JPH06336519A - Poly(ethylene succinate) and its production - Google Patents

Poly(ethylene succinate) and its production

Info

Publication number
JPH06336519A
JPH06336519A JP5151390A JP15139093A JPH06336519A JP H06336519 A JPH06336519 A JP H06336519A JP 5151390 A JP5151390 A JP 5151390A JP 15139093 A JP15139093 A JP 15139093A JP H06336519 A JPH06336519 A JP H06336519A
Authority
JP
Japan
Prior art keywords
molecular weight
oligomer
catalysts
polymer
polyethylene succinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5151390A
Other languages
Japanese (ja)
Inventor
Yoshiaki Iwaya
嘉昭 岩屋
Minoru Nishinohara
稔 西之原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5151390A priority Critical patent/JPH06336519A/en
Priority to CA002136311A priority patent/CA2136311A1/en
Priority to PCT/JP1994/000447 priority patent/WO1994021708A1/en
Priority to US08/341,570 priority patent/US5504148A/en
Priority to EP94910048A priority patent/EP0647668A4/en
Publication of JPH06336519A publication Critical patent/JPH06336519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain the subject compound which has excellent biodegradability and is usable as various moldings by polymerizing specific monomers in a specific manner to a given number-average mol.wt. CONSTITUTION:This compound comprises structural units represented by the formula and has a number-average mol.wt., in terms of PS. as measured by gel permeation chromatography of 25,000 or higher. The compound is obtained preferably by reacting succinic acid with ethylene glycol in the presence of at least one member selected from Ti, Sn, Mn, and Co catalysts (e.g. manganese acetate tetrahydrate) to obtain an oligomer and condensation-polymerizing the oligomer in the presence of at least either a Ti catalyst or a Ge catalyst (e.g. tetra-n-butyl titanate).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,土壌中の微生物等によ
って分解し,かつ成形体として利用し得る高分子量のポ
リエチレンサクシネート及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high molecular weight polyethylene succinate which can be decomposed by microorganisms in soil and used as a molded article and a method for producing the same.

【0002】[0002]

【従来の技術】合成繊維,フィルムその他成形体として
利用されているプラスチックスは,軽くて丈夫である利
点に加えて,安価に,かつ大量に安定して供給できる
等,我々の生活に豊かさと便利さをもたらし,プラスチ
ックス文明といえる現代の社会を構築してきた。しかし
ながら,近年,地球的規模での環境問題に対して,自然
環境の中で分解する高分子素材の開発が要望されるよう
になり,その中でも特に微生物によって分解されるプラ
スチックスは,環境適合性材料や新しいタイプの機能性
材料として業界で大きな期待が寄せられている。
2. Description of the Related Art Plastics, which are used as synthetic fibers, films, and other molded products, have the advantages of being light and durable, and of being inexpensive and capable of being stably supplied in large quantities. It has brought convenience and built a modern society that can be called a plastic civilization. However, in recent years, in response to environmental problems on a global scale, there has been a demand for the development of polymer materials that decompose in the natural environment. Among them, plastics that are decomposed by microorganisms are especially environmentally friendly. There are great expectations in the industry as materials and new types of functional materials.

【0003】従来より,脂肪族ポリエステルに生分解性
があることはよく知られており,その中でも特に微生物
によって生産されるポリ−3−ヒドロキシ酪酸エステル
(PHB)や合成高分子であるポリ−ε−カプロラクト
ン(PCL)及びポリグリコール酸(PGA)は,その
代表的なものである。
It is well known that aliphatic polyesters are biodegradable, and among them, poly-3-hydroxybutyric acid ester (PHB) produced by microorganisms and poly-ε which is a synthetic polymer are known. Caprolactone (PCL) and polyglycolic acid (PGA) are the typical ones.

【0004】PHBを主体とするバイオポリエステル
は,優れた環境適合性と物性を有しているので工業的に
生産が行われているが,生産性に乏しく,コスト面から
ポリエチレンに代表される汎用プラスチックスとして代
替し得るには限界がある(繊維と工業,47巻,532
頁(1991)参照のこと)。また,PCLについて
は,繊維,フィルムに成形可能な高重合度のものが得ら
れているが,融点が65℃以下で耐熱性に乏しく,広い
用途には適用できない〔ポリマー サイエンス テクノ
ロジー(Polym. Sci. Technol.),3巻,61頁(19
73)参照のこと〕。さらに,生体吸収性の縫合糸とし
て実用化されているPGAやグリコリド−ラクチド
(9:1)共重合体は,非生物的な加水分解を受けた
後,生体内で代謝吸収されるが,高価であることに加え
て耐水性に劣るので,汎用プラスチックスとして使用す
るには適していない。
[0004] PHB-based biopolyesters are industrially produced because they have excellent environmental compatibility and physical properties, but they are poor in productivity and are generally used from the viewpoint of cost as represented by polyethylene. There are limits to what can be substituted as plastics (Fiber and Industry, 47, 532)
Page (1991)). Regarding PCL, although a high degree of polymerization that can be formed into fibers and films has been obtained, it has a melting point of 65 ° C or less and poor heat resistance, and cannot be used for a wide range of applications [Polymer Science Technology (Polym. . Technol., Volume 3, p. 61 (19
73)]. Furthermore, PGA and glycolide-lactide (9: 1) copolymers, which have been put into practical use as bioabsorbable sutures, are metabolized and absorbed in vivo after undergoing abiotic hydrolysis, but are expensive. In addition to being poor in water resistance, it is not suitable for use as general-purpose plastics.

【0005】他方,α,ω−脂肪族ジオールとα,ω−
脂肪族ジカルボン酸との融解重縮合によって製造される
脂肪族ポリエステル,例えば,ポリエチレンサクシネー
ト(PES)やポリエチレンアジペート(PEA)及び
ポリブチレンサクシネート(PBS)は古くから知られ
たポリマーで,安価に製造でき,かつ土中への埋没テス
トでも微生物により生分解されることが確認されている
〔インターナショナルバイオディテリオレイション ブ
レティン(Int. Biodetetn. Bull.),11巻,127頁
(1975)及びポリマー サイエンス テクノロジー
(Polym. Sci.Technol.),3巻,61頁(1973)参
照のこと〕が,これらのポリマーは熱安定性に乏しく,
重縮合時に分解反応を併発するので,通常は2,000〜
6,000程度の分子量(クロロホルムを用いて濃度0.5
g/デシリットル,30℃で測定した還元比粘度ηsp
/cは0.3以下)のものしか得られず,繊維やフィルム
として加工するには十分でなかった。これらの中でも特
にポリエチレンサクシネートは,融点が100℃以上
で,かつその優れた生分解性が報告されているにもかか
わらず重合時の熱安定性が乏しいので,通常の方法を用
いていたのでは成形するに十分な分子量のものを得るこ
とができず,例えば,前記文献(Int. Biodetetn.Bull.,
11巻,127頁(1975))では,市販の低分子量ポ
リエチレンサクシネートを減圧下で加熱することにより
フィルム成形能のあるものにしているが,それでも分子
量は高々20,000程度であり,これでは十分な性能を
発現することはできなかった。
On the other hand, α, ω-aliphatic diols and α, ω-
Aliphatic polyesters produced by melt polycondensation with aliphatic dicarboxylic acids, such as polyethylene succinate (PES), polyethylene adipate (PEA) and polybutylene succinate (PBS), are long known polymers and are inexpensive. It has been confirmed that it can be produced and that it is biodegraded by microorganisms even when it is buried in the soil [Int. Biodetetn. Bull., Vol. 11, p. 127 (1975) and Polymer Science Technology. (See Polym. Sci. Technol.), Vol. 3, p. 61 (1973)], these polymers have poor thermal stability.
Decomposition reaction occurs at the time of polycondensation, so it is usually 2,000-
Molecular weight of about 6,000 (concentration of 0.5 using chloroform)
g / deciliter, reduced specific viscosity ηsp measured at 30 ° C.
/ C was less than 0.3), which was not sufficient for processing into fiber or film. Among them, especially polyethylene succinate had a melting point of 100 ° C. or higher, and although its excellent biodegradability was reported, it had poor thermal stability at the time of polymerization. However, it is impossible to obtain a resin having a molecular weight sufficient for molding, and for example, the above-mentioned literature (Int. Biodetetn. Bull.,
Vol. 11, p. 127 (1975)) makes commercially available low molecular weight polyethylene succinate capable of forming a film by heating under reduced pressure, but still the molecular weight is at most about 20,000. It was not possible to express sufficient performance.

【0006】そこで,これらの脂肪族ポリエステルの分
子量を上げるために,ヘキサメチレンジイソシアナート
やトルエンジイソシアナート等のジイソシアナート類で
処理することが報告されている〔ポリマー ジャーナル
(Polymer J.), 2巻,387頁(1971)及び特開平
4−189822号公報参照のこと〕が,これらの方法
では,分子量を増大させる効果があるものの,通常は反
応工程が2段階になり,工程が繁雑になること,また,
得られたポリエステルについては,その結晶性や融点が
若干低下することに加えて,分子中にウレタン結合が含
まれてくるので,生分解性が多少劣るという問題点があ
った。
Therefore, in order to increase the molecular weight of these aliphatic polyesters, it has been reported to treat them with diisocyanates such as hexamethylene diisocyanate and toluene diisocyanate [Polymer Journal
(Polymer J.), Vol. 2, p. 387 (1971) and Japanese Patent Application Laid-Open No. 4-189822], these methods have the effect of increasing the molecular weight, but the reaction step is usually performed in two steps. And the process becomes complicated,
The obtained polyester has a problem that its biodegradability is somewhat inferior because its crystallinity and melting point are slightly lowered and urethane bonds are included in the molecule.

【0007】[0007]

【発明が解決しようとする課題】本発明は,生分解性と
いう本来の性質を損なうことなく,しかも成形体として
利用し得る程の分子量に増大させた高分子量のポリエチ
レンサクシネート及びその製造方法を提供することを目
的とするものである。
DISCLOSURE OF THE INVENTION The present invention provides a high molecular weight polyethylene succinate and a method for producing the same, which does not impair the original property of biodegradability and has an increased molecular weight such that it can be used as a molded article. It is intended to be provided.

【0008】[0008]

【課題を解決するための手段】本発明者らは,上記課題
を解決するために種々検討した結果,特定の触媒を用い
てコハク酸とエチレングリコールから製造したポリエチ
レンサクシネートが上記課題を解決することができると
いう知見を得,この知見に基づいて本発明に到達した。
As a result of various investigations to solve the above problems, the present inventors have found that polyethylene succinate produced from succinic acid and ethylene glycol using a specific catalyst solves the above problems. Based on this finding, the inventors arrived at the present invention.

【0009】すなわち,本発明は,第1に,下記式
(I)で示される構成単位からなり,ゲル濾過クロマト
グラフィー(GPC)より求めたポリスチレン換算での
数平均分子量が少なくとも25,000であるポリエチレ
ンサクシネートを要旨とするものである。
That is, first, the present invention comprises a constitutional unit represented by the following formula (I), and has a polystyrene-reduced number average molecular weight of at least 25,000 as determined by gel filtration chromatography (GPC). The main point is polyethylene succinate.

【0010】[0010]

【化2】 [Chemical 2]

【0011】また,第2に,コハク酸とエチレングリコ
ールとをチタン,スズ,マンガン及びコバルト系触媒の
中から選ばれる1種以上の触媒の存在下で反応させてオ
リゴマーを得,次いで得られたオリゴマーをチタン及び
ゲルマニウム系触媒の中から選ばれる1種又は2種の触
媒の存在下で重縮合することを特徴とする上記ポリエチ
レンサクシネートの製造方法を要旨とするものである。
Secondly, succinic acid and ethylene glycol are reacted in the presence of at least one catalyst selected from titanium, tin, manganese and cobalt type catalysts to obtain an oligomer, which is then obtained. The gist is a method for producing polyethylene succinate, which comprises polycondensing an oligomer in the presence of one or two catalysts selected from titanium and germanium catalysts.

【0012】以下,本発明について詳細に説明する。本
発明のポリエチレンサクシネートは,式(I)で示され
る構成単位からなるものであって,ゲル濾過クロマトグ
ラフィー(GPC)より求めたポリスチレン換算での数
平均分子量が少なくとも25,000以上である。数平均
分子量が25,000未満では,成形加工性及び成形体と
した際の強度が低くなる。本発明のポリエチレンサクシ
ネートは,ジイソシアナート類のような鎖延長剤で処理
しなくても十分な分子量を有している。この高分子量の
ポリエチレンサクシネートは,従来の方法では全く得ら
れないものであり,ここに本発明の特徴がある。
The present invention will be described in detail below. The polyethylene succinate of the present invention comprises a constitutional unit represented by the formula (I), and has a polystyrene-reduced number average molecular weight of at least 25,000 as determined by gel filtration chromatography (GPC). When the number average molecular weight is less than 25,000, the moldability and the strength of the molded product will be low. The polyethylene succinate of the present invention has a sufficient molecular weight without being treated with a chain extender such as diisocyanates. This high molecular weight polyethylene succinate cannot be obtained by conventional methods at all, and this is the feature of the present invention.

【0013】本発明のポリエチレンサクシネートを得る
には,特定の触媒を用いることを除けば,各種公知の製
造方法を用いることができる。例えば,J. Am. Chem. S
oc.52巻,第718頁(1930)に記載された方法
に従って,コハク酸とエチレングリコールとを特定の触
媒の存在下に,窒素下で120〜250℃の温度下でエ
ステル交換してオリゴマーを得た後,重合触媒を加えて
脱グリコール化により重縮合し,目的とするポリエチレ
ンサクシネートを得ることができる。
To obtain the polyethylene succinate of the present invention, various known production methods can be used except that a specific catalyst is used. For example, J. Am. Chem. S
oc. 52, p. 718 (1930), transesterification of succinic acid and ethylene glycol in the presence of a specific catalyst under nitrogen at a temperature of 120 to 250 ° C. to give an oligomer. After obtaining the poly (ethylene succinate), a polymerization catalyst is added and polycondensation is performed by deglycolization to obtain the desired polyethylene succinate.

【0014】本発明において,エステル交換してオリゴ
マーを合成する際の触媒としては,チタン,スズ,マン
ガン及びコバルト系触媒が用いられる。これらの金属
は,その有機金属化合物,有機酸塩,金属錯体,金属ア
ルコキシド,金属酸化物,金属水酸化物,炭酸塩,リン
酸塩,硫酸塩,硝酸塩,塩化物等として用いられるが,
その中でも酢酸塩,アセチルアセトン金属錯体及び金属
酸化物の形態で用いるのが好ましい。特に好ましい触媒
の具体例を挙げれば,チタン(IV)オキシアセチルアセ
トネート,酢酸第1スズ,ジ−n−ブチルスズ(IV)オ
キシド,酢酸マンガン(II)・4水和物,マンガン(I
I)アセチルアセトネート,酢酸コバルト(II)・4水
和物,コバルト(II)アセチルアセトネート等であり,
これらの触媒は1種又は2種以上使用してもよい。ま
た,その際,使用する触媒量としては,コハク酸1モル
に対して1×10-4〜5×10-3モルが好ましく,2×
10-4〜2×10-3モルの範囲で用いるのがより好まし
い。
In the present invention, titanium, tin, manganese and cobalt type catalysts are used as catalysts for transesterification to synthesize oligomers. These metals are used as their organometallic compounds, organic acid salts, metal complexes, metal alkoxides, metal oxides, metal hydroxides, carbonates, phosphates, sulfates, nitrates, chlorides, etc.
Among them, it is preferable to use them in the form of acetate, acetylacetone metal complex and metal oxide. Specific examples of particularly preferable catalysts include titanium (IV) oxyacetylacetonate, stannous acetate, di-n-butyltin (IV) oxide, manganese acetate (II) tetrahydrate, manganese (I
I) acetylacetonate, cobalt (II) acetate tetrahydrate, cobalt (II) acetylacetonate, etc.,
You may use these catalysts 1 type (s) or 2 or more types. Further, in that case, the amount of the catalyst used is preferably 1 × 10 −4 to 5 × 10 −3 mol per 1 mol of succinic acid, and 2 ×
It is more preferably used in the range of 10 −4 to 2 × 10 −3 mol.

【0015】また,脱グリコール化して重合する際の重
合触媒としては,チタンもしくはゲルマニウム系触媒が
用いられるが,これらは,その金属アルコキシド,金属
酸化物,金属錯体,金属水酸化物,炭酸塩,硫酸塩,硝
酸塩,塩化物等の形態で用いられる。特に好ましい触媒
の具体例を挙げれば,テトラ−n−ブチルチタネート,
テトライソプロピルチタネート,テトラ−n−ブトキシ
ゲルマニウム,酸化ゲルマニウム(IV)等であり,これ
らの触媒は1種又は2種使用してもよい。また,その際
に使用する触媒量としては,コハク酸1モルに対して1
×10-4〜5×10-3モルが好ましく,2×10-4〜2
×10-3モルの範囲で用いるのがより好ましい。
As the polymerization catalyst for deglycolization and polymerization, titanium or germanium catalysts are used. These are metal alkoxides, metal oxides, metal complexes, metal hydroxides, carbonates, Used in the form of sulfates, nitrates, chlorides, etc. Specific examples of particularly preferable catalysts include tetra-n-butyl titanate,
Tetraisopropyl titanate, tetra-n-butoxy germanium, germanium (IV) oxide, etc. may be used, and these catalysts may be used alone or in combination. The amount of catalyst used in this case is 1 mol per 1 mol of succinic acid.
X10 -4 to 5 x 10 -3 mol is preferable, and 2 x 10 -4 to 2
It is more preferable to use it in a range of × 10 -3 mol.

【0016】本発明において,エステル交換してオリゴ
マーを合成する際のコハク酸とエチレングリコールの仕
込み比率としては,モル比で通常1:1〜1:2.2にす
るのが好ましく,1:1.05〜1:1.6にするのがより
好ましく,1:1〜1:1.5にするのが最適である。
In the present invention, the molar ratio of succinic acid and ethylene glycol used when synthesizing an oligomer by transesterification is preferably 1: 1 to 1: 2.2, preferably 1: 1. It is more preferably 0.05 to 1: 1.6, and most preferably 1: 1 to 1: 1.5.

【0017】さらに,エステル交換してオリゴマーを作
るときの反応条件としては,120〜250℃で1〜1
0時間の範囲が好ましく,150〜220℃で2〜5時
間の範囲で,大気圧下,窒素気流下で行うのがより好ま
しい。
Further, the reaction conditions for transesterification to produce an oligomer are 120 to 250 ° C. and 1 to 1
The heating time is preferably 0 hour, more preferably 150 to 220 ° C. for 2 to 5 hours, and more preferably under atmospheric pressure and nitrogen stream.

【0018】また,重縮合については,0.01〜10mm
Hgの減圧下,150〜250℃で1〜10時間の範囲で
行うのが好ましく,0.1〜1mmHgの減圧下,190〜2
40℃で2〜7時間の範囲で行うのがより好ましい。
For polycondensation, 0.01 to 10 mm
It is preferable to carry out under reduced pressure of Hg at 150 to 250 ° C. for 1 to 10 hours, under reduced pressure of 0.1 to 1 mmHg, 190 to 2
More preferably, it is carried out at 40 ° C. for 2 to 7 hours.

【0019】本発明のポリエチレンサクシネートは,融
点100℃以上で熱可塑性であり,しかも成形加工性を
有しているので,さまざまの用途に適用することができ
る。例えば,生分解性ポリマーとして,フィルム,繊維
あるいはシート等に加工して,各種ボトル,ショッピン
グバッグ,包装材料,合成糸,釣糸,漁網,不織布,農
業用マルチフィルム等として利用することができる。本
発明のポリエチレンサクシネートは,これ以外にもホッ
トメルト接着剤,塗料,ウレタンエラストマーのベース
樹脂としても利用できる。
Since the polyethylene succinate of the present invention has a melting point of 100 ° C. or higher and is thermoplastic and has moldability, it can be applied to various uses. For example, as a biodegradable polymer, it can be processed into a film, a fiber or a sheet and used as various bottles, shopping bags, packaging materials, synthetic threads, fishing lines, fishing nets, non-woven fabrics, agricultural mulch films, and the like. Besides this, the polyethylene succinate of the present invention can be used as a base resin for hot melt adhesives, paints, and urethane elastomers.

【0020】本発明のポリエチレンサクシネートを生分
解性ポリマーとして利用する際,微生物選択性は特に明
らかではないが,通常の土壌中への埋没試験や,下水処
理場で採用される活性汚泥曝気槽に浸漬する方法によっ
て,生分解性を容易に確認することができる。すなわ
ち,成形品を土壌中に所定期間埋没させた後,この成形
品の分子量を測定するか,あるいはその表面形態を埋没
前のそれと比較することにより確認することができる。
When the polyethylene succinate of the present invention is used as a biodegradable polymer, the microbial selectivity is not particularly clear, but it is an activated sludge aeration tank used in ordinary soil burial tests and sewage treatment plants. The biodegradability can be easily confirmed by the method of immersing in. That is, it can be confirmed by immersing the molded product in soil for a predetermined period of time and then measuring the molecular weight of this molded product or by comparing its surface morphology with that before burial.

【0021】[0021]

【実施例】以下,本発明を実施例によって具体的に説明
する。なお,各値は次のようにして求めた。 (1)GPCより求めたポリスチレン換算での数平均分
子量(Mn) ウォーターズ(Waters)社製のGPC測定装置を用い,
平均孔径103 及び104 ÅのWaters ultrastyragelを
各々1本ずつ,計2本接続した7.8mmφ×30cm長のカ
ラムを用いて,溶出剤としてクロロホルムを用いること
により35℃で測定した。なお,スタンダードとしてポ
リスチレンを使用した。 (2)還元比粘度(ηsp/c) ウベローベ粘度計を用いて,濃度0.5g/デシリットル
でのポリマー溶液粘度を測定することにより,分子量の
目安とした。なお,溶媒としてはクロロホルムを用い,
30℃で測定した。 (3)融 点 ヤナコ社製微量融点測定装置MP−S3を用い,昇温速
度1〜2℃/minで測定した。 (4)外 観 目視もしくは光学顕微鏡観察により判定した。 A:ひどく損傷 B:かなり損傷 C:やや損傷
D:不 変 (5)フィルム強度 JIS K−7327に従い,所定サイズの試料を作成
し,インテスコ社製精密万能試験機2020型を用いて
測定した。
EXAMPLES The present invention will be specifically described below with reference to examples. Each value was obtained as follows. (1) polystyrene-reduced number average molecular weight (Mn) obtained from GPC Using a GPC measuring device manufactured by Waters,
Waters ultrastyragel having an average pore diameter of 10 3 and 10 4 Å was used at a temperature of 35 ° C. by using chloroform as an eluent, using a column having a total length of 7.8 mmφ × 30 cm, in which two pipes were connected in total. In addition, polystyrene was used as a standard. (2) Reduced specific viscosity (ηsp / c) The polymer solution viscosity at a concentration of 0.5 g / deciliter was measured using an Ubbelobe viscometer and used as a measure of the molecular weight. Chloroform was used as the solvent,
It was measured at 30 ° C. (3) Melting point Using a minute melting point measuring device MP-S3 manufactured by Yanaco Co., Ltd., the melting point was measured at a temperature rising rate of 1 to 2 ° C./min. (4) Appearance It was judged by visual observation or optical microscope observation. A: Severe damage B: Significant damage C: Some damage
D: Invariant (5) Film strength A sample of a predetermined size was prepared in accordance with JIS K-7327 and measured using an Intesco precision universal testing machine 2020 type.

【0022】実施例1 まず,攪拌機,ウィグリュー分留管及びガス導入管を付
した三つ口フラスコに,コハク酸47.2g(0.400モ
ル),エチレングリコール32.3g(0.520モル)及
び酢酸マンガン(II)・4水和物0.029g(1.2×1
-4モル)を入れ,油浴中に浸した。この油浴を200
℃に昇温し,窒素をゆっくり融解液中に流し,200℃
の温度で2時間要して生成する水と過剰のエチレングリ
コールを留去してオリゴマーを得た。
Example 1 First, 47.2 g (0.400 mol) of succinic acid and 32.3 g (0.520 mol) of ethylene glycol were placed in a three-necked flask equipped with a stirrer, a Wigley fractionation pipe and a gas introduction pipe. And manganese (II) acetate tetrahydrate 0.029 g (1.2 x 1
0 -4 mol) and put into an oil bath. 200 this oil bath
The temperature is raised to ℃, nitrogen is slowly flowed into the melt, 200 ℃
The water and the excess ethylene glycol that were formed over 2 hours at the above temperature were distilled off to obtain an oligomer.

【0023】次いで,テトラ−n−ブチルチタネート0.
14g(4.0×10-4モル)を加え,温度を200℃に
保って,ごく少量の窒素下で2mmHgの減圧下で2時間,
さらに,1mmHg以下の減圧下で2時間加熱することによ
り,粘調なポリマー液57.6gを得た。
Then, tetra-n-butyl titanate 0.
14 g (4.0 × 10 −4 mol) was added, the temperature was kept at 200 ° C., and under a slight amount of nitrogen, under a reduced pressure of 2 mmHg for 2 hours,
Furthermore, 57.6 g of a viscous polymer liquid was obtained by heating for 2 hours under reduced pressure of 1 mmHg or less.

【0024】このポリマーのηsp/cは0.68(濃度
0.5g/デシリットル,30℃,クロロホルム中)であ
り,融点は107℃であった。また,GPCより求めた
ポリスチレン換算での数平均分子量(Mn)は34,00
0であった。
The ηsp / c of this polymer is 0.68 (concentration
0.5 g / deciliter, 30 ° C, in chloroform), and the melting point was 107 ° C. The number average molecular weight (Mn) in terms of polystyrene determined by GPC is 34,000.
It was 0.

【0025】実施例2 酢酸マンガン(II)・4水和物0.029gの代わりにチ
タン(IV)オキシアセチルアセトネート0.032g(1.
2×10-4モル)を用いること以外は,実施例1と全く
同様にして目的とするポリマー57.6gを得た。このポ
リマーのηsp/cは0.76(濃度0.5g/デシリット
ル,30℃,クロロホルム中)であり,融点は107℃
であった。また,GPCより求めたポリスチレン換算で
の数平均分子量(Mn)は35,000であった。
Example 2 0.032 g of titanium (IV) oxyacetylacetonate (1.0. G) instead of 0.029 g of manganese (II) acetate tetrahydrate.
27.6 g of the target polymer was obtained in exactly the same manner as in Example 1 except that 2 × 10 −4 mol) was used. The ηsp / c of this polymer is 0.76 (concentration: 0.5 g / deciliter, 30 ° C, in chloroform), melting point is 107 ° C.
Met. The polystyrene-reduced number average molecular weight (Mn) determined by GPC was 35,000.

【0026】実施例3 酢酸マンガン(II)・4水和物0.029gの代わりに酢
酸コバルト(II)・4水和物0.030g(1.2×10-4
モル)を用いること以外は,実施例1と全く同様にして
目的とするポリマー57.6gを得た。このポリマーのη
sp/cは0.75(濃度0.5g/デシリットル,30
℃,クロロホルム中)であり,融点は107℃であっ
た。また,GPCより求めたポリスチレン換算での数平
均分子量(Mn)は35,000であった。
Example 3 In place of 0.029 g of manganese (II) acetate tetrahydrate, 0.030 g (1.2 × 10 −4 ) of cobalt (II) acetate tetrahydrate was used.
The desired polymer (57.6 g) was obtained in exactly the same manner as in Example 1 except that (mol) was used. Η of this polymer
sp / c is 0.75 (concentration 0.5 g / deciliter, 30
℃, in chloroform), the melting point was 107 ℃. The polystyrene-reduced number average molecular weight (Mn) determined by GPC was 35,000.

【0027】実施例4 攪拌機,ウィグリュー分留管及びガス導入管を付した三
つ口フラスコに,コハク酸118g(1.00モル),エ
チレングリコール80.7g(1.30モル)及びジ−n−
ブチルスズ(IV)オキシド0.075g(3.0×10-4
ル)を入れ,油浴中に浸した。この油浴を200℃に昇
温し,窒素をゆっくり融解液中に流し,200℃の温度
で3時間要して生成する水と過剰のエチレングリコール
を留去してオリゴマーを得た。
Example 4 118 g (1.00 mol) of succinic acid, 80.7 g (1.30 mol) of ethylene glycol and di-n were placed in a three-necked flask equipped with a stirrer, a Wiggle fractionation pipe and a gas introduction pipe. −
Butyltin (IV) oxide (0.075 g, 3.0 × 10 -4 mol) was added and immersed in an oil bath. The temperature of this oil bath was raised to 200 ° C., nitrogen was slowly flowed into the melt, and the water and excess ethylene glycol that were produced over 3 hours at a temperature of 200 ° C. were distilled off to obtain an oligomer.

【0028】次いで,テトラ−n−ブトキシゲルマニウ
ム0.325g(1.3×10-3モル)を加え,温度を20
0℃に保って,ごく少量の窒素下で2mmHgの減圧下で0.
5時間,さらに,1mmHg以下の減圧下で4.5時間加熱す
ることにより,粘調なポリマー液144gを得た。
Next, 0.325 g (1.3 × 10 -3 mol) of tetra-n-butoxygermanium was added, and the temperature was adjusted to 20.
Keep it at 0 ℃ and under a reduced pressure of 2mmHg under a very small amount of nitrogen.
By heating for 5 hours and further under reduced pressure of 1 mmHg or less for 4.5 hours, 144 g of a viscous polymer liquid was obtained.

【0029】このポリマーのηsp/cは0.61(濃度
0.5g/デシリットル,30℃,クロロホルム中)であ
り,融点は107℃であった。また,GPCより求めた
ポリスチレン換算での数平均分子量(Mn)は30,00
0であった。
Ηsp / c of this polymer is 0.61 (concentration
0.5 g / deciliter, 30 ° C, in chloroform), and the melting point was 107 ° C. The number average molecular weight (Mn) in terms of polystyrene determined by GPC is 30,000.
It was 0.

【0030】実施例5 テトラ−n−ブトキシゲルマニウム0.325gの代わり
にテトライソプロピルチタネート0.28g(1.0×10
-3モル)を用いること以外は,実施例4と全く同様にし
て目的とするポリマー144gを得た。このポリマーの
ηsp/cは0.61(濃度0.5g/デシリットル,30
℃,クロロホルム中)であり,融点は107℃であっ
た。また,GPCより求めたポリスチレン換算での数平
均分子量(Mn)は30,000であった。
Example 5 0.28 g of tetraisopropyl titanate (1.0 x 10) was used instead of 0.325 g of tetra-n-butoxygermanium.
(3 mol) was obtained in exactly the same manner as in Example 4 to obtain 144 g of the intended polymer. Ηsp / c of this polymer is 0.61 (concentration 0.5 g / deciliter, 30
℃, in chloroform), the melting point was 107 ℃. The polystyrene-reduced number average molecular weight (Mn) determined by GPC was 30,000.

【0031】比較例1 酢酸マンガン(II)・4水和物0.029gの代わりに酢
酸亜鉛・4水和物0.026gを用いる以外は,実施例1
と全く同様にしてポリマー57.6gを得た。このポリマ
ーのηsp/cは0.44(濃度0.5g/デシリットル,
30℃,クロロホルム中)であり,GPCより求めたポ
リスチレン換算での数平均分子量(Mn)は12,000
であった。
Comparative Example 1 Example 1 except that 0.026 g of zinc acetate tetrahydrate was used in place of 0.029 g of manganese (II) acetate tetrahydrate.
In the same manner as described above, 57.6 g of a polymer was obtained. The ηsp / c of this polymer is 0.44 (concentration 0.5 g / deciliter,
30 ° C. in chloroform), and the number average molecular weight (Mn) in terms of polystyrene determined by GPC is 12,000.
Met.

【0032】比較例2 酢酸マンガン(II)・4水和物0.029gを使用しない
で,その他については実施例1と全く同様にしてポリマ
ー57.0gを得た。このポリマーのηsp/cは0.48
(濃度0.5g/デシリットル,30℃,クロロホルム
中)で,GPCより求めたポリスチレン換算での数平均
分子量(Mn)は17,000であった。
Comparative Example 2 57.0 g of a polymer was obtained in the same manner as in Example 1 except that 0.029 g of manganese (II) acetate tetrahydrate was not used. Ηsp / c of this polymer is 0.48
The number average molecular weight (Mn) in terms of polystyrene determined by GPC was 17,000 (concentration: 0.5 g / deciliter, 30 ° C., in chloroform).

【0033】参考例1〜5 実施例1〜5で得たポリマーを,熱プレス機を用いて,
その融点より30〜40℃高い温度で融解加圧し,50
μmのフィルムを作成した。次いで,このフィルムを5
cm×5cmに切断し,土中(個人住宅の庭,表層5〜10
cmのところ)に埋め込み,初期,3か月,6か月後のフ
ィルムの状態を調べ,生分解性の評価を行った。その結
果を表1に示す。
Reference Examples 1-5 The polymers obtained in Examples 1-5 were heated using a hot press machine.
Melt and press at a temperature 30 to 40 ° C higher than its melting point,
A μm film was made. Then, this film is 5
Cut into cm x 5 cm, and in the soil (garden of private house, surface 5-10
It was embedded in cm) and the state of the film was examined after 3 months and 6 months in the initial stage, and biodegradability was evaluated. The results are shown in Table 1.

【0034】なお,比較例として,市販のポリエチレン
フィルム及びポリエステルフィルム(いずれも50μm
厚)を用いて同様に実施したが,外観,フィルム強度と
も,いずれも変化が認められなかった。
As a comparative example, commercially available polyethylene film and polyester film (both having a thickness of 50 μm) are used.
Thickness), but no change in appearance or film strength was observed.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より,本発明のポリエチレンサクシネ
ートは,高分子量であるのにもかかわらず,優れた生分
解性を有していることが明らかである。
From Table 1, it is clear that the polyethylene succinate of the present invention has excellent biodegradability despite its high molecular weight.

【0037】[0037]

【発明の効果】本発明のポリエチレンサクシネートは,
高分子量であるのにもかかわらず,優れた生分解性を有
している。したがって,各種形状に加工して生分解性の
フィルム,繊維,シートとして利用することができる。
また,本発明の製造方法によれば,このようなポリエチ
レンサクシネートを容易に得ることができる。
The polyethylene succinate of the present invention is
Despite its high molecular weight, it has excellent biodegradability. Therefore, it can be processed into various shapes and used as a biodegradable film, fiber or sheet.
Further, according to the production method of the present invention, such polyethylene succinate can be easily obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記式(I)で示される構成単位からな
り,ゲル濾過クロマトグラフィー(GPC)より求めた
ポリスチレン換算での数平均分子量が少なくとも25,0
00であるポリエチレンサクシネート。 【化1】
1. A constitutional unit represented by the following formula (I), which has a polystyrene-reduced number average molecular weight of at least 25,0 as determined by gel filtration chromatography (GPC).
A polyethylene succinate that is 00. [Chemical 1]
【請求項2】 コハク酸とエチレングリコールとをチタ
ン,スズ,マンガン及びコバルト系触媒の中から選ばれ
る1種以上の触媒の存在下で反応させてオリゴマーを
得,次いで得られたオリゴマーをチタン及びゲルマニウ
ム系触媒の中から選ばれる1種又は2種の触媒の存在下
で重縮合することを特徴とする請求項1記載のポリエチ
レンサクシネートの製造方法。
2. An oligomer is obtained by reacting succinic acid and ethylene glycol in the presence of at least one catalyst selected from titanium, tin, manganese and cobalt catalysts, and then the obtained oligomer is converted to titanium and titanium. The method for producing polyethylene succinate according to claim 1, wherein the polycondensation is carried out in the presence of one or two catalysts selected from germanium-based catalysts.
JP5151390A 1993-03-22 1993-05-27 Poly(ethylene succinate) and its production Pending JPH06336519A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5151390A JPH06336519A (en) 1993-05-27 1993-05-27 Poly(ethylene succinate) and its production
CA002136311A CA2136311A1 (en) 1993-03-22 1994-03-18 Aliphatic polyesters and method of preparing the same
PCT/JP1994/000447 WO1994021708A1 (en) 1993-03-22 1994-03-18 Aliphatic polyester and process for producing the same
US08/341,570 US5504148A (en) 1993-03-22 1994-03-18 Aliphatic polyesters and method of preparing the same
EP94910048A EP0647668A4 (en) 1993-03-22 1994-03-18 Aliphatic polyester and process for producing the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5151390A JPH06336519A (en) 1993-05-27 1993-05-27 Poly(ethylene succinate) and its production

Publications (1)

Publication Number Publication Date
JPH06336519A true JPH06336519A (en) 1994-12-06

Family

ID=15517541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5151390A Pending JPH06336519A (en) 1993-03-22 1993-05-27 Poly(ethylene succinate) and its production

Country Status (1)

Country Link
JP (1) JPH06336519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616681A (en) * 1994-11-01 1997-04-01 Nippon Shokubai Co., Ltd. Process for producing aliphatic polyester
JPH10195797A (en) * 1996-12-26 1998-07-28 Unitika Ltd Biodegradable wet sheet
JP2006213830A (en) * 2005-02-04 2006-08-17 Achilles Corp Fumigation sheet having high gas barrier property against pine weevil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616681A (en) * 1994-11-01 1997-04-01 Nippon Shokubai Co., Ltd. Process for producing aliphatic polyester
JPH10195797A (en) * 1996-12-26 1998-07-28 Unitika Ltd Biodegradable wet sheet
JP2006213830A (en) * 2005-02-04 2006-08-17 Achilles Corp Fumigation sheet having high gas barrier property against pine weevil

Similar Documents

Publication Publication Date Title
Mandal et al. PET chemistry
FI115217B (en) Biodegradable coating
JP2001187818A (en) Copolyester resin composition and production method thereof
US5504148A (en) Aliphatic polyesters and method of preparing the same
US5652325A (en) Production of aliphatic copolyesters
EP0291948B1 (en) Polyamideimide elastomer and production thereof
JPH06322081A (en) Aliphatic polyester and its production
JPH06336519A (en) Poly(ethylene succinate) and its production
JP4390273B2 (en) Biodegradable resin composition
JP3478513B2 (en) Biodegradable film
JP3374616B2 (en) Method for producing aliphatic polyester copolymer
JPH06145313A (en) Aliphatic polyester and its production
JP2676127B2 (en) Method for producing biodegradable polyester
JP4691934B2 (en) High molecular weight polyoxalate resin and method for producing the same
JP3342570B2 (en) Method for producing polyethylene succinate
JPH06322091A (en) Production of high-molecular aliphatic polyester
JPH06145283A (en) Biodegradable polymer
JPH06271656A (en) Aliphatic polyester and its production
JPH09169835A (en) Biodegradable polyester and its production
JP3342579B2 (en) Method for producing aliphatic polyester
JPH0873582A (en) Production of aliphatic polyester
KR100200415B1 (en) Biodegradable aliphatic polyester manufacturing method
JP3374617B2 (en) Method for producing aliphatic polyester copolymer
JP3484813B2 (en) Aliphatic polyester carbonate and method for producing the same
JP3423800B2 (en) Method for producing aliphatic polyester composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees