JPH06335697A - Method for purifying organic sewage by algae - Google Patents

Method for purifying organic sewage by algae

Info

Publication number
JPH06335697A
JPH06335697A JP12566991A JP12566991A JPH06335697A JP H06335697 A JPH06335697 A JP H06335697A JP 12566991 A JP12566991 A JP 12566991A JP 12566991 A JP12566991 A JP 12566991A JP H06335697 A JPH06335697 A JP H06335697A
Authority
JP
Japan
Prior art keywords
algae
sewage
water
filaments
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12566991A
Other languages
Japanese (ja)
Inventor
Toshiro Sekine
敏朗 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12566991A priority Critical patent/JPH06335697A/en
Publication of JPH06335697A publication Critical patent/JPH06335697A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the treating method capable of easily separating algae from treated water and stably maintaining a high alga concn. by immobilizing one or several kinds of green algae filaments, the cells of which are monocolpate, monostring and non-branched into water courses, passing org. sewage along these water courses under bright conditions and bringing the sewage into contact with the green algae filaments. CONSTITUTION:One or several kinds of the green algae filaments (b) (e.g. Ulotrichales), cells of which are monocolpate, monostring and non-branched are immobilized in the water courses a1, a2 and the org. sewage is passed along the water courses a1, a2, by which the sewage is brought into contact with the green algae filaments (b) and the org. sewage is purified. Consequently, the sepn. of the algae from the treated water is easy and the algae are hardly captured by rapidly propagating microanimals, such as water flee Rotatoria. The purifying method capable of stably maintaining the high alga concn. is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野]本発明は、藻類によって下水、畜
産汚水等有機性汚水を浄化理する方法であり、特にBO
D及びSSの除去された2次処理水から窒素及びリンを
除去する方法に関する。 [従来の技術]従来、藻類を利用した汚水の処理法とし
て、酸化池法がある。これは浮遊性の緑藻類、ラン藻類
を利用したもので、藻類の光合成により発生する酸素を
利用して好気性細菌がBOD源を除去し、窒素及びリン
は藻類に固定される。緑藻類はミトコンドリアを有し、
好気姓細菌と同様にBOD源も分解除去する。藻類は炭
素源として炭酸ガスを利用できるので、BOD源がない
場合でも、窒素およびリンの除去が可能であり、ここに
優れた特徴がある。藻類は汚水の浄化と共に最近の地球
的規摸の環境問題としての地球温暖化の原因とされる炭
酸ガスを固定する。また、増殖した藻類バイオマスは飼
料、肥料、またはエネルギー源としても再利用できる。
このようなことから、藻類を利用した処理法はさらに重
要となってきている。従来の浮遊性藻類を利用した汚水
の処理法の問題点として、つぎのようなものがあった。 (1)藻体が微小であり、かつ分散しているので、 自
然沈降による分離が困難であり機械的分離が必要なた
め、分離のための費用が高価となる。 (2)藻体が微小なため、ミジンコ.ワムシ等増殖の速
い微小動物に捕食されやすく、一昼夜にして池が透明化
することもあるなど、藻体濃度が不安定である。 (3)浮遊性藻類の増殖が細菌と比較して遅くまた浮遊
性であるため、汚水流入量の増加により藻体濃度の減少
さらには藻体のウォシュアウトが起りやすい。 [発明が解決しようとする問題点]本発明はこれら上述
の問題点に鑑みなされたものであり、処理水からの藻類
の分離が容易であり、ミジンコ.ワムシ等増殖の速い微
小動物に捕食されにくく、安定的に高い藻体濃度を維持
できる処理法を提供することを目的とする。 [問題を解決するための手段]すなわち本発明は、細胞
が単条単列で無分枝である緑藻類糸状体の1種または数
種を水路内に固定化し、明条件下、有機姓汚水を該水路
に沿って流すことにより、前記緑藻類糸状体に汚水を接
触させ、これによって有機姓汚水を浄化することを特徴
とする藻類による有機性汚水の浄化方法に構成してあ
る。 [実施例と作用]つぎに本発明を図面により、さらに詳
しく説明する。第1図及び第2図及び第3図は、本発明
の方法を実施するための装置を示し、第1図は平面図、
第2図はA−A縦断面図、第3図はB−B縦断面図であ
る。大気下に開放された水路状の水槽1は、隔壁2によ
り上下に区画され、この上下がその両端で連通流路a1
及びa2により連通され、1つの無端状流路として構成
されている。隔壁2の上面に波板状の付着面tが形成さ
れ、これに細胞が単条単列で無分枝である緑藻類糸状体
g(以後糸状体と略す)が、自着により固定化されてい
る。これにより、隔壁2の上方を藻類部b、下方を返送
部rとしてある。連通流路a1は藻類部b底面に開口
し、鉛直下方に伸び、水槽1の底面より下方に達したの
ち屈曲し、鉛直上方に伸び、返送部r底面に開口されて
いる。連通流路a2は、隔壁2が水槽1の側壁からやや
離れて設けられることにより、形成されている。この連
通流路a2には、脱離した糸状体を捕捉回収するための
スクリーン3が設けられている。藻類部bの流入部に
は、水面上に泡が浮遊するのを防ぐための、泡ストッパ
ー4が流路を横断して設けられている。連通流路a1の
鉛直に立設された一方の下方には水の循環流を起動させ
るための通気管5が開口配備され、この開口に散気管6
が設けられ、通気管5中には流量調節弁7が設けられて
いる。汚水の満たされた水槽1内に散気管6を介して空
気等の気体を圧入するとエアリフト効果によリ連通流路
a1内に気液混合系の上昇流が生じ、この結果矢印の方
向の循環流が形成される。付着面tに自着した糸状体g
は、この循環流により、水面下で揺動しつつ、光の照射
を受け、窒素分、リン分、有機物等を吸収し、伸長増殖
する。これにより、汚水は、窒素分、リン分、有機物等
が除去され、浄化される。ある長さに伸長した糸状体g
は、循環流の摩擦力により切断され、循環流により下流
に運ばれ、スクリーン3に捕捉される。藻類部bの水深
は10〜50cmよく、20〜40cmがより適当であ
る。散気管6の設置水深は深いほど単位通気量当りの循
環量が多くなるが、通常1m以上が望ましい。藻類部b
における流速は10〜30cm/sが適当である。糸状
体gに光が照射されると、光合成により酸素が発生し、
この酸素の微細気泡が糸状体gに付着する。このため糸
状体gの先端部分は水面に浮上しようとする。糸状体g
が長時間水面に浮上していると、強光により黄変不活化
し、さらにこの不活化した糸状体gは下方への光の透過
を妨げる。このように糸状体gの水面への浮上は、糸状
体gの増殖、ひいては処理能力に悪影響を与える。流動
条件下では、前記の酸素微細気泡による浮力と、流れの
摩擦反力により、糸状体gは水面下で分散揺動するの
で、糸状体gの増殖に対して好適な環境が保たれる。本
発明に使用する糸状体は、細胞が単条単列の緑藻類糸状
体、すなわち分枝のない緑藻類糸状体に限定する。発明
者は第1図乃至第3図に示した装置を用いて、種々の糸
状藻類の培養を試みたが、分枝のある糸状体は、枝分れ
の部分に、水流の摩擦力が大きく働いたり、あるいは脱
離して浮遊している糸状体がからみつきさらに大きな力
を受ける等の理由で、切断され易く、長く伸長せず、こ
のため、付着面tの上を糸状体で全て覆うことが難し
く、光の損失が大きいことが判明した。この点につい
て、細胞が単条単列の緑藻類糸状体では、長く伸長する
(数メートル)ので、上下方向に重なり、容易に付着面
tの上を糸状体て全て償うことができ、光の利用性が著
しく増大する利点がある。また、葉状体と比較して、液
との接触面積が大きい。このような利点をもつ細胞が単
条単列の糸状緑藻類を挙げれば、下記の如くである。 ヒビミドロ属 ulotrix sp. ホルミディウム属 Hormidium sp. サヤミドロ属 Oedogonium s
p. ヨコワミドロ属 Sphaeroplea s
p. ヒザオリ属 Mougeotia sp. ホシミドロ属 Zygnema sp. アオミドロ属 Spirogyra sp. これら藻類を付着面tに付着増殖させるには、これらの
糸状体を粉砕微細化して液中に散布すればよい。1〜2
週間で付着増殖した糸状体が肉眼で観察される。また、
緑藻類糸状体を水路内に固定化するもう一つの方法とし
て、糸状体を水路内に突出する器物で拘束する方法があ
り、第4図はこれを示す説明図であり、縦断面図であ
る。図は第1図乃至第3図における藻類部bに相当する
部分を示し、隔壁2の上面に先端が曲られた棒状の糸状
体支持具10が立設されている。この糸状体支持具10
により、糸状体gが捲着あるいは釣支され、水路内に固
定化されている。糸状体支持具10は水路底面のやや上
方に設けるのが適当であり、糸状体gは流れにより浮上
しにくく、良好な増殖が可能となる。本実施態様におい
ては、糸状体g固定化量の増加を短時間で容易におこな
える利点がある。また、糸状体gを水路内に突出する器
物で拘束する方法においても、分伎のある糸状体は長く
伸長しないため、藻類部b全面を糸状体で覆うには多く
の糸状体支持具が必要であり、支持することも無分技の
ものに比べて難しい、という欠点がある。この点につい
て、無分枝の糸状体では、長く伸長するので、より少な
い支持具の設置で藻類部b全面を糸状体で覆うことがで
きる。第5図は、水路が有端水路として構成された実施
態様を示す平面図である。流入汚水は自然流下により、
糸状体gに接触し浄化されながら排出される。本態様で
は、汚水流入量によって、水路水深及び水路幅を、流速
10〜30cm/秒となるよう、構成する必要がある。
本態様では、水流動のための動力が少ない利点がある。
第1図乃至第3図に示した実施例では、水路が無端状水
路として構成され、汚水流入量に関係なく水路内流速を
制御できる利点がある。また、第1図に示した実施例で
は、垂直方向に循環する無端状水路を用いたが、水平方
向に循環する無端状水路も用いることができる。 [発明の効果]以上、木発明の処理法においては、藻類
として大型の細胞が単条単列で無分枝である緑藻類糸状
体の1種または数種を水路内に固定化して用いるので、
藻体の分離及び脱水及び乾燥が容易であり、かつミジン
コ.ワムシ等増殖の速い微小動物に捕食されにくく、か
つ水路全体を藻体で覆うことが容易であり、水路内に安
定的に高い藻体濃度を維持できるとともに、一方向の水
流を形成するので、藻体の収穫が一か所で簡単に行なえ
る。このような利点を有する本発明によれば、従来の微
細藻類を用いた処理よりも、極めて経済的に汚水を処理
することが可能である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for purifying organic sewage such as sewage and livestock sewage using algae, and particularly BO
The present invention relates to a method for removing nitrogen and phosphorus from secondary treated water from which D and SS have been removed. [Prior Art] Conventionally, there is an oxidation pond method as a method for treating wastewater using algae. This utilizes floating green algae and cyanobacteria, and aerobic bacteria remove the BOD source by utilizing oxygen generated by photosynthesis of algae, and nitrogen and phosphorus are fixed to the algae. Green algae have mitochondria,
It decomposes and removes BOD sources as well as aerobic bacteria. Since algae can use carbon dioxide as a carbon source, nitrogen and phosphorus can be removed even without a BOD source, which is an excellent feature. Algae fix carbon dioxide, which is a cause of global warming as an environmental problem of recent global regulation, along with purification of sewage. The grown algal biomass can also be reused as feed, fertilizer, or energy source.
Therefore, the treatment method using algae is becoming more important. The problems of conventional wastewater treatment methods using planktonic algae are as follows. (1) Since the algal bodies are minute and dispersed, it is difficult to separate them by natural sedimentation and mechanical separation is required, so the cost for separation is high. (2) Daphnia magna because the alga is minute. The concentration of algal bodies is unstable, such as rotifers that are easily eaten by small animals that grow rapidly and the pond may become transparent overnight. (3) Since the growth of planktonic algae is slower than that of bacteria and is planktonic, the increase in the inflow of sewage tends to cause a decrease in the concentration of algal bodies and further washout of algal bodies. [Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned problems, and it is easy to separate algae from treated water. It is an object of the present invention to provide a treatment method that is unlikely to be eaten by a small animal such as a rotifer that proliferates and that can stably maintain a high algal cell concentration. [Means for Solving the Problem] That is, the present invention is to fix one or several kinds of green alga filamentous filaments in which cells are single-row, single-row, and unbranched in a waterway to remove organic wastewater under light conditions. By flowing along the water channel, filthy water is brought into contact with the green algae filamentous material, thereby purifying the organic filthy water, thereby constituting a method for purifying organic filthy water by algae. [Examples and Operations] Next, the present invention will be described in more detail with reference to the drawings. 1 and 2 and 3 show an apparatus for carrying out the method of the invention, FIG. 1 being a plan view,
FIG. 2 is an AA vertical sectional view, and FIG. 3 is a BB vertical sectional view. A water channel-shaped water tank 1 opened to the atmosphere is divided into upper and lower parts by partition walls 2, and the upper and lower parts of the water tank 1 communicate with the communication flow path a1.
And a2 are connected to each other to form one endless flow path. A corrugated plate-shaped attachment surface t is formed on the upper surface of the partition wall 2, and a green alga filamentous body g (hereinafter abbreviated as filamentous body), in which cells are single-row, single-row and unbranched, is fixed by self-adhesion. There is. As a result, the upper part of the partition wall 2 is the algae part b and the lower part is the return part r. The communication flow path a1 is opened at the bottom surface of the algae portion b, extends vertically downward, reaches below the bottom surface of the water tank 1 and then bends, extends vertically upward, and is opened at the bottom surface of the return portion r. The communication flow path a2 is formed by providing the partition wall 2 slightly away from the side wall of the water tank 1. The communication channel a2 is provided with a screen 3 for capturing and collecting the detached filaments. At the inflow part of the algae part b, a foam stopper 4 is provided across the flow path for preventing bubbles from floating on the water surface. A ventilation pipe 5 for activating a circulating flow of water is provided in an opening below one of the communication flow paths a1 which is vertically provided, and an air diffuser pipe 6 is provided in this opening.
Is provided, and a flow control valve 7 is provided in the ventilation pipe 5. When a gas such as air is pressed into the water tank 1 filled with dirty water through the air diffuser 6, an upward flow of the gas-liquid mixing system is generated in the re-communication flow path a1 due to the air lift effect, and as a result, the circulation in the direction of the arrow A stream is formed. Filament g self-adhered to the adhesion surface t
With this circulating flow, while oscillating under the surface of the water, it is irradiated with light, absorbs nitrogen components, phosphorus components, organic substances and the like, and grows and propagates. As a result, the sewage is purified by removing nitrogen components, phosphorus components, organic substances and the like. Filament g elongated to a certain length
Is cut by the frictional force of the circulating flow, is carried downstream by the circulating flow, and is captured by the screen 3. The water depth of the algae part b is 10 to 50 cm, more preferably 20 to 40 cm. The deeper the installation water depth of the air diffuser 6 is, the larger the circulation amount per unit ventilation amount is, but it is usually desirable to be 1 m or more. Algae part b
The flow velocity at 10 to 30 cm / s is suitable. When the filament g is irradiated with light, oxygen is generated by photosynthesis,
The fine bubbles of oxygen adhere to the filamentous body g. Therefore, the tip portion of the filamentous body g tends to float on the water surface. Filament g
Is floated on the surface of the water for a long time, it is yellowed and inactivated by strong light, and the inactivated filaments g hinder the transmission of light downward. As described above, the floating of the filaments g on the water surface adversely affects the growth of the filaments g, and thus the treatment capacity. Under the flowing condition, the filaments g are dispersed and oscillated under the water surface by the buoyancy due to the oxygen fine bubbles and the frictional reaction force of the flow, so that the environment suitable for the proliferation of the filaments g is maintained. The filaments used in the present invention are limited to green alga filaments with single-row single-row cells, that is, filamentous filaments without branching. The inventor tried culturing various filamentous algae using the apparatus shown in FIGS. 1 to 3, but in the case of branched filaments, the branching portion has a large frictional force of water flow. The filamentous material that has worked or detached and floated is entangled and receives a larger force, so that it is easily cut and does not extend for a long time. Therefore, it is possible to cover the entire attachment surface t with the filamentous material. It turned out to be difficult and the light loss was high. Regarding this point, in a filamentous filamentous green algal cell with a single row and a single row, since it extends long (several meters), it overlaps in the vertical direction, and it is possible to easily compensate all of the filamentous material on the attachment surface t, and use light There is an advantage that the property significantly increases. In addition, the contact area with the liquid is larger than that of the frond. Examples of cells having such an advantage include filamentous green algae having a single row and a single row. Genus Ulotrix sp. Hormium sp. Spodoptera Oedonium s
p. Genus Yokowa Sphaeropleas
p. Chrysanthemum Mougeotia sp. Zygnema sp. Spirogyra sp. In order to attach and proliferate these algae on the attachment surface t, these filaments may be pulverized into fine particles and dispersed in the liquid. 1-2
Filaments that adhere and proliferate over the course of the week are visually observed. Also,
As another method of immobilizing the filamentous green algae in the water channel, there is a method of restraining the filamentous material with an article protruding into the water channel, and FIG. 4 is an explanatory view showing this and is a vertical sectional view. The drawing shows a portion corresponding to the algae portion b in FIGS. 1 to 3, and a rod-shaped filamentous member support tool 10 whose tip is bent is erected on the upper surface of the partition wall 2. This thread support 10
Thus, the filamentous body g is wound or hung and fixed in the water channel. It is appropriate to provide the filament supporter 10 slightly above the bottom of the water channel, and the filament g is unlikely to float due to the flow, and good growth is possible. In this embodiment, there is an advantage that the amount of immobilization of the filamentous body g can be easily increased in a short time. Further, even in the method of restraining the filamentous g with a container projecting into the water channel, a filamentous body with a branch does not extend for a long time. However, there is a drawback that it is more difficult to support than those of the undivided skill. In this respect, since the unbranched filamentous material extends longer, it is possible to cover the entire surface of the algae part b with the filamentous material by installing less supporting tools. FIG. 5 is a plan view showing an embodiment in which the water channel is configured as an end channel. Inflowing sewage is caused by natural flow,
The filamentous material g is contacted with the filamentous material g and discharged while being purified. In this aspect, it is necessary to configure the water channel depth and the channel width to be a flow velocity of 10 to 30 cm / sec depending on the inflow amount of sewage.
In this embodiment, there is an advantage that less power is required for water flow.
In the embodiment shown in FIGS. 1 to 3, the water channel is configured as an endless water channel, and there is an advantage that the flow velocity in the water channel can be controlled regardless of the inflow amount of sewage. Further, in the embodiment shown in FIG. 1, the endless water channel circulating in the vertical direction is used, but the endless water channel circulating in the horizontal direction can also be used. [Effects of the Invention] As described above, in the treatment method of the tree invention, one or several species of green algal filaments in which large cells as algae are unbranched in a single-row single row are used by being immobilized in a water channel.
It is easy to separate, dehydrate, and dry algal cells, and the Daphnia magna. Difficult to be eaten by fast-growing micro-animals such as rotifers, and it is easy to cover the entire waterway with algal cells, and it is possible to maintain a stable high algal cell concentration in the water channel and form a one-way water flow. Algae can be harvested easily in one place. According to the present invention having such advantages, it is possible to treat sewage significantly more economically than the conventional treatment using microalgae.

【図面の簡単な説明】 第1図、第2図、及び第3図は、本発明の方法を実施す
るための装置の一例を示し、第1図は平面図、第2図は
A−A縦断面図、第3図はB−B縦断面図である。第4
図は藻体を水路内に突出する器物で拘束する方法を実施
するための装置の一例を示す一部縦断面図である。第5
図は平面図である。矢印は培養液の流れの方向を示す。 1は水槽、2は隔壁、3はスクリーン、4は泡ストッパ
ー、5は通気管、6は散気管、7は流量調節弁、8は送
風機、9は排気ガス、10は支持具、11は汚水流入
管、12は処理水流出管、a1は連通流路、a2は連通
流路、bは藻類部、rは返送部、gは糸状体、tは付着
面である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1, 2, and 3 show an example of an apparatus for carrying out the method of the present invention, FIG. 1 is a plan view, and FIG. 2 is AA. FIG. 3 is a vertical sectional view taken along the line BB. Fourth
The figure is a partial longitudinal cross-sectional view showing an example of an apparatus for carrying out the method of restraining algal bodies with a container projecting into a waterway. Fifth
The figure is a plan view. The arrow indicates the direction of flow of the culture medium. 1 is a water tank, 2 is a partition wall, 3 is a screen, 4 is a foam stopper, 5 is a ventilation pipe, 6 is a diffuser pipe, 7 is a flow control valve, 8 is a blower, 9 is exhaust gas, 10 is a support tool, 11 is dirty water. An inflow pipe, 12 is a treated water outflow pipe, a1 is a communication channel, a2 is a communication channel, b is an alga part, r is a return part, g is a filament, and t is an attachment surface.

Claims (1)

【特許請求の範囲】 1.細胞が単条単列で無分枝である緑藻類糸状体の1種
または数種を水路内に固定化し、明条件下、有機姓汚水
を該水路に沿って流すことにより、前記緑藻類糸状体に
汚水を接触させ、これによって有機性汚水を浄化するこ
とを特徴とする藻類による有機性汚水の浄化方法。 2.前記水路が無端状水路であり、前記緑藻類糸状体に
汚水を循環して接触させることを特徴とする特許請求の
範囲第1項記載の藻類による有機姓汚水の浄化方法。 3.前記緑藻類の形成する吸着器による自着により、前
記糸状体を水路内に固定化したことを特徴とする特許請
求の範囲第1項または第2項記載の藻類による有機性汚
水の浄化方法。 4.前記糸状休を水路内に突出する器物で拘束すること
により、該糸状体を水路内に固定化したことを特徴とす
る特許請求の範囲第1項記戴または第2項記載の藻類に
よる有機性汚水の浄化方法。
[Claims] 1. By immobilizing one or several types of green algal filaments in which cells are single-row, single-branched and unbranched in a channel, and flowing organic sewage along the channel under bright conditions, A method for purifying organic wastewater by algae, which comprises contacting wastewater to purify the organic wastewater. 2. The method for purifying organic wastewater by algae according to claim 1, wherein the waterway is an endless waterway, and sewage is circulated and brought into contact with the filamentous body of the green algae. 3. The method for purifying organic sewage by algae according to claim 1 or 2, wherein the filaments are immobilized in a water channel by self-adhesion by an adsorber formed by the green algae. 4. The algae organic matter according to claim 1 or 2, characterized in that the filamentous body is fixed in the water channel by restraining the filamentary rest with a container projecting into the water channel. How to purify sewage.
JP12566991A 1991-03-07 1991-03-07 Method for purifying organic sewage by algae Pending JPH06335697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12566991A JPH06335697A (en) 1991-03-07 1991-03-07 Method for purifying organic sewage by algae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12566991A JPH06335697A (en) 1991-03-07 1991-03-07 Method for purifying organic sewage by algae

Publications (1)

Publication Number Publication Date
JPH06335697A true JPH06335697A (en) 1994-12-06

Family

ID=14915727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12566991A Pending JPH06335697A (en) 1991-03-07 1991-03-07 Method for purifying organic sewage by algae

Country Status (1)

Country Link
JP (1) JPH06335697A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304032A (en) * 2012-03-09 2013-09-18 中国海洋石油总公司 System for treating coal gasification wastewater by using microalgae and treating method
CN105060493A (en) * 2015-08-22 2015-11-18 湖南生物机电职业技术学院 Algae immobilization technology
CN107986458A (en) * 2018-01-22 2018-05-04 武汉净宇微藻科技有限公司 A kind of method of immobilized algal cells processing aquaculture waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304032A (en) * 2012-03-09 2013-09-18 中国海洋石油总公司 System for treating coal gasification wastewater by using microalgae and treating method
CN105060493A (en) * 2015-08-22 2015-11-18 湖南生物机电职业技术学院 Algae immobilization technology
CN107986458A (en) * 2018-01-22 2018-05-04 武汉净宇微藻科技有限公司 A kind of method of immobilized algal cells processing aquaculture waste water

Similar Documents

Publication Publication Date Title
KR0175229B1 (en) Apparatus and method for waste water treatment using granular sludge
KR0149621B1 (en) Apparatus and method for waste water treatment utilizing aerobic and anaerobic microorganisms
CN108975614B (en) Operation method of biogas slurry ecological treatment culture system
US9162909B2 (en) Method and apparatus for the bio-remediation of aqueous waste compositions
KR101743653B1 (en) Apparatus for purifying water using microalgae
JPH07124581A (en) Device and process for drainage treatment
RU2595670C2 (en) System for decomposition of organic compounds and operating method thereof
KR101378481B1 (en) Apparatus and method for cultivating micro-algae with anaerobic digestion vessel and membrane bio-reactor
JP2001170671A (en) Biological treatment method and device for waste water
JPH06335697A (en) Method for purifying organic sewage by algae
JPS63252596A (en) Waste water treatment apparatus
US20200290908A1 (en) Submerged bio-restoration artificial ecosystem reactor
JPS61271090A (en) Treating device for waste water using immobilized microorganism
JPH0654630A (en) Method for fixing gaseous carbon dioxide in waste gas
CN1328192C (en) A method for comprehensive treatment of high-concentration organic wastewater
JPH0716596A (en) Water clarification method of closed water such as lake, marsh, pond, etc.
JPS59199099A (en) Process and apparatus for purifying filthy water utilizing photosynthetic bioslime
CN203794700U (en) Combined type biological suspended bed
JP5286475B2 (en) High concentration wastewater treatment system
CN209922999U (en) Biological membrane fixing device for biological sewage treatment
JPH04305294A (en) Living thing fixing bed for biological treatment
JPH02238835A (en) Filter of breeding water of fishes
JPH0530879A (en) Cultivation of fish and apparatus therefor
KR20170142577A (en) Treatment apparatus and method for waste nutrient solution
JPH06178996A (en) Water quality purifying method for closed water area of lake, marsh, pond or the like