JPH06334253A - Narrow band excimer laser - Google Patents

Narrow band excimer laser

Info

Publication number
JPH06334253A
JPH06334253A JP14122293A JP14122293A JPH06334253A JP H06334253 A JPH06334253 A JP H06334253A JP 14122293 A JP14122293 A JP 14122293A JP 14122293 A JP14122293 A JP 14122293A JP H06334253 A JPH06334253 A JP H06334253A
Authority
JP
Japan
Prior art keywords
narrow band
excimer laser
oscillation wavelength
wavelength
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14122293A
Other languages
Japanese (ja)
Other versions
JP2661503B2 (en
Inventor
Yoshihiro Kajiki
善裕 梶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5141222A priority Critical patent/JP2661503B2/en
Publication of JPH06334253A publication Critical patent/JPH06334253A/en
Application granted granted Critical
Publication of JP2661503B2 publication Critical patent/JP2661503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To stabilize the oscillation wavelength by branching a part of output light from a narrow band excimer laser and introducing to a multiphoton reaction cell, detecting the reaction in the form of fluorescent signal or ionization signal, detecting the shift of oscillation wavelength from the detected signal, and then controlling the oscillation wavelength in the correcting direction. CONSTITUTION:A part of output light from a narrow band ArF excimer laser is split through a beam splitter 2 and then further split through another beam splitter 3 into two optical paths so that the laser light impinges on a multiphoton reaction cell 4 encapsulating hydrogen gas from the opposite directions. The laser light entering from the opposite directions are condensed appropriately in order to increase the probability of simultaneous collision of photons entering from different directions. In this regard, the relative speeds for respective photons are offset in the thermal motion of hydrogen molecules and thereby a fluorescent pumping spectrum having no Doppler broadening is obtained. A CPU 6 operates the signal of fluorescent pumping spectrum from a photomultiplier tube 5 and controls a narrow band unit 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体の露光等に用い
る狭帯域化エキシマレーザ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a narrow band excimer laser device used for exposure of semiconductors and the like.

【0002】[0002]

【従来の技術】従来の狭帯域化エキシマレーザ装置とし
て、文献「CLEO '89,Technical Digest, THU4, p.36
6.」 に開示されたものがある。図4は上記文献に記載
された挟帯域化エキシマレーザ装置の構成図を示す。狭
帯域化したエキシマレーザの発振波長は、共振器の熱膨
張や外気圧の変化等の影響で変動する。これを防ぐた
め、出力光1の一部をビームスプリッタ2を介して分岐
させエタロン15に導き、エタロン15の干渉縞から発
振波長のずれをCPU6にて演算して、ずれを補正する
方向に狭帯域化ユニット7を制御することによって発振
波長を安定化する。しかし、厳密にはエタロン15の面
間隔を固定するスペーサの熱膨張等によってエタロン1
5の干渉縞も変化するので、上記の構成のみでは絶対波
長を精密に安定化することはできない。
2. Description of the Related Art As a conventional narrow-band excimer laser device, a document "CLEO '89, Technical Digest, THU4, p.36.
6. ”. FIG. 4 shows a block diagram of the narrow band excimer laser device described in the above document. The oscillation wavelength of the narrow band excimer laser fluctuates due to the effects of thermal expansion of the resonator and changes in the external pressure. In order to prevent this, a part of the output light 1 is branched via the beam splitter 2 and guided to the etalon 15, and the deviation of the oscillation wavelength is calculated by the CPU 6 from the interference fringes of the etalon 15, and the deviation is narrowed in the direction to correct the deviation. By controlling the banding unit 7, the oscillation wavelength is stabilized. Strictly speaking, however, the etalon 1 does not expand due to thermal expansion of the spacers that fix the surface spacing of the etalon 15.
Since the interference fringes of No. 5 also change, the absolute wavelength cannot be precisely stabilized only with the above configuration.

【0003】そこで、波長基準としてスペクトル光源ラ
ンプ16の光を同じエタロン15に入射して干渉縞の変
化を観測し、測定系自身の変動を相殺することにより発
振波長の変動を精密に安定化させている。さらに、文献
「第52回応用物理学会学術講演会、講演予稿集 3、9
42頁、講演番号11p-L-4、応用物理学会、1991年」 に記
載されているように、通常のスペクトル光源ランプ16
は自然界に一定の比率で存在する同位体の影響でスペク
トルが拡がっているので、特別に同位体を選別したラン
プを用いて高精度の安定化を行った例もある。
Therefore, as the wavelength reference, the light of the spectrum light source lamp 16 is made incident on the same etalon 15 to observe the change of the interference fringes, and the fluctuation of the measuring system itself is canceled to precisely stabilize the fluctuation of the oscillation wavelength. ing. In addition, the document "The 52nd Annual Meeting of the Applied Physics Society of Japan, Lecture Proceedings 3, 9
Page 42, Lecture No. 11p-L-4, Japan Society of Applied Physics, 1991 "
Since the spectrum spreads due to the effect of isotopes existing in a certain ratio in nature, there is an example in which a lamp with a specially selected isotope is used for high-precision stabilization.

【0004】[0004]

【発明が解決しようとする課題】上記のように、狭帯域
化エキシマレーザ装置の発振波長の安定度は、波長基準
の精度によって制限されている。精度を高める為に同位
体のランプを用いても、ランプとして発光させる為に放
電や高周波で高温に加熱するので、ドップラ効果により
スペクトル幅が拡がる。例えば、前記の文献では質量数
198のHg の同位体ランプを高周波加熱で点灯して、スペ
クトル幅約1pm の基準光を得る。これに発振スペクトル
幅1.5pm のレーザ光を入射して、ランプとレーザのスペ
クトル拡がりを合わせた2.5pm の拡がりから中心波長を
算出して安定化を行っている。しかしながら、算出の基
となるデータの拡がりが2.5pmもあるため、±0.15pm 程
度の変動が生じるといった問題があった。したがって、
本発明は上記した従来の問題に鑑みてなされたものであ
り、その目的とするところは、発振波長がより安定した
狭帯域化エキシマレーザ装置を提供することにある。
As described above, the stability of the oscillation wavelength of the narrow band excimer laser device is limited by the accuracy of the wavelength reference. Even if an isotope lamp is used to improve accuracy, the spectrum width is widened by the Doppler effect because it is heated to a high temperature by discharge or high frequency in order to emit light as a lamp. For example, in the above literature, the mass number
A 198 Hg isotope lamp is lit by high frequency heating to obtain a reference light with a spectral width of about 1 pm. Laser light with an oscillation spectrum width of 1.5 pm is incident on this, and the center wavelength is calculated from the 2.5 pm spread, which is the combined spectral spread of the lamp and laser, for stabilization. However, the spread of the data used as the basis of the calculation is 2.5 pm, so there was a problem of fluctuations of about ± 0.15 pm. Therefore,
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a narrow band excimer laser device having a more stable oscillation wavelength.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明に係る狭帯域化エキシマレーザ装置は、出力
光の一部を分岐して対向する2方向から多光子反応セル
に入射する光学系と、多光子反応セルの出力から発振波
長のずれを検出して発振波長を安定化する制御機構とを
備える。また、本発明に係る狭帯域化エキシマレーザ装
置は、出力光の一部を分岐して波長変換セルに入射し、
この波長変換セルの出力光を対向する2方向から多光子
反応セルに入射する光学系と、前記多光子反応セルの出
力から発振波長のずれを検出して発振波長を安定化する
制御機構とを備える。
In order to achieve this object, in the narrow band excimer laser device according to the present invention, a part of the output light is branched and enters a multiphoton reaction cell from two opposite directions. An optical system and a control mechanism that stabilizes the oscillation wavelength by detecting the deviation of the oscillation wavelength from the output of the multiphoton reaction cell are provided. Further, the narrow band excimer laser device according to the present invention splits a part of the output light to enter the wavelength conversion cell,
An optical system in which the output light of the wavelength conversion cell is incident on the multiphoton reaction cell from two opposite directions, and a control mechanism for detecting the deviation of the oscillation wavelength from the output of the multiphoton reaction cell and stabilizing the oscillation wavelength. Prepare

【0006】[0006]

【作用】2光子誘起蛍光や2光子共鳴吸収等の多光子反
応は、2つ以上の光子が物質に同時に衝突することによ
って生じる反応である。請求項1に記載の発明では、狭
帯域化エキシマレーザの出力光の一部を分岐して多光子
反応セルに導くと、セル内の物質固有の波長でのみ多光
子反応が起こり、蛍光信号や電離信号等の形で反応を検
出することにより物質固有の波長に対するレーザ光の波
長のずれを検出することができる。ここで、セル内部の
物質も熱運動によるドップラ拡がりを持っているが、レ
ーザ光を対向する2方向から同時に入射すると双方の光
子に対するセル内の物質の熱運動速度が相殺され、ドッ
プラ拡がりの影響を受けない信号を検出することができ
る。この信号から発振波長のずれを検出して、補正する
方向に発振波長を制御することにより、従来よりも発振
波長が安定な狭帯域化エキシマレーザ装置を提供するこ
とができる。さらに、請求項2に記載の発明では、レー
ザ光を波長変換セルに入射して、変換された光を多光子
反応セルに導くので、レーザ光の波長に適合する物質が
無い場合でも用いることができる。
Function A multi-photon reaction such as two-photon induced fluorescence or two-photon resonance absorption is a reaction that occurs when two or more photons collide with a substance at the same time. In the invention according to claim 1, when a part of the output light of the narrow band excimer laser is branched and guided to the multiphoton reaction cell, the multiphoton reaction occurs only at the wavelength peculiar to the substance in the cell, and a fluorescence signal or By detecting the reaction in the form of an ionization signal or the like, it is possible to detect the wavelength shift of the laser light with respect to the wavelength peculiar to the substance. Here, the material inside the cell also has a Doppler spread due to thermal motion, but when laser light is simultaneously incident from two opposite directions, the thermal motion velocity of the material inside the cell for both photons is canceled out, and the effect of Doppler spread It is possible to detect a signal that is not subject to the noise. By detecting the deviation of the oscillation wavelength from this signal and controlling the oscillation wavelength in the direction of correction, it is possible to provide a narrow band excimer laser device having a more stable oscillation wavelength than before. Further, in the invention described in claim 2, since the laser light is incident on the wavelength conversion cell and the converted light is guided to the multiphoton reaction cell, it can be used even when there is no substance compatible with the wavelength of the laser light. it can.

【0007】[0007]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は本発明に係る挟帯化エキシマレーザ装置の構
成図を示す。同図において、狭帯域化したArFエキシ
マレーザの出力光1の一部をビームスプリッタ2にて分
岐し、さらに別のビームスプリッタ3により2本の光路
に分けて対向する2方向から多光子反応セル4に入射す
る。多光子反応セル4の中には水素ガスが封入されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a block diagram of a banded excimer laser device according to the present invention. In the figure, a part of the output light 1 of the narrow band ArF excimer laser is split by a beam splitter 2, and further divided by another beam splitter 3 into two optical paths, and a multiphoton reaction cell is provided from two opposite directions. It is incident on 4. Hydrogen gas is enclosed in the multiphoton reaction cell 4.

【0008】図2は、文献「IEEE Journal of Quantum
Electronics, Vol.QE-15, 1979, p.380.」に記された水
素分子のエネルギ準位図を示す。同図に示すように、A
rFエキシマレーザの193nm の光子2個と基底状態10
の水素分子が同時に衝突すると、水素分子は基底状態1
0から仮想準位を介してE,F 準位11に遷移する。
E,F準位11に励起された分子はさらに寿命約90ns で
B準位12に緩和する。E,F準位11からB準位12
に緩和する際に波長750nmの蛍光を放出する。B準位1
2の寿命は約1.6ns と短いので蛍光の自己吸収は殆ど無
く、この蛍光強度を、光電子増倍管5で観測することに
よりArFエキシマレーザの発振波長と水素分子の2光
子遷移波長との波長差を検出できる。
FIG. 2 shows the document "IEEE Journal of Quantum".
Electronics, Vol.QE-15, 1979, p.380. ”Is shown. As shown in the figure, A
Two 193 nm photons and ground state 10 of rF excimer laser
When two hydrogen molecules in the same collision, the hydrogen molecules are in the ground state 1
The transition from 0 to the E, F level 11 via the virtual level is made.
Molecules excited to the E and F levels 11 further relax to the B level 12 with a lifetime of about 90 ns. E, F levels 11 to B levels 12
When it is relaxed, it emits fluorescence with a wavelength of 750 nm. B level 1
Since the lifetime of 2 is short at about 1.6 ns, there is almost no self-absorption of fluorescence. By observing this fluorescence intensity with the photomultiplier tube 5, the wavelength between the oscillation wavelength of the ArF excimer laser and the two-photon transition wavelength of the hydrogen molecule can be seen. The difference can be detected.

【0009】ここで、対向する2方向から入射するレー
ザ光を適度に集光すると、異なる方向からの光子が水素
分子に同時に衝突する確率を高くすることができる。こ
の場合、水素分子が熱運動をしても各々の光子に対する
相対速度が相殺されるので、ドップラ拡がりの殆ど無い
蛍光励起スペクトルが得られる。例えば、ArFエキシ
マレーザをスペクトル幅1.5pm に狭帯域化した場合、2
光子励起の遷移確率はスペクトル強度の二乗に比例する
ので、スペクトル幅約1.1pm の蛍光励起スペクトルが得
られる。
Here, if the laser beams incident from the two opposite directions are properly condensed, it is possible to increase the probability that photons from different directions collide with hydrogen molecules at the same time. In this case, even if the hydrogen molecule makes a thermal motion, the relative velocities for the respective photons are canceled out, so that a fluorescence excitation spectrum with almost no Doppler spread can be obtained. For example, when narrowing the bandwidth of the ArF excimer laser to a spectral width of 1.5 pm, 2
Since the transition probability of photon excitation is proportional to the square of the spectrum intensity, a fluorescence excitation spectrum with a spectral width of about 1.1 pm can be obtained.

【0010】本実施例では、この1.1pm の拡がりの蛍光
励起スペクトルが最大強度となるように、光電子増倍管
の信号をCPU6にて演算し、狭帯域化ユニット7を制
御する。従来例では2.5pmの拡がりを基に±0.15pm に安
定化したのに対し、この構成では1.1pmの拡がりを基に
するため、発振波長の変動を±0.07pm 程度に抑えるこ
とができる。
In this embodiment, the signal of the photomultiplier tube is calculated by the CPU 6 so that the fluorescence excitation spectrum with the spread of 1.1 pm has the maximum intensity, and the band narrowing unit 7 is controlled. In the conventional example, it is stabilized at ± 0.15pm based on the spread of 2.5pm, whereas this configuration is based on the spread of 1.1pm, so the fluctuation of the oscillation wavelength can be suppressed to about ± 0.07pm.

【0011】また、上記の実施例と同様の構成で、2光
子誘起蛍光ではなく2光子共鳴吸収を用いることもでき
る。この場合、2光子を吸収してE,F 準位11に励起
した後、E,F11準位の寿命90ns 以内にもう1つの光
子が衝突して電離エネルギを越えて、電子-イオン対を
生成する。電子-イオン対の生成には光電子増倍管5の
代わりに2次電子増倍管を用いると高感度に検出でき
る。この構成でも上記と同様にスペクトル幅約1.1pm の
電離信号が得られ、同様に発振波長の変動を±0.07pm程
度に抑えることができる。さらに上記の実施例では、A
rFエキシマレーザに対する水素分子の多光子反応を用
いたが、他のエキシマレーザや他の物質による多光子反
応でもよいことは勿論である。
Further, it is possible to use the two-photon resonance absorption instead of the two-photon induced fluorescence with the same constitution as the above-mentioned embodiment. In this case, after absorbing two photons and being excited to the E, F level 11, another photon collides with the ionization energy within a lifetime of 90 ns of the E, F11 level to generate an electron-ion pair. To do. If a secondary electron multiplier is used instead of the photomultiplier tube 5 for the generation of electron-ion pairs, it can be detected with high sensitivity. Even with this configuration, an ionization signal with a spectral width of about 1.1 pm can be obtained in the same manner as described above, and similarly, fluctuations in the oscillation wavelength can be suppressed to about ± 0.07 pm. Further, in the above embodiment, A
Although the multiphoton reaction of hydrogen molecules with respect to the rF excimer laser is used, it goes without saying that a multiphoton reaction by another excimer laser or another substance may be used.

【0012】図3は本発明の第2の実施例の狭帯域化エ
キシマレーザ装置の構成を示す。狭帯域化したArFエ
キシマレーザの出力光1の一部をビームスプリッタ2に
て分岐し、波長変換セルの1種であるラマン散乱セル8
に入射する。ラマン散乱セル8内には重水素が封入して
あり、誘導ラマン散乱により193nm のレーザ光の一部を
205nm の1次ストークス光に変換する。2本の光路に分
けて対向する2方向から多光子反応セル4に入射する。
多光子反応セル4の中には水素ガスが封入されており、
高周波加熱によりセル内で水素原子を生成している。
FIG. 3 shows the configuration of a narrow band excimer laser device according to the second embodiment of the present invention. A part of the output light 1 of the narrow band ArF excimer laser is split by a beam splitter 2, and a Raman scattering cell 8 which is one type of wavelength conversion cell.
Incident on. Deuterium is enclosed in the Raman scattering cell 8 and a part of the laser light of 193 nm is generated by stimulated Raman scattering.
Converted to 205 nm primary Stokes light. The light is incident on the multiphoton reaction cell 4 from two opposite directions divided into two optical paths.
Hydrogen gas is enclosed in the multiphoton reaction cell 4,
Hydrogen atoms are generated in the cell by high frequency heating.

【0013】水素原子は天体観測等でよく知られている
ように3d軌道から1s軌道へ遷移する際に波長102.6nmの
ライマンβ線を,3d軌道から2p 軌道へ遷移する際に波
長656nmのバルマーα線を放出する。これは、1s 軌道の
水素原子にラマン散乱セル8からの波長205nmの光を入
射すると、2光子で3d軌道に遷移し、3d 軌道から2p軌
道へ緩和する際に波長656nm の蛍光を放出することを示
している。従って図1の場合と同様にこの蛍光強度を、
光電子増倍管5で観測することによりArFエキシマレ
ーザの発振波長と水素原子の2光子遷移波長との波長差
を検出でき、同様にスペクトル幅1.5pmのレーザを発振
変動±0.07pm 程度に抑えることができる。
As is well known in astronomical observation and the like, a hydrogen atom has a Lyman β-ray with a wavelength of 102.6 nm when transitioning from a 3d orbit to a 1s orbit, and a Ballmer with a wavelength of 656 nm when transitioning from a 3d orbit to a 2p orbit. Emit alpha rays. This is because when a light with a wavelength of 205 nm from the Raman scattering cell 8 enters a hydrogen atom in the 1s orbit, it transitions to a 3d orbit by two photons and emits a fluorescence with a wavelength of 656 nm when relaxing from the 3d orbit to the 2p orbit. Is shown. Therefore, as in the case of FIG.
By observing with the photomultiplier tube 5, the wavelength difference between the oscillation wavelength of the ArF excimer laser and the two-photon transition wavelength of hydrogen atoms can be detected, and similarly, the oscillation fluctuation of a laser with a spectral width of 1.5 pm can be suppressed to about ± 0.07 pm. You can

【0014】[0014]

【発明の効果】以上説明したように本発明によれば、出
力光の一部を分岐して対向する2方向から多光子反応セ
ルに入射する光学系を備えたので、2方向から同時に入
射するレーザ光の光子に対するセル内の物質の熱運動速
度が相殺され、ドップラ拡がりの影響を受けない信号を
検出することができ、このため発振波長が安定する。ま
た、出力光の一部を分岐して波長変換セルに入射させて
いるので、レーザ光の波長に適合する物質が無い場合で
も用いることができる。
As described above, according to the present invention, since an optical system for branching a part of the output light and making it incident on the multiphoton reaction cell from two opposite directions, it is made incident from two directions at the same time. The thermal velocities of the substances in the cell with respect to the photons of the laser light are canceled out, and a signal that is not affected by the Doppler spread can be detected, which stabilizes the oscillation wavelength. Further, since a part of the output light is branched and made incident on the wavelength conversion cell, it can be used even when there is no substance compatible with the wavelength of the laser light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る狭帯域化エキシマレーザ装置の構
成図である。
FIG. 1 is a configuration diagram of a narrow band excimer laser device according to the present invention.

【図2】水素分子のエネルギ準位図である。FIG. 2 is an energy level diagram of hydrogen molecules.

【図3】本発明に係る狭帯域化エキシマレーザ装置の第
2の実施例の構成図である。
FIG. 3 is a configuration diagram of a second embodiment of a narrow band excimer laser device according to the present invention.

【図4】従来の狭帯域化エキシマレーザ装置の構成図で
ある。
FIG. 4 is a configuration diagram of a conventional narrow band excimer laser device.

【符号の説明】[Explanation of symbols]

1 出力光 2 ビームスプリッタ 4 多光子反応セル 5 光電子増倍管 6 CPU 7 狭帯域化ユニット 8 ラマン散乱セル 10 基底状態 11 E,F準位 12 B準位 1 Output Light 2 Beam Splitter 4 Multiphoton Reaction Cell 5 Photomultiplier Tube 6 CPU 7 Narrowing Band Unit 8 Raman Scattering Cell 10 Ground State 11 E, F Level 12 B Level

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発振周波数帯域を狭帯域化し、発振波長
を安定化する狭帯域化エキシマレーザ装置において、出
力光の一部を分岐して対向する2方向から多光子反応セ
ルに入射する光学系と、前記多光子反応セルの出力から
発振波長のずれを検出して発振波長を安定化する制御機
構とを備えたことを特徴とする狭帯域化エキシマレーザ
装置。
1. In a narrow band excimer laser device for narrowing an oscillation frequency band and stabilizing an oscillation wavelength, an optical system in which a part of output light is branched and enters a multiphoton reaction cell from two opposite directions. And a control mechanism for stabilizing the oscillation wavelength by detecting the deviation of the oscillation wavelength from the output of the multiphoton reaction cell.
【請求項2】 発振周波数帯域を狭帯域化し、発振波長
を安定化する狭帯域化エキシマレーザ装置において、出
力光の一部を分岐して波長変換セルに入射し、この波長
変換セルの出力光を対向する2方向から多光子反応セル
に入射する光学系と、前記多光子反応セルの出力から発
振波長のずれを検出して発振波長を安定化する制御機構
とを備えたことを特徴とする狭帯域化エキシマレーザ装
置。
2. In a narrow band excimer laser device for narrowing the oscillation frequency band and stabilizing the oscillation wavelength, a part of the output light is branched and made incident on the wavelength conversion cell, and the output light of this wavelength conversion cell And an optical system for injecting light into the multiphoton reaction cell from two opposing directions, and a control mechanism for detecting the deviation of the oscillation wavelength from the output of the multiphoton reaction cell and stabilizing the oscillation wavelength. Narrow band excimer laser device.
JP5141222A 1993-05-21 1993-05-21 Narrowband excimer laser device Expired - Lifetime JP2661503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5141222A JP2661503B2 (en) 1993-05-21 1993-05-21 Narrowband excimer laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5141222A JP2661503B2 (en) 1993-05-21 1993-05-21 Narrowband excimer laser device

Publications (2)

Publication Number Publication Date
JPH06334253A true JPH06334253A (en) 1994-12-02
JP2661503B2 JP2661503B2 (en) 1997-10-08

Family

ID=15286967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5141222A Expired - Lifetime JP2661503B2 (en) 1993-05-21 1993-05-21 Narrowband excimer laser device

Country Status (1)

Country Link
JP (1) JP2661503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160825A (en) * 1997-11-17 2000-12-12 Zarm-Technik Gmbh Method and system to calibrate tunable lasers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617091A (en) * 1979-07-20 1981-02-18 Seiko Epson Corp Laser time standerdization device
JPH02215175A (en) * 1989-02-16 1990-08-28 Agency Of Ind Science & Technol Wavelength control device of narrow band excimer laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617091A (en) * 1979-07-20 1981-02-18 Seiko Epson Corp Laser time standerdization device
JPH02215175A (en) * 1989-02-16 1990-08-28 Agency Of Ind Science & Technol Wavelength control device of narrow band excimer laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160825A (en) * 1997-11-17 2000-12-12 Zarm-Technik Gmbh Method and system to calibrate tunable lasers

Also Published As

Publication number Publication date
JP2661503B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
Smith Thermal defocusing of CO 2 laser radiation in gases
Papen et al. Sensitivity analysis of Na narrowband wind–temperature lidar systems
CN112955978B (en) Atomic beam collimation method, atomic beam collimator, atomic interferometer and atomic gyroscope
Terra Absolute frequency measurement of the hyperfine structure of the 5S1/2–5D3/2 two-photon transition in rubidium using femtosecond frequency comb
Jarrett Spin-exchange cross section for Rb 85-Rb 87 collisions
Di Rosa et al. Cross sections of photoionization and ac Stark shift measured from Doppler-free B← X (0, 0) excitation spectra of CO
JP7296151B2 (en) Optical fiber gyroscope light source device and optical fiber gyroscope using the same
JP2004096410A (en) Atomic oscillation acquiring device and atomic clock
CN105762640B (en) Reflective integrated device for sub-Doppler saturated absorption spectrum
Nguyen et al. Temperature-shift-suppression scheme for two-photon two-color rubidium vapor clocks
JP2661503B2 (en) Narrowband excimer laser device
US20230332893A1 (en) Inertial sensor, atomic interferometer, method for adjusting speed and course of atomic beam, and apparatus for adjusting speed and course of atomic beam
US20230332895A1 (en) Inertial sensor, atomic interferometer, method for adjusting speeds of atoms, and apparatus for adjusting speeds of atoms
JP2009283810A (en) Optical system, and atomic oscillator
JP2005072103A (en) Device and method for stabilizing laser frequency
Seo et al. Disalignment rate coefficient of neon excited atoms due to helium atom collisions at low temperatures
Martin Reciprocity between emission and absorption for rare earth ions in glass
Liu et al. Precision frequency measurement of 1S0–3P1 intercombination lines of sr isotopes
Gozzini et al. White-light-induced drift on sodium vapour
Ridley et al. Observation of three weakly bound valence states of I2
Barger et al. Sealed-off Hg 198 atomic-beam light source
Kobayashi et al. Laser pulse timing synchronization to an electron bunch for Compton scattering
Fearey et al. Doppler-free saturation spectroscopy of lutetium isotopes through resonance-ionization mass spectrometry
JP2002329911A (en) Laser device, amplifier and ultraviolet laser device
Bensoussan Experimental determination of highly excited F levels in potassium by three-photon absorption spectroscopy