine and injects and supplies fuel to each cylinder simultaneously. Driving control means M2 for driving and controlling the fuel injection means M1 to execute fuel injection at the time when the fuel distribution ratios to the respective cylinders are substantially equal to each other, and total fuel demand for each cylinder are calculated to calculate the fuel consumption. The injection amount calculating means M3 is set as the fuel injection amount of the injection means M1.

【0008】請求項3にかかる内燃機関の燃料噴射制御
装置は、内燃機関の複数の気筒と連通し、各気筒に同時
に燃料を噴射・供給する燃料噴射手段と、前記燃料噴射
手段を駆動制御して、前記各気筒の吸気行程でそれぞれ
燃料噴射を実行させる第1の駆動制御手段と、前記燃料
噴射時における各気筒への燃料分配率に基づき、吸気行
程を実行中の気筒の燃料要求量を満たすべく、他の気筒
の吸気行程に伴って供給済みの燃料量を加味して前記燃
料噴射手段の燃料噴射量を算出する第1の噴射量算出手
段と、前記燃料噴射手段を駆動制御して、前記各気筒へ
の燃料分配率がほぼ等しい時期に燃料噴射を実行させる
第2の駆動制御手段と、前記各気筒の総燃料要求量を算
出して、前記燃料噴射手段の燃料噴射量として設定する
第2の噴射量算出手段と、前記内燃機関が所定回転数未
満のときに、前記第1の駆動制御手段及び第1の噴射量
算出手段に燃料噴射制御を実行させ、内燃機関が所定回
転数以上のときに、第2の駆動制御手段及び第2の噴射
量算出手段に燃料噴射制御を実行させる制御切換手段と
を具備するものである。
A fuel injection control device for an internal combustion engine according to a third aspect of the present invention communicates with a plurality of cylinders of the internal combustion engine and drives and controls the fuel injection means for simultaneously injecting and supplying fuel to each cylinder and the fuel injection means. The first drive control means for executing fuel injection in the intake stroke of each cylinder, and the fuel demand amount of the cylinder executing the intake stroke based on the fuel distribution ratio to each cylinder at the time of fuel injection. In order to satisfy the above, the first injection amount calculation means for calculating the fuel injection amount of the fuel injection means in consideration of the supplied fuel quantity in association with the intake stroke of the other cylinder, and the drive control of the fuel injection means are performed. , Second drive control means for executing fuel injection at a time when the fuel distribution ratios to the respective cylinders are substantially equal to each other, and a total fuel requirement amount of the respective cylinders is calculated and set as a fuel injection amount of the fuel injection means. Calculation of the second injection amount And the first drive control means and the first injection amount calculation means execute fuel injection control when the internal combustion engine has a rotational speed lower than a predetermined speed, and when the internal combustion engine has a predetermined rotational speed or higher, The second drive control means and the second injection amount calculation means are provided with control switching means for executing fuel injection control.

【0009】[0009]

【作用】請求項1においては、駆動制御手段M2に制御
された燃料噴射手段M1によって各気筒の吸気行程で燃
料噴射が実行され、噴射された燃料は吸気行程の気筒の
みならず他の気筒にも供給される。したがって、各気筒
には、他の気筒の吸気行程に伴って燃料が供給されると
ともに、その後の自己の吸気行程時に更に燃料が供給さ
れて、それらの燃料が膨張行程で燃焼される。
According to the present invention, the fuel injection means M1 controlled by the drive control means M2 executes fuel injection in the intake stroke of each cylinder, and the injected fuel is not only supplied to the cylinder in the intake stroke but also to other cylinders. Is also supplied. Therefore, fuel is supplied to each cylinder along with the intake stroke of the other cylinders, and further fuel is supplied during the subsequent intake stroke of the cylinders, and the fuel is burned in the expansion stroke.

【0010】そして、各気筒が吸気行程を実行中のとき
には、他の気筒の吸気行程に伴って既に供給済みの燃料
量を加味した上で、各気筒への燃料分配率に基づいて、
その吸気行程の気筒の燃料要求量を満たすだけの燃料噴
射量が噴射量算出手段M3にて算出され、この燃料噴射
量が燃料噴射手段M1により噴射される。故に、各気筒
に対して燃料要求量に応じた適切な量の燃料を供給する
ことが可能となる。また、各気筒には吸気行程で燃料要
求量の大部分が供給されるため、噴射量制御の精度が独
立噴射並みに向上される。
When each cylinder is performing the intake stroke, the amount of fuel already supplied in accordance with the intake strokes of the other cylinders is taken into consideration, and based on the fuel distribution ratio to each cylinder,
The injection amount calculation means M3 calculates a fuel injection amount enough to satisfy the fuel demand amount of the cylinder in the intake stroke, and this fuel injection amount is injected by the fuel injection means M1. Therefore, it becomes possible to supply an appropriate amount of fuel to each cylinder according to the required fuel amount. Further, since most of the required fuel amount is supplied to each cylinder during the intake stroke, the accuracy of injection amount control is improved to the level of independent injection.

【0011】請求項2においては、駆動制御手段M2に
制御された燃料噴射手段M1により、各気筒への燃料分
配率がほぼ等しい時期に燃料噴射が実行されるため、各
気筒にはほぼ均等に燃料が供給される。ここで、各気筒
の燃料要求量の和である総燃料要求量が噴射量算出手段
M3により算出され、その総燃料要求量が燃料噴射手段
M1にて噴射されるため、各気筒に対して燃料要求量に
応じた適切な量の燃料を供給することが可能となる。ま
た、各気筒の燃料要求量の和を求めるだけで容易に燃料
噴射量を算出できるため、制御系のプログラムのワード
数が大幅に削減される。
According to the second aspect of the present invention, the fuel injection means M1 controlled by the drive control means M2 executes the fuel injection at the time when the fuel distribution ratios to the respective cylinders are substantially equal. Fuel is supplied. Here, the total fuel requirement amount, which is the sum of the fuel requirement amounts of the respective cylinders, is calculated by the injection amount calculation means M3, and the total fuel requirement amount is injected by the fuel injection means M1. It is possible to supply an appropriate amount of fuel according to the required amount. Further, since the fuel injection amount can be easily calculated only by obtaining the sum of the fuel demands of the respective cylinders, the number of words in the control system program is greatly reduced.

【0012】請求項3においては、第1の駆動制御手段
及び第1の噴射量算出手段による制御は各気筒の吸気行
程でそれぞれ燃料噴射を実行しているため、高回転域で
吸気行程の期間が短縮化されて両気筒の燃料要求量が満
たされない場合が起こり得る。これに対して各気筒への
燃料噴射を1回に集中する第2の駆動制御手段及び第2
の噴射量算出手段による制御では、高回転域でもこのよ
うな事態は発生しない。本発明では内燃機関が所定回転
数以上になると、第1の駆動制御手段及び第1の噴射量
算出手段による制御から第2の駆動制御手段及び第2の
噴射量算出手段による制御に切り換えるため、高回転域
においても燃料要求量に応じた適切な量の燃料が供給さ
れる。
In the third aspect of the present invention, since the control by the first drive control means and the first injection amount calculation means performs fuel injection in the intake stroke of each cylinder, the period of the intake stroke in the high engine speed range. May be shortened and the fuel requirements of both cylinders may not be satisfied. On the other hand, the second drive control means for concentrating the fuel injection into each cylinder once and the second
Such a situation does not occur even in the high rotation speed range by the control of the injection amount calculation means of 1. In the present invention, when the internal combustion engine has a predetermined rotational speed or higher, the control by the first drive control means and the first injection amount calculation means is switched to the control by the second drive control means and the second injection amount calculation means. Even in the high engine speed range, an appropriate amount of fuel is supplied according to the fuel demand.

【0013】[0013]

【実施例】【Example】

〈第一実施例〉以下、本発明を具体化した第一実施例の
内燃機関の燃料噴射制御装置について説明する。
<First Embodiment> A fuel injection control apparatus for an internal combustion engine according to a first embodiment of the present invention will be described below.

【0014】図2は本発明の第一実施例である内燃機関
の燃料噴射制御装置を示す全体構成図である。
FIG. 2 is an overall configuration diagram showing a fuel injection control device for an internal combustion engine which is a first embodiment of the present invention.

【0015】本実施例の燃料噴射制御装置が設けられた
内燃機関1は、火花点火式の4気筒4サイクル機関とし
て構成されている。図に示すように、内燃機関1の吸気
通路2の上流側には図示しないエアクリーナが設けら
れ、吸気通路2の下流側には4本の吸気分岐管3の一端
が連結されて、各吸気分岐管3の他端は内燃機関1の対
応する気筒に連結されている。そして、各気筒の吸気行
程の際に発生する負圧により吸気通路2内には前記エア
クリーナを経て吸入空気が導入され、この吸入空気は吸
気通路2内に設けられたスロットルバルブ4により流量
調整されながら各吸気分岐管3に分配されて、それぞれ
の気筒に供給される。
The internal combustion engine 1 provided with the fuel injection control device of the present embodiment is constructed as a spark ignition type four cylinder four cycle engine. As shown in the figure, an air cleaner (not shown) is provided on the upstream side of the intake passage 2 of the internal combustion engine 1, and one end of four intake branch pipes 3 is connected to the downstream side of the intake passage 2 to connect each intake branch. The other end of the pipe 3 is connected to a corresponding cylinder of the internal combustion engine 1. Then, the intake air is introduced into the intake passage 2 through the air cleaner due to the negative pressure generated during the intake stroke of each cylinder, and the flow rate of the intake air is adjusted by the throttle valve 4 provided in the intake passage 2. While being distributed to each intake branch pipe 3, they are supplied to each cylinder.

【0016】#1と#2の吸気分岐管3の間、及び#3
と#4の吸気分岐管3の間にはそれぞれ燃料噴射弁5が
配設され、両燃料噴射弁5の先端は、二股状に形成され
た連通孔6を介して両側の吸気分岐管3内と連通してい
る。両燃料噴射弁5には車両の燃料タンク7内に貯留さ
れた燃料が第1の供給路8及び第2の供給路9を経てフ
ューエルポンプ10により供給され、その燃料は燃料噴
射弁5の開弁時に各連通孔6に向けて二股状に噴射され
る。ここで、燃料噴射弁5は両側の吸気分岐管3に対し
て等距離に位置しているため、噴射燃料は連通孔6を経
て吸気分岐管3内に同一条件で供給される。なお、燃料
噴射弁5への燃料供給圧はレギュレータ11にて所定値
に調整されて、余剰燃料は回収路12を経て燃料タンク
7内に回収される。
Between the intake branch pipes 3 of # 1 and # 2, and # 3
Fuel injection valves 5 are respectively arranged between the # 4 and # 4 intake branch pipes 3, and the tip ends of the fuel injection valves 5 are connected to the inside of the intake branch pipes 3 on both sides via communication holes 6 formed in a bifurcated shape. Is in communication with. Fuel stored in a fuel tank 7 of the vehicle is supplied to both fuel injection valves 5 by a fuel pump 10 via a first supply path 8 and a second supply path 9, and the fuel is opened. It is injected in a bifurcated shape toward each communication hole 6 when the valve is opened. Here, since the fuel injection valve 5 is positioned equidistant from the intake branch pipes 3 on both sides, the injected fuel is supplied into the intake branch pipe 3 through the communication hole 6 under the same conditions. The fuel supply pressure to the fuel injection valve 5 is adjusted to a predetermined value by the regulator 11, and the surplus fuel is recovered in the fuel tank 7 through the recovery passage 12.

【0017】内燃機関1の燃料噴射や点火時期を制御す
る電子制御ユニット(以下、単に「ECU」という)2
1には、前記吸気通路2内の吸入空気量Qa を検出する
エアフローメータ22と、内燃機関1のディストリビュ
ータ23内に設けられて機関回転数Ne を検出する回転
数センサ24が接続され、それらの検出信号がECU2
1に入力される。また、ECU21には前記両燃料噴射
弁5が接続され、ECU21から出力される駆動信号に
より燃料噴射弁5が駆動制御される。
An electronic control unit (hereinafter simply referred to as "ECU") 2 for controlling fuel injection and ignition timing of the internal combustion engine 1
An air flow meter 22 for detecting an intake air amount Qa in the intake passage 2 and a rotation speed sensor 24 for detecting an engine rotation speed Ne provided in a distributor 23 of the internal combustion engine 1 are connected to the engine 1. The detection signal is ECU2
Input to 1. Further, both fuel injection valves 5 are connected to the ECU 21, and the fuel injection valve 5 is drive-controlled by a drive signal output from the ECU 21.

【0018】次に、本実施例の内燃機関の燃料噴射制御
装置による燃料噴射制御の概要を説明する。
Next, an outline of fuel injection control by the fuel injection control device for the internal combustion engine of this embodiment will be described.

【0019】図3は本発明の第一実施例である内燃機関
の燃料噴射制御装置の気筒間の燃料分配率の推移を示す
説明図、図4は本発明の第一実施例である内燃機関の燃
料噴射制御装置の燃料噴射状態を示すタイムチャートで
ある。
FIG. 3 is an explanatory view showing the transition of the fuel distribution ratio among the cylinders of the fuel injection control device for the internal combustion engine according to the first embodiment of the present invention, and FIG. 4 is the internal combustion engine according to the first embodiment of the present invention. 3 is a time chart showing a fuel injection state of the fuel injection control device of FIG.

【0020】まず、本実施例のように一対の気筒に共通
の燃料噴射弁5から燃料を噴射・供給した場合に、両気
筒への燃料分配率(燃料噴射量を100%としたとき
に、それぞれの気筒に供給される燃料の割合)がどのよ
うに推移するかを説明する。この燃料分配率は、基本的
に両気筒の吸気分岐管3内の負圧の比率(両気筒が実行
中の行程によって異なる)に応じて決定され、負圧が大
きい側に対してより多量の燃料が供給される。図3では
#1・#2間の燃料分配率の推移を示しており、いずれ
かの気筒が吸気行程にあるときには、その側の吸気分岐
管3内の負圧が増大するため燃料分配率に大きな差が生
じ(例えば、吸気行程側の気筒には全噴射量の90%が
分配され、排気行程または圧縮行程側の気筒には残りの
10%が分配される)、また、両気筒が共に吸気行程以
外の行程にあるときには、その吸気分岐管3内の負圧が
均等に近づいて燃料分配率の差が縮小される(例えば、
両気筒に共に50%が分配される)。なお、#3・#4
間についても、燃料分配率は全く同様の傾向で推移す
る。
First, when fuel is injected and supplied from the fuel injection valve 5 common to a pair of cylinders as in this embodiment, the fuel distribution ratio to both cylinders (when the fuel injection amount is 100%, How the ratio of the fuel supplied to each cylinder) changes will be described. This fuel distribution ratio is basically determined according to the ratio of the negative pressures in the intake branch pipes 3 of both cylinders (it varies depending on the stroke during which both cylinders are executing), and a larger amount is assigned to the side where the negative pressures are large. Fuel is supplied. FIG. 3 shows the transition of the fuel distribution ratio between # 1 and # 2. When any cylinder is in the intake stroke, the negative pressure in the intake branch pipe 3 on that side increases, so that the fuel distribution ratio changes. A large difference occurs (for example, 90% of the total injection amount is distributed to the cylinder on the intake stroke side, and the remaining 10% is distributed to the cylinder on the exhaust stroke or compression stroke side). During a stroke other than the intake stroke, the negative pressure in the intake branch pipe 3 approaches evenly and the difference in fuel distribution ratio is reduced (for example,
50% is distributed to both cylinders). Note that # 3 and # 4
The fuel distribution ratio also changes in the same way.

【0021】ここで、本実施例では対をなす気筒のいず
れかが吸気行程であって、その燃料分配率の差が最大の
ときに(図3に示すクランク角a°CA及びクランク角
b°CA)、それらの気筒に対する燃料噴射を実行す
る。つまり、各気筒に対する燃料噴射は、その気筒が吸
気行程にあるときと、他方の気筒が吸気行程にあるとき
との計2回に分けて実行され、以下、吸気行程の気筒に
対する多量の燃料噴射を主噴射(図4にMで示す)、そ
れ以外の行程の気筒に対する少量の燃料噴射を予備噴射
(図4にSで示す)と定義する。したがって、例えば#
1については、図4に示すように排気行程での予備噴射
の後に吸気行程での主噴射が実行されて、それらの噴射
燃料が後続の膨張行程で燃焼され、#2については、圧
縮行程での予備噴射の後に吸気行程での主噴射が実行さ
れて、それらの噴射燃料が後続の膨張行程で燃焼され
る。
Here, in the present embodiment, when one of the paired cylinders is in the intake stroke and the difference in the fuel distribution ratio is the maximum (crank angle a ° CA and crank angle b ° shown in FIG. 3). CA), fuel injection to those cylinders is performed. That is, the fuel injection to each cylinder is executed twice, that is, when the cylinder is in the intake stroke and when the other cylinder is in the intake stroke. Is defined as main injection (indicated by M in FIG. 4), and a small amount of fuel injection to cylinders in other strokes is defined as preliminary injection (indicated by S in FIG. 4). So, for example, #
For 1, the main injection in the intake stroke is executed after the preliminary injection in the exhaust stroke as shown in FIG. 4, and the injected fuel is burned in the subsequent expansion stroke, and for # 2, in the compression stroke. The main injection in the intake stroke is performed after the pre-injection of 1, and the injected fuel is burned in the subsequent expansion stroke.

【0022】そして、各気筒に対する燃料噴射量は、そ
の気筒が主噴射を実行する際に、既に予備噴射で供給済
みの燃料量を加味した上で決定される。この主噴射時に
は対をなす他方の気筒が予備噴射を行っているため、常
に予備噴射の気筒に対して主噴射の気筒を優先させて燃
料噴射量を決定していると換言することもできる。
Then, the fuel injection amount for each cylinder is determined in consideration of the fuel amount already supplied by the preliminary injection when the cylinder executes the main injection. In other words, the other pair of cylinders performs the preliminary injection during the main injection, so it can be said that the fuel injection amount is always determined by giving priority to the main injection cylinder over the preliminary injection cylinder.

【0023】以下、この燃料噴射量の算出方法を#1及
び#2の気筒を例に挙げて説明する。
The method of calculating the fuel injection amount will be described below by taking the cylinders # 1 and # 2 as an example.

【0024】今、図3及び図4に示すクランク角a°C
Aの時点(#2の気筒が主噴射でより多量の燃料が供給
される)の燃料噴射量を算出するものとし、このときの
燃料分配率を#1:#2=a1n :a2n 、主噴射を実
行する#2の気筒の燃料要求量をA2n とし、クランク
角b' °CAの前回噴射時の燃料分配率を#1:#2=
a1'n-1:a2'n-1、前回噴射時の燃料噴射量をx1n-
1 とすると、今回の燃料噴射量x2n は、
Now, the crank angle a ° C shown in FIG. 3 and FIG.
It is assumed that the fuel injection amount at the time point A (a larger amount of fuel is supplied to the cylinder of # 2 by main injection) is calculated, and the fuel distribution ratio at this time is # 1: # 2 = a1n: a2n, main injection A2n is the fuel demand amount of the # 2 cylinder that executes the fuel injection, and the fuel distribution ratio at the time of the previous injection of the crank angle b '° CA is # 1: # 2 =
a1'n-1: a2'n-1, the fuel injection amount at the previous injection is x1n-
Assuming 1, the current fuel injection amount x2n is

【0025】[0025]

【数1】 [Equation 1]

【0026】で表すことができる。なお、右辺の前半の
項は、今回の燃料分配率を前提として燃料要求量A2n
を1回の噴射で満たし得る燃料量、右辺の後半の項は、
前回噴射時(クランク角b' °CA)に#2の気筒に予
備噴射として既に供給済みの燃料量を示す。したがっ
て、実際の燃料噴射弁の噴射量をこの値x2n に制御す
れば、#2の気筒の燃料要求量A2n を満たし得る適切
な量の燃料を供給することができる。
It can be represented by In the first half of the right side, the fuel demand amount A2n
Fuel quantity that can be satisfied by one injection, the latter half of the right side is
The amount of fuel already supplied as preliminary injection to the cylinder # 2 during the previous injection (crank angle b '° CA) is shown. Therefore, if the actual injection amount of the fuel injection valve is controlled to this value x2n, it is possible to supply an appropriate amount of fuel that can satisfy the fuel demand amount A2n of the cylinder # 2.

【0027】また、図3及び図4に示すクランク角b°
CAの時点(#1の気筒が主噴射でより多量の燃料が供
給される)の燃料噴射量を算出するものとし、このとき
の燃料分配率を#1:#2=a1'n:a2'n、主噴射を
実行する#1の気筒の燃料要求量をA1n とすると、今
回の燃料噴射量x1n は、
Further, the crank angle b ° shown in FIGS. 3 and 4 is obtained.
It is assumed that the fuel injection amount at the time point of CA (the cylinder of # 1 is supplied with a larger amount of fuel in the main injection) and the fuel distribution ratio at this time is # 1: # 2 = a1′n: a2 ′. Assuming that the fuel demand amount of the # 1 cylinder that executes the main injection is A1n, the current fuel injection amount x1n is

【0028】[0028]

【数2】 [Equation 2]

【0029】で表すことができる。なお、右辺の前半の
項は、今回の燃料分配率を前提として燃料要求量A1n
を1回の噴射で満たし得る燃料量、右辺の後半の項は、
前回噴射時(クランク角a°CA)に#1の気筒に予備
噴射として既に供給済みの燃料量を示す。したがって、
実際の燃料噴射弁の噴射量をこの値x1n に制御すれ
ば、#1の気筒の燃料要求量A1n を満たし得る適切な
燃料量を供給することができる。
It can be represented by The first half of the right-hand side is the required fuel amount A1n based on the current fuel distribution ratio.
Fuel quantity that can be satisfied by one injection, the latter half of the right side is
The amount of fuel already supplied as preliminary injection to the cylinder # 1 at the time of the previous injection (crank angle a ° CA) is shown. Therefore,
By controlling the actual injection amount of the fuel injection valve to this value x1n, it is possible to supply an appropriate fuel amount that can satisfy the fuel demand amount A1n of the cylinder # 1.

【0030】このようにして#1と#2の気筒は交互に
予備噴射と主噴射を繰り返し、それぞれの主噴射時に他
方の気筒に優先して燃料噴射量を決定して、燃料要求量
A1n,A2n を満たす。なお、詳細は説明しないが、#
3・#4の気筒についても全く同様の手順により燃料噴
射量が算出される。
In this way, the # 1 and # 2 cylinders alternately repeat the preliminary injection and the main injection, and at the time of each main injection, the fuel injection amount is determined prior to the other cylinder, and the fuel demand amount A1n, A2n is satisfied. In addition, details are not explained, but #
The fuel injection amount is calculated in the completely same procedure for the 3rd and 4th cylinders.

【0031】ところで、以上のように各気筒は主噴射時
の燃料噴射量を調整することにより、最終的な燃料要求
量A1n,A2n を満たすように制御しているが、例えば
スロットルバルブ4の全閉等により吸入空気量が瞬間的
に減少した場合には、燃料要求量A1n,A2n が激減し
て予備噴射で供給済みの燃料量以下になる場合がある。
つまり、このときには予備噴射の時点で既に燃料要求量
A1n,A2n が満たされるため、続いて主噴射を実行す
ると燃料噴射量が過剰となってしまう。そこで、前記し
たクランク角a°CAの時点で、
By the way, as described above, each cylinder is controlled so as to satisfy the final required fuel amount A1n, A2n by adjusting the fuel injection amount at the time of main injection. When the intake air amount is momentarily reduced due to closing or the like, the fuel demand amounts A1n and A2n may be drastically reduced and become less than or equal to the fuel amount supplied in the preliminary injection.
That is, at this time, the required fuel amounts A1n and A2n have already been satisfied at the time of the preliminary injection, so that if the main injection is subsequently performed, the fuel injection amount becomes excessive. Therefore, at the time of the crank angle a ° CA described above,

【0032】[0032]

【数3】 [Equation 3]

【0033】の関係が成立したとき、或いはクランク角
b°CAの時点で、
When the relationship is established, or when the crank angle is b ° CA,

【0034】[0034]

【数4】 [Equation 4]

【0035】の関係が成立したとき等には、既に燃料要
求量A1n,A2n が満たされていると見做し、その時点
の燃料噴射を休止して(x1n =0,x2n =0)、過
剰な燃料噴射量による空燃比のリッチ側への乱れを防止
する。
When the relation of (1) is established, it is considered that the required fuel amount A1n, A2n has already been satisfied, and the fuel injection at that time is stopped (x1n = 0, x2n = 0), and the excess amount is exceeded. Of the air-fuel ratio to the rich side due to various fuel injection amounts.

【0036】一方、前記のように燃料要求量A1n,A2
n が予備噴射で供給済みの燃料量以下になることはない
が、次いで主噴射を実行すると、燃料噴射量x1n,x2
n を燃料噴射弁5の最小噴射量xmin に制限しても燃料
要求量A1n,A2n を越えてしまい、燃料噴射量が過剰
となる場合がある。そこで、前記したクランク角a°C
Aの時点で、
On the other hand, as described above, the required fuel amount A1n, A2
Although n does not fall below the amount of fuel that has been supplied in the preliminary injection, when the main injection is executed next, the fuel injection amount x1n, x2
Even if n is limited to the minimum injection amount xmin of the fuel injection valve 5, the required fuel amount A1n, A2n may be exceeded and the fuel injection amount may become excessive. Therefore, the above crank angle a ° C
At the time of A,

【0037】[0037]

【数5】 [Equation 5]

【0038】の関係が成立したとき、或いはクランク角
b°CAの時点で、
When the relationship is established, or when the crank angle is b ° CA,

【0039】[0039]

【数6】 [Equation 6]

【0040】の関係が成立したとき等には、主噴射を実
行すると燃料要求量A1n,A2n を越えてしまうと見做
し、燃料噴射時期をクランク角a°CAやクランク角b
°CAから補正する。なお、数5及び6の右辺の前半の
項は、燃料噴射量x2n,x1nを最小噴射量xmin とし
たときに#2や#1の気筒に供給される燃料量、右辺の
後半の項は、前回噴射時に#2や#1の気筒に予備噴射
として既に供給済みの燃料量を示す。
When the relation of (2) is established, it is considered that the required fuel amount A1n, A2n will be exceeded if the main injection is executed, and the fuel injection timing is set to the crank angle a ° CA or the crank angle b.
° Correct from CA. The first half of the right side of the equations 5 and 6 is the fuel amount supplied to the cylinders # 2 and # 1 when the fuel injection amount x2n, x1n is the minimum injection amount xmin, and the second half of the right side is Indicates the amount of fuel that has already been supplied as preliminary injection to the cylinders # 2 and # 1 during the previous injection.

【0041】つまり、図3に示すように補正前の燃料噴
射時期は、両気筒への燃料分配率の差が最大となるよう
に設定されているため、この燃料噴射時期を補正するこ
とで燃料分配率の差を縮小させて、主噴射の気筒に供給
される燃料量を減少できる。その結果、主噴射の気筒の
燃料要求量A1n,A2n を満たして、過剰な燃料噴射量
による空燃比のリッチ側への乱れを防止する。なお、こ
のときの燃料噴射時期の補正処理は、数5及び数6の左
辺と右辺が等しくなるときの燃料分配率a1n:a2n,
a1'n:a2'nを算出し、その燃料分配率a1n :a2
n,a1'n:a2'nが実現される燃料噴射時期を図示しな
いマップから求めて実行される。
That is, as shown in FIG. 3, the fuel injection timing before correction is set so that the difference between the fuel distribution ratios to both cylinders is maximized. The difference in distribution ratio can be reduced to reduce the amount of fuel supplied to the main injection cylinder. As a result, the fuel demands A1n and A2n of the main injection cylinders are satisfied to prevent the air-fuel ratio from being disturbed to the rich side due to an excessive fuel injection amount. The correction processing of the fuel injection timing at this time is performed by the fuel distribution ratios a1n: a2n, when the left side and the right side of Equations 5 and 6 are equal.
a1'n: a2'n is calculated, and the fuel distribution rate a1n: a2
The fuel injection timing at which n, a1'n: a2'n is realized is obtained from a map (not shown) and executed.

【0042】次に、以上の燃料噴射制御を実行するEC
U21の処理を説明する。
Next, an EC for executing the above fuel injection control
The processing of U21 will be described.

【0043】図5は本発明の第一実施例である内燃機関
の燃料噴射制御装置のECUが実行する燃料噴射制御ル
ーチンを示すフローチャートである。
FIG. 5 is a flow chart showing a fuel injection control routine executed by the ECU of the fuel injection control device for the internal combustion engine according to the first embodiment of the present invention.

【0044】図に示すルーチンは所定クランク角毎に実
行される。今、仮に#2の気筒への主噴射を実行するク
ランク角a°CAの直前であるとして説明すると、ま
ず、ECU21はステップS1で#2の気筒について燃
料要求量A2n を算出する。この算出処理は一般的な燃
料噴射制御と同様であり、エアフローメータ22にて検
出された吸入空気量Qa や回転数センサ24にて検出さ
れた機関回転数Ne 等に基づいて行われる。次いで、ス
テップS2で#2と#1の気筒の燃料分配率の差が最大
となる燃料噴射時期a°CA、及びそのときの燃料分配
率a1n :a2nを図示しないマップから求める。つま
り、図3に示す燃料分配率の特性は内燃機関1の運転状
態に応じて変化するため、例えば機関回転数Ne や図示
しない吸気圧センサにて検出された吸気負圧等に基づい
て、その運転状態における最適な燃料噴射時期a°CA
と燃料分配率a1n :a2n と求めているのである。
The routine shown in the figure is executed every predetermined crank angle. Now, assuming that it is just before the crank angle a ° CA at which the main injection into the cylinder # 2 is performed, the ECU 21 first calculates the required fuel amount A2n for the cylinder # 2 in step S1. This calculation process is similar to that of the general fuel injection control, and is performed based on the intake air amount Qa detected by the air flow meter 22, the engine speed Ne detected by the speed sensor 24, and the like. Next, in step S2, the fuel injection timing a ° CA at which the difference between the fuel distribution ratios of the cylinders # 2 and # 1 is maximized, and the fuel distribution ratios a1n: a2n at that time are obtained from a map not shown. That is, the characteristic of the fuel distribution ratio shown in FIG. 3 changes according to the operating state of the internal combustion engine 1. Therefore, for example, based on the engine speed Ne, the intake negative pressure detected by an intake pressure sensor (not shown), etc. Optimal fuel injection timing a ° CA in operating condition
And the fuel distribution ratio a1n: a2n.

【0045】その後、ステップS3でクランク角b' °
CAの予備噴射の時点で既に燃料要求量A2n が満たさ
れているか否か(数3の関係が成立しているか否か)を
判定し、未だ燃料要求量A2n が満たされていないとき
には、主噴射を行う余地があるとしてステップS4に移
行する。更に、ステップS4で#2の気筒への主噴射を
実行すると燃料要求量A2n を越えてしまうか否か(数
5の関係が成立しているか否か)を判定し、燃料要求量
A2n を越えないと推測されるときには、燃料噴射時期
a°CAの補正の必要なしとしてステップS5に移行す
る。
Then, in step S3, the crank angle b '°
At the time of the preliminary injection of CA, it is judged whether or not the fuel demand amount A2n has already been satisfied (whether or not the relationship of Formula 3 is established), and when the fuel demand amount A2n is not yet satisfied, the main injection It is determined that there is room for performing the process, and the process proceeds to step S4. Further, in step S4, it is determined whether or not the fuel demand amount A2n will be exceeded when the main injection to the # 2 cylinder is executed (whether or not the relationship of Formula 5 is established), and the fuel demand amount A2n will be exceeded. When it is estimated that the fuel injection timing a ° CA does not need to be corrected, the process proceeds to step S5.

【0046】そして、ステップS5で、前記ステップS
1で求めた燃料要求量A2n やステップS2で求めた燃
料分配率a1n :a2n 等に基づき、数1に従ってクラ
ンク角a°CAの時点の燃料噴射量x2n を算出する。
次いで、ステップS6で、前記ステップS2で求めた燃
料噴射時期a°CAに至ったときに燃料噴射量x2nと
して燃料噴射を実行し、このルーチンを終了する。
Then, in step S5, the step S
The fuel injection amount x2n at the crank angle a ° CA is calculated according to the equation 1 based on the required fuel amount A2n obtained in step 1 and the fuel distribution ratio a1n: a2n obtained in step S2.
Next, at step S6, when the fuel injection timing a ° CA obtained at step S2 is reached, fuel injection is performed with the fuel injection amount x2n, and this routine is ended.

【0047】また、前記ステップS3で既に燃料要求量
A2n が満たされているときには、ステップS7に移行
して燃料噴射量が過剰となるのを防止すべく燃料噴射を
休止する。
If the required fuel amount A2n is already satisfied in step S3, the process proceeds to step S7, and the fuel injection is stopped to prevent the fuel injection amount from becoming excessive.

【0048】一方、前記ステップS4で燃料要求量A2
n を越えると推測されるときには、ステップS8に移行
して#2の気筒に供給される燃料量を減少すべく燃料噴
射時期a°CAを補正し、ステップS6で補正後の燃料
噴射時期に至ったときに燃料噴射量x2n を燃料噴射弁
5の最小噴射量xmin とした上で燃料噴射を実行する。
On the other hand, in step S4, the required fuel amount A2
When it is estimated that the value exceeds n, the process proceeds to step S8, the fuel injection timing a ° CA is corrected to reduce the amount of fuel supplied to the cylinder # 2, and the corrected fuel injection timing is reached in step S6. At this time, the fuel injection amount x2n is set to the minimum injection amount xmin of the fuel injection valve 5, and then the fuel injection is executed.

【0049】以上のように本実施例では、燃料噴射手段
M1として燃料噴射弁5が機能し、駆動制御手段M2と
してステップS6の処理を実行するときのECU21
が、噴射量算出手段M3としてステップS5の処理を実
行するときのECU21がそれぞれ機能する。
As described above, in this embodiment, the fuel injection valve 5 functions as the fuel injection means M1 and the ECU 21 when the processing of step S6 is executed as the drive control means M2.
However, the ECU 21 functions as the injection amount calculation means M3 when executing the process of step S5.

【0050】このように本実施例の内燃機関の燃料噴射
制御装置は、内燃機関1の#1と#2の気筒または#3
と#4の気筒の吸気分岐管3内と連通し、各気筒に同時
に燃料を噴射・供給する燃料噴射弁5と、前記燃料噴射
弁5を駆動制御して、前記各気筒の吸気行程で燃料分配
率の差が最大の時期にそれぞれ燃料噴射を実行させると
ともに、前記燃料分配率に基づき、吸気行程で主噴射を
実行する気筒の燃料要求量を満たすべく、予備噴射とし
て既に供給済みの燃料量を加味して前記燃料噴射弁5の
燃料噴射量を算出するECU21とを具備している。こ
れは請求項1の発明の実施例に相当するものである。
As described above, the fuel injection control device for the internal combustion engine according to the present embodiment has the cylinders # 1 and # 2 of the internal combustion engine 1 or # 3.
And the fuel injection valve 5 communicating with the inside of the intake branch pipe 3 of the # 4 cylinder to simultaneously inject and supply fuel to each cylinder, and the fuel injection valve 5 is drive-controlled so that the fuel is injected in the intake stroke of each cylinder. The amount of fuel that has already been supplied as a preliminary injection to satisfy the fuel requirement of the cylinder that performs main injection in the intake stroke based on the fuel distribution ratio while performing fuel injection at the time when the difference in distribution ratio is maximum. The ECU 21 for calculating the fuel injection amount of the fuel injection valve 5 is added. This corresponds to the embodiment of the invention of claim 1.

【0051】したがって、各気筒が主噴射を実行する際
には、その燃料要求量を満たすだけの燃料噴射量が算出
されて燃料噴射弁5により噴射される。故に、各気筒に
対して燃料要求量に応じた適切な量の燃料を供給し、も
って空燃比を的確に制御することができる。
Therefore, when each cylinder executes the main injection, a fuel injection amount that satisfies the required fuel amount is calculated and injected by the fuel injection valve 5. Therefore, it is possible to supply an appropriate amount of fuel to each cylinder according to the required fuel amount, and thus to accurately control the air-fuel ratio.

【0052】しかも、各気筒には、吸気行程での主噴射
により燃料要求量の大部分(例えば90%)が供給さ
れ、その燃料供給の態様は、燃料噴射を吸気行程に集中
させる独立噴射に極めて近い。故に、噴射量制御の精度
を独立噴射並みに向上させることができる。
Moreover, most of the required fuel amount (for example, 90%) is supplied to each cylinder by the main injection in the intake stroke, and the mode of fuel supply is independent injection in which the fuel injection is concentrated in the intake stroke. Very close. Therefore, the accuracy of the injection amount control can be improved to the level of independent injection.

【0053】〈第二実施例〉以下、本発明を具体化した
第二実施例の内燃機関の燃料噴射制御装置について説明
する。なお、本実施例の燃料噴射制御装置の構成は図2
に示す第一実施例のものと同一であり、相違点はECU
21が実行する燃料噴射制御にある。したがって、特に
相違点を重点的に説明する。
<Second Embodiment> A fuel injection control apparatus for an internal combustion engine according to a second embodiment of the present invention will be described below. The configuration of the fuel injection control device of this embodiment is shown in FIG.
Is the same as that of the first embodiment shown in FIG.
21 is in the fuel injection control executed. Therefore, the difference will be mainly described.

【0054】図6は本発明の第二実施例である内燃機関
の燃料噴射制御装置の燃料噴射状態を示すタイムチャー
ト、図7は本発明の第二実施例である内燃機関の燃料噴
射制御装置の燃料噴射時期を算出するためのマップを示
す説明図である。
FIG. 6 is a time chart showing a fuel injection state of a fuel injection control device for an internal combustion engine which is a second embodiment of the present invention, and FIG. 7 is a fuel injection control device for an internal combustion engine which is a second embodiment of the present invention. FIG. 4 is an explanatory diagram showing a map for calculating the fuel injection timing of

【0055】図3に基づいて説明したように、第一実施
例では、#1または#2の気筒(#3または#4の気
筒)のいずれかが吸気行程で燃料分配率の差が最大であ
るときに、両気筒への燃料噴射を計2回に分けて実行し
たが、本実施例では、燃料分配率の差がほぼ0(両気筒
への燃料分配率が共に50%)のときに燃料噴射を1回
に集中して実行する。なお、この燃料分配率の条件を満
たすクランク角は、図3に示すc°CAとd°CAの2
つを挙げることができるが、クランク角d°CAについ
ては#2の気筒の吸気バルブが閉弁された直後であるた
め、噴射燃料が膨張行程で燃焼されるまでに720°C
A以上を要して応答性の点で好ましくない。よって、本
実施例ではクランク角c°CAで燃料噴射を実行してい
る。
As described with reference to FIG. 3, in the first embodiment, one of the cylinders # 1 or # 2 (cylinder # 3 or # 4) has the largest difference in fuel distribution ratio during the intake stroke. At a certain time, the fuel injection to both cylinders was executed twice in total, but in the present embodiment, when the difference in fuel distribution ratio is almost 0 (both fuel distribution ratio to both cylinders is 50%). Fuel injection is concentrated and executed once. It should be noted that the crank angle satisfying the condition of the fuel distribution ratio is 2 degrees of c ° CA and d ° CA shown in FIG.
As for the crank angle d ° CA, it is 720 ° C. before the injected fuel is burned in the expansion stroke because the crank valve is immediately after the intake valve of the cylinder # 2 is closed.
A or more is required, which is not preferable in terms of responsiveness. Therefore, in this embodiment, fuel injection is executed at the crank angle c ° CA.

【0056】即ち、図6に示すように、#1と#2の気
筒への燃料噴射(図6にIで示す)は、#1の気筒の圧
縮上死点(以下、単に「TDC」という)付近で行わ
れ、#3と#4の気筒への燃料噴射(同じく図6にIで
示す)は、#4の気筒のTDC付近で行われる。なお、
第一実施例で説明したように、燃料分配率の特性が内燃
機関1の運転状態に応じて変化するため、本実施例では
図7に示すように、機関回転数Ne に応じて燃料燃料分
配率が50%となる燃料噴射時期を求めている。
That is, as shown in FIG. 6, the fuel injection into the cylinders # 1 and # 2 (indicated by I in FIG. 6) is performed at the compression top dead center of the cylinder # 1 (hereinafter simply referred to as "TDC"). ), And fuel injection into the cylinders # 3 and # 4 (also indicated by I in FIG. 6) is performed near TDC of the cylinder # 4. In addition,
As described in the first embodiment, since the characteristic of the fuel distribution ratio changes according to the operating state of the internal combustion engine 1, in this embodiment, as shown in FIG. 7, the fuel-fuel distribution according to the engine speed Ne The fuel injection timing at which the rate becomes 50% is sought.

【0057】そして、各燃料噴射時には、該当する両気
筒の燃料要求量を満たすべく、それらの燃料要求量の和
(例えば、第一実施例のA1n,A2n の和)である総燃
料要求量が噴射される。
At the time of each fuel injection, the total fuel requirement amount, which is the sum of those fuel requirement amounts (for example, the sum of A1n and A2n in the first embodiment), is satisfied in order to satisfy the fuel demand amounts of the corresponding cylinders. Is jetted.

【0058】次に、以上の燃料噴射制御を実行するEC
U21の処理を説明する。
Next, an EC for executing the above fuel injection control
The processing of U21 will be described.

【0059】図8は本発明の第二実施例である内燃機関
の燃料噴射制御装置のECUが実行する燃料噴射制御ル
ーチンを示すフローチャートである。
FIG. 8 is a flow chart showing a fuel injection control routine executed by the ECU of the fuel injection control device for the internal combustion engine according to the second embodiment of the present invention.

【0060】図に示すルーチンは所定クランク角毎に実
行される。今、仮に#1と#2の気筒への主噴射を実行
する直前であるとして説明すると、まず、ECU21は
ステップS11で#1と#2の気筒について総燃料要求
量を算出する。次いで、ステップS12で図7のマップ
に従って燃料燃料分配率が50%となる燃料噴射時期を
算出し、ステップS13でその燃料噴射時期に至ったと
きに総燃料要求量の燃料噴射を実行し、このルーチンを
終了する。
The routine shown in the figure is executed every predetermined crank angle. Now, assuming that it is just before executing the main injection into the cylinders # 1 and # 2, the ECU 21 first calculates the total fuel demand amount for the cylinders # 1 and # 2 in step S11. Next, in step S12, the fuel injection timing at which the fuel / fuel distribution ratio becomes 50% is calculated according to the map of FIG. 7, and in step S13, the fuel injection of the total fuel demand amount is executed when the fuel injection timing is reached. Exit the routine.

【0061】以上のように本実施例では、燃料噴射手段
M1として燃料噴射弁5が機能し、駆動制御手段M2と
してステップS13の処理を実行するときのECU21
が、噴射量算出手段M3としてステップS11の処理を
実行するときのECU21がそれぞれ機能する。
As described above, in the present embodiment, the fuel injection valve 5 functions as the fuel injection means M1 and the ECU 21 when the process of step S13 is executed as the drive control means M2.
However, the ECU 21 functions as the injection amount calculation means M3 when executing the process of step S11.

【0062】このように本実施例の内燃機関の燃料噴射
制御装置は、内燃機関1の#1と#2の気筒または#3
と#4の気筒の吸気分岐管3内と連通し、各気筒に同時
に燃料を噴射・供給する燃料噴射弁5と、前記燃料噴射
弁5を駆動制御して、前記各気筒への燃料分配率がほぼ
等しい時期に、各気筒の総燃料要求量の燃料噴射を実行
させるECU21とを具備している。これは請求項2の
発明の実施例に相当するものである。
As described above, the fuel injection control device for the internal combustion engine according to the present embodiment has the cylinders # 1 and # 2 of the internal combustion engine 1 or # 3.
And the fuel injection valve 5 communicating with the intake branch pipe 3 of the # 4 cylinder to inject and supply fuel to each cylinder at the same time, and the fuel injection valve 5 is drive-controlled to distribute the fuel to each cylinder. The ECU 21 is configured to execute the fuel injection of the total required fuel amount of each cylinder at the substantially same time. This corresponds to the embodiment of the invention of claim 2.

【0063】したがって、燃料噴射弁5により噴射され
た総燃料要求量の燃料は、各気筒にほぼ均等に分割され
て供給される。故に、各気筒に対して燃料要求量に応じ
た適切な量の燃料を供給し、もって空燃比を的確に制御
することができる。
Therefore, the fuel of the total required fuel amount injected by the fuel injection valve 5 is divided and supplied to each cylinder substantially evenly. Therefore, it is possible to supply an appropriate amount of fuel to each cylinder according to the required fuel amount, and thus to accurately control the air-fuel ratio.

【0064】しかも、各気筒への燃料噴射は吸気行程以
外の行程で行われることから、第一実施例より噴射量制
御の精度の点では劣るものの、各気筒の燃料要求量の和
を求めるだけで極めて容易に燃料噴射量を算出できるた
め、数1や数2に従って燃料噴射量を求める第一実施例
に比較しECU21のプログラムのワード数を大幅に削
減して、製造コストを低減することができる。
Moreover, since the fuel injection to each cylinder is performed in a stroke other than the intake stroke, the accuracy of the injection quantity control is inferior to that of the first embodiment, but only the sum of the fuel demands of each cylinder is obtained. Since the fuel injection amount can be calculated very easily with, the number of words in the program of the ECU 21 can be greatly reduced and the manufacturing cost can be reduced as compared with the first embodiment in which the fuel injection amount is calculated according to the equations 1 and 2. it can.

【0065】〈第三実施例〉以下、本発明を具体化した
第三実施例の内燃機関の燃料噴射制御装置について説明
する。なお、本実施例の燃料噴射制御装置の構成は図2
に示す第一実施例のものと同一であり、相違点はECU
21が実行する燃料噴射制御にある。したがって、特に
相違点を重点的に説明する。
<Third Embodiment> A fuel injection control device for an internal combustion engine according to a third embodiment of the present invention will be described below. The configuration of the fuel injection control device of this embodiment is shown in FIG.
Is the same as that of the first embodiment shown in FIG.
21 is in the fuel injection control executed. Therefore, the difference will be mainly described.

【0066】図9は本発明の第三実施例である内燃機関
の燃料噴射制御装置の燃料噴射制御の切換状態を示す説
明図、図10は本発明の第三実施例である内燃機関の燃
料噴射制御装置のECUが実行する制御切換ルーチンを
示すフローチャートである。
FIG. 9 is an explanatory view showing the switching state of the fuel injection control of the fuel injection control device for the internal combustion engine which is the third embodiment of the present invention, and FIG. 10 is the fuel for the internal combustion engine which is the third embodiment of the present invention. It is a flow chart which shows a control change routine which ECU of an injection control device performs.

【0067】説明の便宜上、第一実施例で説明した吸気
行程のときに両気筒への燃料噴射を実行する制御(図5
に示すルーチン)を不均等噴射制御と定義し、第二実施
例で説明した両気筒への燃料分配率が50%のときに燃
料噴射を実行する制御(図8に示すルーチン)を均等噴
射制御と定義すると、本実施例では、内燃機関の低中回
転域において不均等噴射制御を実行し、高回転域におい
て均等噴射制御を実行する。
For convenience of explanation, control for executing fuel injection to both cylinders during the intake stroke described in the first embodiment (see FIG. 5)
Is defined as unequal injection control, and the control (routine shown in FIG. 8) that executes fuel injection when the fuel distribution ratio to both cylinders is 50% described in the second embodiment is uniform injection control. In this embodiment, the non-uniform injection control is executed in the low and middle engine speed range, and the uniform injection control is executed in the high engine speed range.

【0068】即ち、第一実施例で説明したように、不均
等噴射制御では両気筒(#1と#2または#3と#4の
気筒)の吸気行程でそれぞれ燃料噴射を実行している
が、内燃機関が高回転・高負荷の運転状態にあるときに
は、燃料噴射弁5の噴射パルスにある程度の長さが必要
とされるにも拘らず吸気行程の期間が短縮化されるた
め、両気筒の吸気行程における噴射パルスが相互に重複
して、それぞれの燃料要求量が満たされない場合が起こ
り得る。これに対して両気筒への燃料噴射を1回に集中
する均等噴射制御では、高回転・高負荷でもこのような
事態は発生しない。そこで、不均等噴射制御を実行した
場合に噴射パルスの重複が予想される下限の回転数を高
域設定回転数NHIとし、図9に示すように、機関回転数
Ne がその高域設定回転数NHIを越えたときには、不均
等噴射制御から均等噴射制御に移行し、また、機関回転
数Ne が高域設定回転数NHIよりある程度低く設定され
た低域設定回転数NLOを下回ったときには、再び不均等
噴射制御に移行するように制御する。
That is, as described in the first embodiment, in the uneven injection control, the fuel injection is executed in the intake stroke of both cylinders (# 1 and # 2 or # 3 and # 4 cylinders). When the internal combustion engine is in the operating state of high rotation and high load, the intake stroke period is shortened although the injection pulse of the fuel injection valve 5 requires a certain length. It is possible that the injection pulses in the intake stroke of the above overlap each other and the respective fuel requirements are not satisfied. On the other hand, in the uniform injection control in which the fuel injection into both cylinders is concentrated once, such a situation does not occur even at high rotation and high load. Therefore, the lower limit rotational speed at which overlapping of the injection pulses is expected when the non-uniform injection control is executed is set to the high speed setting rotation speed NHI, and as shown in FIG. 9, the engine speed Ne is set to the high speed setting rotation speed. When NHI is exceeded, the control shifts from non-uniform injection control to uniform injection control, and when the engine speed Ne falls below the low-range set speed NLO, which is set to be somewhat lower than the high-range set speed NHI, it again becomes unbalanced. Control is performed so as to shift to uniform injection control.

【0069】以下、ECU21の処理を説明すると、E
CU21は図10に示すルーチンを所定クランク角毎に
実行し、まず、ステップS21で制御切換フラグFがセ
ットされているか否かを判定する。この制御切換フラグ
Fは実行すべき燃料噴射制御の種別を表すものであり、
クリアは不均等噴射制御の実行を、セットは均等噴射制
御の実行を示し、ECU21の起動時にクリアされてい
る。したがって、ECU21はステップS21からステ
ップS22に移行して、機関回転数Ne が高域設定回転
数NHIを越えたか否かを判定し、この高域設定回転数N
HIを越えると、ステップS23で制御切換フラグFをセ
ットして、このルーチンを終了する。その後に前記ステ
ップS21の処理を実行したときには、制御切換フラグ
FがセットされているとしてステップS24に移行し、
機関回転数Ne が低域設定回転数NLOを下回ったか否か
を判定する。そして、機関回転数Ne がこの低域設定回
転数NLOを下回ると、ステップS25で制御切換フラグ
Fをクリアして、このルーチンを終了する。
The processing of the ECU 21 will be described below.
The CU 21 executes the routine shown in FIG. 10 for each predetermined crank angle, and first determines in step S21 whether or not the control switching flag F is set. The control switching flag F represents the type of fuel injection control to be executed,
Clear indicates execution of non-uniform injection control, and set indicates execution of uniform injection control, which are cleared when the ECU 21 is started. Therefore, the ECU 21 proceeds from step S21 to step S22 to determine whether or not the engine speed Ne exceeds the high range set speed NHI, and the high range set speed N is determined.
If HI is exceeded, the control switching flag F is set in step S23, and this routine ends. After that, when the process of step S21 is executed, it is determined that the control switching flag F is set and the process proceeds to step S24.
It is determined whether the engine speed Ne is lower than the low-range set speed NLO. When the engine speed Ne falls below the low-range set speed NLO, the control switching flag F is cleared in step S25, and this routine ends.

【0070】以上のようにして制御切換フラグFが設定
され、このフラグFがクリアされているときには図5の
ルーチンに従って不均等噴射制御が実行され、セットさ
れているときには図8のルーチンに従って均等噴射制御
が実行される。なお、前記のように均等噴射制御への切
換の回転数NHIと不均等噴射制御への切換の回転数NLO
を相違させているのは、双方の噴射制御の境界付近で連
続的に切換が行われるのを防止するためである。
As described above, the control switching flag F is set, and when the flag F is cleared, the non-uniform injection control is executed according to the routine of FIG. 5, and when it is set, the uniform injection control is executed according to the routine of FIG. Control is executed. As described above, the rotation speed NHI for switching to the uniform injection control and the rotation speed NLO for switching to the non-uniform injection control.
Is to prevent continuous switching near the boundary between both injection controls.

【0071】以上のように本実施例では、燃料噴射手段
として燃料噴射弁5が機能し、第1の駆動制御手段とし
てステップS6の処理を実行するときのECU21が、
第1の噴射量算出手段としてステップS5の処理を実行
するときのECU21が、第2の駆動制御手段としてス
テップS13の処理を実行するときのECU21が、第
2の噴射量算出手段としてステップS11の処理を実行
するときのECU21が、制御切換手段としてステップ
S21乃至ステップS25の処理を実行するときのEC
U21がそれぞれ機能する。
As described above, in the present embodiment, the fuel injection valve 5 functions as the fuel injection means, and the ECU 21 when executing the process of step S6 as the first drive control means,
The ECU 21 when executing the process of step S5 as the first injection amount calculating means, the ECU 21 when executing the process of step S13 as the second drive control means, and the ECU 21 when executing the process of step S11 as the second injection amount calculating means The EC when the ECU 21 when executing the processing executes the processing of steps S21 to S25 as the control switching means.
U21 works respectively.

【0072】このように本実施例の内燃機関の燃料噴射
制御装置は、内燃機関の低中回転域において不均等噴射
制御を実行し、高回転域において均等噴射制御を実行し
ている。これは請求項3の発明の実施例に相当するもの
である。
As described above, the fuel injection control device for the internal combustion engine of the present embodiment executes the non-uniform injection control in the low and medium speed range of the internal combustion engine and the uniform injection control in the high speed range. This corresponds to the third embodiment of the invention.

【0073】したがって、不均等噴射制御を実行すると
燃料噴射量の不足が起こり得る高回転域では均等噴射制
御に切り換えられ、燃料要求量に応じた適切な量の燃料
が供給されるため、全回転域で不均等噴射制御を行う第
一実施例の燃料噴射制御装置に比較して、空燃比制御を
より一層的確に制御することができる。
Therefore, when the non-uniform injection control is executed, the injection amount is switched to the uniform injection control in a high rotation range where the fuel injection amount may be insufficient, and an appropriate amount of fuel is supplied in accordance with the fuel demand amount. The air-fuel ratio control can be controlled more accurately as compared with the fuel injection control device of the first embodiment that performs the uneven injection control in the range.

【0074】ところで、上記第一実施例乃至第三実施例
では、4気筒の内燃機関1を対象とした燃料噴射制御装
置として具体化し、その2気筒分ずつ燃料噴射弁5を共
通化したが、本発明を実施する場合には、これに限定さ
れるものではなく、要は2気筒以上の内燃機関を対象と
して、その複数の気筒に対して共通の燃料噴射弁より燃
料を噴射・供給するものであればよい。したがって、例
えば5気筒以上の内燃機関を対象としたり、或いは3気
筒や4気筒に対して共通の燃料噴射弁より燃料を噴射・
供給するように構成してもよい。
By the way, in the first to third embodiments, the fuel injection control device for the four-cylinder internal combustion engine 1 is embodied, and the fuel injection valve 5 is shared for every two cylinders. When the present invention is carried out, the present invention is not limited to this. The point is that an internal combustion engine having two or more cylinders is targeted and fuel is injected and supplied from a common fuel injection valve to the plurality of cylinders. If Therefore, for example, an internal combustion engine with five or more cylinders is targeted, or fuel is injected from a common fuel injection valve to three or four cylinders.
It may be configured to supply.

【0075】また、上記第一実施例では、両気筒への燃
料分配率の差が最大のときに燃料噴射を実行し、第二実
施例では、両気筒への燃料分配率が共に50%のときに
燃料噴射を実行したが、必ずしもこれらの燃料噴射時期
に限定されるものではなく、その付近に制御しさえすれ
ば、各実施例で述べた作用が奏されて燃料要求量を満た
すことができる。
Further, in the first embodiment, the fuel injection is executed when the difference between the fuel distribution ratios to both cylinders is maximum, and in the second embodiment, the fuel distribution ratios to both cylinders are both 50%. Although the fuel injection was executed at this time, the fuel injection timing is not necessarily limited to these fuel injection timings, and if the control is performed in the vicinity thereof, the operation described in each of the embodiments can be performed to satisfy the fuel demand amount. it can.

【0076】[0076]

【発明の効果】以上のように、請求項1の内燃機関の燃
料噴射制御装置によれば、各気筒が吸気行程を実行中の
ときに、他の気筒の吸気行程に伴って既に供給済みの燃
料量を加味した上で、各気筒への燃料分配率に基づい
て、その吸気行程の気筒の燃料要求量を満たすだけの燃
料噴射量が噴射される。故に、各気筒に対して燃料要求
量に応じた適切な量の燃料を供給し、もって空燃比を的
確に制御することができる。しかも、各気筒には吸気行
程で燃料要求量の大部分が供給されるため、噴射量制御
の精度を独立噴射並みに向上させることができる。
As described above, according to the fuel injection control device for the internal combustion engine of the first aspect, while each cylinder is performing the intake stroke, the fuel is already supplied along with the intake stroke of the other cylinder. In consideration of the fuel amount, based on the fuel distribution ratio to each cylinder, a fuel injection amount that is sufficient to satisfy the fuel demand amount of the cylinder in the intake stroke is injected. Therefore, it is possible to supply an appropriate amount of fuel to each cylinder according to the required fuel amount, and thus to accurately control the air-fuel ratio. Moreover, since most of the required fuel amount is supplied to each cylinder during the intake stroke, the accuracy of injection amount control can be improved to the level of independent injection.

【0077】請求項2の内燃機関の燃料噴射制御装置に
よれば、燃料噴射手段により噴射された総燃料要求量の
燃料は、各気筒にほぼ均等に分割されて供給されるた
め、各気筒に対して燃料要求量に応じた適切な量の燃料
を供給し、もって空燃比を的確に制御することができ
る。しかも、各気筒の燃料要求量の和を求めるだけで容
易に燃料噴射量を算出できるため、制御系のプログラム
のワード数を大幅に削減して、製造コストを低減するこ
とができる。
According to the fuel injection control device for the internal combustion engine of the second aspect, the fuel of the total fuel demand amount injected by the fuel injection means is supplied to the respective cylinders in a substantially evenly divided manner. On the other hand, it is possible to supply an appropriate amount of fuel according to the required fuel amount, and thus to accurately control the air-fuel ratio. Moreover, since the fuel injection amount can be easily calculated only by obtaining the sum of the required fuel amount of each cylinder, the number of words in the control system program can be significantly reduced, and the manufacturing cost can be reduced.

【0078】請求項3の内燃機関の燃料噴射制御装置に
よれば、内燃機関が所定回転数以上になると、第1の駆
動制御手段及び第1の噴射量算出手段による制御から第
2の駆動制御手段及び第2の噴射量算出手段による制御
に切り換えるため、高回転域においても燃料要求量に応
じた適切な量の燃料が供給されて、空燃比制御をより一
層的確に制御することができる。
According to the fuel injection control device for the internal combustion engine of the third aspect, when the internal combustion engine has a predetermined rotational speed or higher, the control by the first drive control means and the first injection amount calculation means is changed to the second drive control. Since the control is switched to the control by the means and the second injection amount calculation means, an appropriate amount of fuel is supplied in accordance with the required fuel amount even in the high rotation speed range, and the air-fuel ratio control can be controlled more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第一、第二実施例である内燃機
関の燃料噴射制御装置の内容を概念的に示したクレーム
対応図である。
FIG. 1 is a claim correspondence diagram conceptually showing the contents of a fuel injection control device for an internal combustion engine according to first and second embodiments of the present invention.

【図2】図2は本発明の第一実施例である内燃機関の燃
料噴射制御装置を示す全体構成図である。
FIG. 2 is an overall configuration diagram showing a fuel injection control device for an internal combustion engine that is a first embodiment of the present invention.

【図3】図3は本発明の第一実施例である内燃機関の燃
料噴射制御装置の気筒間の燃料分配率の推移を示す説明
図である。
FIG. 3 is an explanatory diagram showing a transition of a fuel distribution ratio among cylinders of a fuel injection control device for an internal combustion engine which is a first embodiment of the present invention.

【図4】図4は本発明の第一実施例である内燃機関の燃
料噴射制御装置の燃料噴射状態を示すタイムチャートで
ある。
FIG. 4 is a time chart showing a fuel injection state of the fuel injection control device for the internal combustion engine according to the first embodiment of the present invention.

【図5】図5は本発明の第一実施例である内燃機関の燃
料噴射制御装置のECUが実行する燃料噴射制御ルーチ
ンを示すフローチャートである。
FIG. 5 is a flowchart showing a fuel injection control routine executed by the ECU of the fuel injection control device for the internal combustion engine according to the first embodiment of the present invention.

【図6】図6は本発明の第二実施例である内燃機関の燃
料噴射制御装置の燃料噴射状態を示すタイムチャートで
ある。
FIG. 6 is a time chart showing a fuel injection state of a fuel injection control device for an internal combustion engine which is a second embodiment of the present invention.

【図7】図7は本発明の第二実施例である内燃機関の燃
料噴射制御装置の燃料噴射時期を算出するためのマップ
を示す説明図である。
FIG. 7 is an explanatory diagram showing a map for calculating a fuel injection timing of a fuel injection control device for an internal combustion engine which is a second embodiment of the present invention.

【図8】図8は本発明の第二実施例である内燃機関の燃
料噴射制御装置のECUが実行する燃料噴射制御ルーチ
ンを示すフローチャートである。
FIG. 8 is a flowchart showing a fuel injection control routine executed by the ECU of the fuel injection control device for the internal combustion engine according to the second embodiment of the present invention.

【図9】図9は本発明の第三実施例である内燃機関の燃
料噴射制御装置の燃料噴射制御の切換状態を示す説明図
である。
FIG. 9 is an explanatory diagram showing a switching state of fuel injection control of a fuel injection control device for an internal combustion engine which is a third embodiment of the present invention.

【図10】図10は本発明の第三実施例である内燃機関
の燃料噴射制御装置のECUが実行する制御切換ルーチ
ンを示すフローチャートである。
FIG. 10 is a flowchart showing a control switching routine executed by the ECU of the fuel injection control device for the internal combustion engine according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

M1 燃料噴射手段 M2 駆動制御手段 M3 燃射量算出手段 1 内燃機関 5 燃料噴射弁 21 ECU M1 fuel injection means M2 drive control means M3 fuel injection amount calculation means 1 internal combustion engine 5 fuel injection valve 21 ECU

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の複数の気筒と連通し、各気筒
に同時に燃料を噴射・供給する燃料噴射手段と、 前記燃料噴射手段を駆動制御して、前記各気筒の吸気行
程でそれぞれ燃料噴射を実行させる駆動制御手段と、 前記燃料噴射時における各気筒への燃料分配率に基づ
き、吸気行程を実行中の気筒の燃料要求量を満たすべ
く、他の気筒の吸気行程に伴って供給済みの燃料量を加
味して前記燃料噴射手段の燃料噴射量を算出する噴射量
算出手段とを具備することを特徴とする内燃機関の燃料
噴射制御装置。
1. A fuel injection unit that communicates with a plurality of cylinders of an internal combustion engine and injects and supplies fuel to each cylinder at the same time; and a drive control of the fuel injection unit so that fuel is injected in each intake stroke of each cylinder. Based on the fuel distribution ratio to each cylinder at the time of the fuel injection, in order to satisfy the fuel requirement of the cylinder that is performing the intake stroke, the supply control means that has already been supplied along with the intake stroke of the other cylinders. A fuel injection control device for an internal combustion engine, comprising: an injection amount calculation means for calculating a fuel injection amount of the fuel injection means in consideration of a fuel amount.
【請求項2】 内燃機関の複数の気筒と連通し、各気筒
に同時に燃料を噴射・供給する燃料噴射手段と、 前記燃料噴射手段を駆動制御して、前記各気筒への燃料
分配率がほぼ等しい時期に燃料噴射を実行させる駆動制
御手段と、 前記各気筒の総燃料要求量を算出して、前記燃料噴射手
段の燃料噴射量として設定する噴射量算出手段とを具備
することを特徴とする内燃機関の燃料噴射制御装置。
2. A fuel injection unit that communicates with a plurality of cylinders of an internal combustion engine and injects and supplies fuel to each cylinder at the same time; and by drivingly controlling the fuel injection unit, a fuel distribution ratio to each of the cylinders is substantially equalized. Drive control means for executing fuel injection at the same time; and injection amount calculation means for calculating a total fuel demand amount of each cylinder and setting it as a fuel injection amount of the fuel injection means. Fuel injection control device for internal combustion engine.
【請求項3】 内燃機関の複数の気筒と連通し、各気筒
に同時に燃料を噴射・供給する燃料噴射手段と、 前記燃料噴射手段を駆動制御して、前記各気筒の吸気行
程でそれぞれ燃料噴射を実行させる第1の駆動制御手段
と、 前記燃料噴射時における各気筒への燃料分配率に基づ
き、吸気行程を実行中の気筒の燃料要求量を満たすべ
く、他の気筒の吸気行程に伴って供給済みの燃料量を加
味して前記燃料噴射手段の燃料噴射量を算出する第1の
噴射量算出手段と、 前記燃料噴射手段を駆動制御して、前記各気筒への燃料
分配率がほぼ等しい時期に燃料噴射を実行させる第2の
駆動制御手段と、 前記各気筒の総燃料要求量を算出して、前記燃料噴射手
段の燃料噴射量として設定する第2の噴射量算出手段
と、 前記内燃機関が所定回転数未満のときに、前記第1の駆
動制御手段及び第1の噴射量算出手段に燃料噴射制御を
実行させ、内燃機関が所定回転数以上のときに、第2の
駆動制御手段及び第2の噴射量算出手段に燃料噴射制御
を実行させる制御切換手段とを具備することを特徴とす
る内燃機関の燃料噴射制御装置。
3. A fuel injection unit that communicates with a plurality of cylinders of an internal combustion engine and injects and supplies fuel to each cylinder at the same time; and a drive control of the fuel injection unit so that fuel is injected in each intake stroke of each cylinder. Based on the fuel distribution ratio to each cylinder at the time of fuel injection, the first drive control means for executing the First injection amount calculation means for calculating the fuel injection amount of the fuel injection means in consideration of the supplied fuel amount, and drive control of the fuel injection means so that the fuel distribution rate to each cylinder is substantially equal. Second drive control means for executing fuel injection at a certain time; second injection amount calculation means for calculating a total fuel requirement amount of each cylinder and setting it as a fuel injection amount of the fuel injection means; When the engine speed is below the specified speed , The first drive control means and the first injection amount calculation means are caused to execute fuel injection control, and when the internal combustion engine has a predetermined rotation speed or more, the second drive control means and the second injection amount calculation means A fuel injection control device for an internal combustion engine, comprising: a control switching unit that executes fuel injection control.
JP5129538A 1993-05-31 1993-05-31 Fuel injection control device for internal combustion engine Pending JPH06336944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5129538A JPH06336944A (en) 1993-05-31 1993-05-31 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5129538A JPH06336944A (en) 1993-05-31 1993-05-31 Fuel injection control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06336944A true JPH06336944A (en) 1994-12-06

Family

ID=15012004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5129538A Pending JPH06336944A (en) 1993-05-31 1993-05-31 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06336944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111102116A (en) * 2018-10-29 2020-05-05 陈茂微 Rotatable synchronous oil injection structure of double-cavity electronic injection oil nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111102116A (en) * 2018-10-29 2020-05-05 陈茂微 Rotatable synchronous oil injection structure of double-cavity electronic injection oil nozzle

Similar Documents

Publication Publication Date Title
US5934249A (en) Engine control system and the method thereof
US4528960A (en) Fuel injection mode control for multi-cylinder internal combustion engine
US5450837A (en) Apparatus and method for controlling the air-fuel ratio of an internal combustion engine
EP1989430B1 (en) Fuel injection control apparatus and control method of internal combustion engine
US5440877A (en) Air-fuel ratio controller for an internal combustion engine
JPH06336944A (en) Fuel injection control device for internal combustion engine
JP6274401B2 (en) Engine fuel injection control device
JPS6285148A (en) Engine control device
JPS6321344A (en) Electronically controlled fuel injection device for internal combustion engine
JPH10196441A (en) Fuel injection controller for internal combustion engine, and method for controlling fuel injection
JPS6098144A (en) Electronic fuel injector for multi-cylinder internal- combustion engine
JPH01305144A (en) Fuel injection controller of internal combustion engine
JP6331016B2 (en) Fuel injection control device for internal combustion engine
JP2636298B2 (en) Air-fuel ratio control device for multi-cylinder internal combustion engine
JPH1136940A (en) Control device for engine
JP6525128B2 (en) Fuel injection control device for internal combustion engine
JP6489298B2 (en) Fuel injection control device for internal combustion engine
JPS62157257A (en) Fuel injection device of multicylinder engine
JPH07243341A (en) Fuel injector for internal combustion engine
JPS60116841A (en) Controller of fuel injection for multicylinder internal-combustion engine
JPH11107814A (en) Control unit of multicylinder engine
JPS62101868A (en) Intake device of engine
JPH0249940A (en) Fuel supply control device of internal combustion engine
JPH0763148A (en) Control device for variable cylinder engine
JPH1113525A (en) Fuel injection controller for three-cylinder engine