JPH063340A - Method for retaining ultrasonic probe - Google Patents

Method for retaining ultrasonic probe

Info

Publication number
JPH063340A
JPH063340A JP4164559A JP16455992A JPH063340A JP H063340 A JPH063340 A JP H063340A JP 4164559 A JP4164559 A JP 4164559A JP 16455992 A JP16455992 A JP 16455992A JP H063340 A JPH063340 A JP H063340A
Authority
JP
Japan
Prior art keywords
ultrasonic probe
motor
electric motor
probe
rack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4164559A
Other languages
Japanese (ja)
Inventor
Chikara Sato
主税 佐藤
Masahiro Koike
正浩 小池
文信 ▲高▼橋
Fuminobu Takahashi
Shigeru Kajiyama
茂 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4164559A priority Critical patent/JPH063340A/en
Publication of JPH063340A publication Critical patent/JPH063340A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain such an actuator that can easily adjust the pressing pressure of an ultrasonic probe against an object to be inspected for an automatic nondestructive inspection device using the ultrasonic probe. CONSTITUTION:An automatic inspection device is constituted of a pinion 4 installed to the rotating shaft of a DC motor 5, rack 3 engaged with the pinion 4, controller which adjusts the impressed current of motor 5, and ultrasonic probe 1 held by a gimbal 2 installed at the front end of the rack 3. When the impressed current of the motor 5 is adjusted, the pressing pressure of the probe 1 against an object 6 to be inspected can be adjusted to an arbitrary value. Therefore, the optimum contact pressure can be obtained between the probe 1 and object 6 and a remote automatic flaw detecting using the probe 1 can effectively become independent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波を用いた遠隔自動
探傷装置に係り、特に、超音波探触子を被検体の表面に
押圧させる接触圧力を電動機の回転を拘束した状態で発
生するトルクを用いて調整し、最適の接触圧力を与える
に好適な超音波探触子の保持方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote automatic flaw detector using ultrasonic waves, and particularly to a contact pressure for pressing an ultrasonic probe against the surface of an object under the condition that the rotation of an electric motor is restricted. The present invention relates to a method of holding an ultrasonic probe that is suitable for adjusting an optimum contact pressure by using a torque.

【0002】[0002]

【従来の技術】従来の超音波を用いた遠隔自動探傷装置
では、超音波探触子を被検体表面に沿って一定の圧力で
押圧するために、弾性を有する材料を用いて、常時、押
しつけることが出来るような方策がとられている。これ
らの方法には、コイルスプリングを用いる方法もある
が、作用する方向が1方向なので自動検査装置ではあま
り利用されていない。一般には、特公平1−56703号公報
に記載されているように、エアシリンダをアクチュエー
タとしている方法が多く用いられている。
2. Description of the Related Art In a conventional remote automatic flaw detector using ultrasonic waves, in order to press the ultrasonic probe along the surface of a subject with a constant pressure, a material having elasticity is used and constantly pressed. Measures are taken so that it can be done. Among these methods, there is a method using a coil spring, but since the acting direction is one direction, it is not often used in an automatic inspection device. Generally, as described in Japanese Patent Publication No. 1-56703, a method using an air cylinder as an actuator is often used.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術は、ア
クチュエータであるエアシリンダの動力源にコンプレッ
サを必要とし、コンプレッサで圧縮された空気の伝播
に、可撓性の悪いエアホースを用いている。このため、
超音波探触子を駆動する際にエアホースを多少なりとも
屈曲させなければならず、この屈曲に要する動力の増大
やこの時に発生する反力によって、超音波探触子の姿勢
が変化し位置決め精度や、操作性を悪くしている原因と
なっている。また、エアシリンダは一般に低速度動作時
の特性が悪く特にステックスリップが発生しやすいた
め、被検体表面のうねり等の変化に追従する性能に悪影
響をもたらす場合がある。
The above-mentioned prior art requires a compressor as a power source of an air cylinder which is an actuator, and uses an inflexible air hose for propagating air compressed by the compressor. For this reason,
The air hose must be bent to some extent when driving the ultrasonic probe, and the posture of the ultrasonic probe changes due to the increase in power required for this bending and the reaction force generated at this time, and positioning accuracy is increased. It is also a cause of poor operability. Further, since air cylinders generally have poor characteristics during low-speed operation and stick slips are particularly likely to occur, the performance of following changes such as waviness on the surface of the subject may be adversely affected.

【0004】本発明の目的は、超音波を用いた自動検査
装置において、被検体の表面を容易に走査できる超音波
探触子の保持方法を提供することにある。
An object of the present invention is to provide a method for holding an ultrasonic probe which can easily scan the surface of a subject in an automatic inspection apparatus using ultrasonic waves.

【0005】[0005]

【課題を解決するための手段】本発明の超音波探触子の
保持方法は、上記目的を達成するために、超音波探触子
を押圧するための電動機、発生したトルクを超音波探触
子に伝達する機構および電動機に印加する電流の最大値
をストール電流とした。
In order to achieve the above-mentioned object, an ultrasonic probe holding method of the present invention includes an electric motor for pressing the ultrasonic probe and a generated torque for the ultrasonic probe. The maximum value of the current applied to the mechanism and the motor transmitted to the child was defined as the stall current.

【0006】[0006]

【作用】本発明によれば、電動機の回転を拘束して得ら
れる停止トルクを用いて超音波探触子を被検体に押圧
し、電動機に流れる印加電流を調整することにより電動
機の温度上昇をなくし、任意のトルクを発生させること
ができ、かつ、電流の方向を変えることにより押圧を解
除し、あるいは、被検体から遊離させることが出来るの
で、超音波探触子の操作性を向上させることが出来る。
According to the present invention, the temperature rise of the electric motor is suppressed by pressing the ultrasonic probe against the subject using the stop torque obtained by restraining the rotation of the electric motor and adjusting the applied current flowing through the electric motor. Since it can be eliminated and an arbitrary torque can be generated, and the pressure can be released or released from the subject by changing the direction of the current, it is possible to improve the operability of the ultrasonic probe. Can be done.

【0007】[0007]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。図1において、遠隔自動探傷装置のスキャナ10
のホルダ9に装着されており、ホルダ9にはピニオン4
を装着した直流モータ5と回転自由なガイドローラ8が
支持されている。超音波探触子1はX−Y方向に回転自
在なジンバル2の中心位置に保持されており、ジンバル
2はZ軸方向に移動できるラック・ピニオン方式のラッ
ク3に支持されており、ラック3はガイドローラ8とピ
ニオン4に挟まれるように保持され、ピニオン4との噛
み合いによって直流モータ5の動力を駆動機構のラック
3に伝達する。いま、直流モータ5をラック3が下方に
動作するように電流を印加すれば、ラック3は下方に移
動しはじめ、超音波探触子1が被検体6に接触すると移
動は終了する。この後も、直流モータ5は回転を続けよ
うとするが、その動きは機械的に拘束されているため回
転は停止するが印加電流に応じたトルクを発生し続け
る。従って、超音波探触子1は印加電流に見合った一定
のトルクで押圧された状態で被検体6に接触し続ける。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a scanner 10 of a remote automatic flaw detector is shown.
It is attached to the holder 9 of the pinion 4
A DC motor 5 mounted with and a freely rotatable guide roller 8 are supported. The ultrasonic probe 1 is held at the center position of a gimbal 2 which is rotatable in the XY directions, and the gimbal 2 is supported by a rack / pinion type rack 3 which can move in the Z-axis direction. Is held so as to be sandwiched between the guide roller 8 and the pinion 4, and the power of the DC motor 5 is transmitted to the rack 3 of the drive mechanism by meshing with the pinion 4. Now, when a current is applied to the DC motor 5 so that the rack 3 operates downward, the rack 3 starts moving downward, and when the ultrasonic probe 1 contacts the subject 6, the movement ends. Even after this, the DC motor 5 tries to continue to rotate, but its movement is mechanically restrained, so that the rotation is stopped but the torque corresponding to the applied current is continuously generated. Therefore, the ultrasonic probe 1 continues to contact the subject 6 while being pressed with a constant torque corresponding to the applied current.

【0008】一般に直流モータでは、この印加電流とト
ルクの関係は比例関係にあり、印加電流の調整をするの
みで直流モータのトルクを容易に調整できる。直流モー
タ5は、位置や速度の制御は特に必要でなく単にトルク
の大きさと方向のみを制御すればよい。したがって、ト
ルクの大きさに見合った印加電流の値と方向を制御すれ
ば良く、通常モータの制御に用いられている定電流回路
等を用いることにより容易に実現できる。
Generally, in a DC motor, the relationship between the applied current and the torque is proportional, and the torque of the DC motor can be easily adjusted only by adjusting the applied current. The DC motor 5 does not need to control the position and speed, and may control only the magnitude and direction of the torque. Therefore, it suffices to control the value and direction of the applied current corresponding to the magnitude of the torque, and this can be easily realized by using a constant current circuit or the like normally used for motor control.

【0009】また、超音波探触子1と被検体6との接触
圧力は、超音波探触子1,ジンバル2およびラック3等
の質量Wを無視すれば、直流モータ5のトルクでのみ決
定されるので、トルクをピニオン4の半径で除した値P
で押圧していることになり、ラック3がどの位置にあっ
ても大きさは同じで一定となる。しかし、超音波探触子
1,ジンバル2およびラック3等の質量Wを無視するこ
とはできず、接触圧力の大きさは超音波探触子1,ジン
バル2およびラック3等の質量Wとトルクによる押圧P
を加算した値Qが超音波探触子1の接触圧力となり、Q
の値が所定の接触圧力となるように直流モータ5の印加
電流を調整してPの値を決定する。このように印加電流
の値を一定にしておけば、直流モータ5の動作は常に押
圧をPとなるように作用しているため弾力を持ったアク
チュエータとなるため、被検体6の表面にうねり等があ
っても押圧Pは所定の接触圧力に保持される。若し、所
定の接触圧力よりもジンバル2等の質量Wが大きい場合
は、その差分を軽減するように直流モータ5の印加電流
の方向と大きさを調整することによって、押圧を上方に
作用するようにトルクを発生させて、所定の接触圧力に
保持することも容易にできる。このように、直流モータ
5の回転を拘束した状態で一定の印加電流を流しておく
ことによって、直流モータ5の回転子をエアシリンダの
ように使用することができる。若し、超音波探触子1の
走査方向に大きな異物があった場合には、他のセンサで
異常信号を発生して直流モータ5を逆転させ超音波探触
子1を上方に引き上げて異物を通過することも出来る。
The contact pressure between the ultrasonic probe 1 and the subject 6 is determined only by the torque of the DC motor 5 if the mass W of the ultrasonic probe 1, the gimbal 2 and the rack 3 is ignored. Therefore, the value P obtained by dividing the torque by the radius of the pinion 4
That is, the size is the same and constant regardless of the position of the rack 3. However, the mass W of the ultrasonic probe 1, the gimbal 2, the rack 3, etc. cannot be ignored, and the magnitude of the contact pressure depends on the mass W and the torque of the ultrasonic probe 1, the gimbal 2, the rack 3, etc. Pressed by P
The value Q obtained by adding is the contact pressure of the ultrasonic probe 1, and Q
The value of P is determined by adjusting the current applied to the DC motor 5 so that the value of becomes a predetermined contact pressure. If the value of the applied current is kept constant in this way, the operation of the DC motor 5 always acts so that the pressing force is P, so that it becomes an actuator having elasticity, so that the surface of the subject 6 is undulated. Even if there is, the pressure P is maintained at a predetermined contact pressure. If the mass W of the gimbal 2 or the like is larger than the predetermined contact pressure, the pressure acts upward by adjusting the direction and magnitude of the current applied to the DC motor 5 so as to reduce the difference. As described above, it is possible to easily generate the torque and maintain the predetermined contact pressure. In this way, the rotor of the DC motor 5 can be used like an air cylinder by allowing a constant applied current to flow while restraining the rotation of the DC motor 5. If there is a large foreign substance in the scanning direction of the ultrasonic probe 1, another sensor generates an abnormal signal to reverse the DC motor 5 and pull up the ultrasonic probe 1 to raise the foreign substance. You can also pass through.

【0010】実施例のように直流モータの回転を拘束し
て使用すると、モータの冷却が充分行われず印加電流を
定格値まで用いると発熱のために温度が上昇する。これ
を防ぐには、印加電流の最大値をモータに固有のストー
ル電流となるように制限しておけばよい。
When the rotation of the DC motor is restricted and used as in the embodiment, the motor is not sufficiently cooled, and if the applied current is used up to the rated value, the temperature rises due to heat generation. To prevent this, the maximum value of the applied current may be limited to a stall current peculiar to the motor.

【0011】本実施例ではトルクの伝達機構にラック3
とピニオン4方式で説明したが、他の方法、例えば、て
こを用いる方法やカムなどを応用しても実施可能であ
る。
In this embodiment, the rack 3 is used as the torque transmission mechanism.
The pinion 4 system has been described above, but the present invention can be implemented by applying other methods such as a method using a lever and a cam.

【0012】[0012]

【発明の効果】本発明によれば、直流モータの回転を拘
束しその停止トルクで超音波探触子の押圧することによ
り、エアシリンダに代わって弾力を持ったアクチュエー
タとして使用でき、印加電流の調整で任意の接触圧力を
容易に得ることが出来、またストール電流以下で使用す
ることによりモータを正常に使用することが出来る。特
に、超音波探触子を用いた遠隔自動探傷装置の自立化に
有効となる。
According to the present invention, by restraining the rotation of the DC motor and pressing the ultrasonic probe with its stop torque, it can be used as an elastic actuator instead of the air cylinder, and the applied current An arbitrary contact pressure can be easily obtained by adjustment, and the motor can be used normally by using it at a stall current or less. In particular, it is effective for making a remote automatic flaw detector using an ultrasonic probe independent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の側面図。FIG. 1 is a side view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…超音波探触子、2…ジンバル、3…ラック、4…ピ
ニオン、5…モータ、6…被検体。
1 ... Ultrasonic probe, 2 ... Gimbal, 3 ... Rack, 4 ... Pinion, 5 ... Motor, 6 ... Subject.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶山 茂 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Kajiyama 1168 Moriyama-cho, Hitachi-shi, Ibaraki Pref., Energy Research Laboratory, Hiritsu Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】超音波探触子を用いて被検体の表面に沿っ
て走査し、探傷検査等を行う遠隔自動探傷装置におい
て、探傷装置の先端部あるいはX−Yスキャナに設けら
れ、ジンバルに設けた前記超音波探触子と、これ等を前
記被検体に押圧させるアクチュエータとしての電動機
と、前記電動機の発生トルクを伝達するための機構とで
構成した駆動機構と、前記電動機の回転を抑制し、回転
を停止させた状態で発生するトルクを用い、弾力を有す
るアクチュエータとして用いる電動機を備えたことを特
徴とする超音波探触子の保持方法。
1. A remote automatic flaw detection apparatus for performing flaw detection inspection or the like by scanning along a surface of a subject using an ultrasonic probe, which is provided at a tip portion of the flaw detection apparatus or an XY scanner, and is attached to a gimbal The ultrasonic probe provided, an electric motor as an actuator that presses these against the subject, a drive mechanism including a mechanism for transmitting torque generated by the electric motor, and suppression of rotation of the electric motor Then, the method for holding an ultrasonic probe is characterized by comprising an electric motor used as an actuator having elasticity by using a torque generated while the rotation is stopped.
【請求項2】請求項1において、前記電動機に印加する
電流の最大値をストール電流とした超音波探触子の保持
方法。
2. The method for holding an ultrasonic probe according to claim 1, wherein a maximum value of a current applied to the electric motor is a stall current.
JP4164559A 1992-06-23 1992-06-23 Method for retaining ultrasonic probe Pending JPH063340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4164559A JPH063340A (en) 1992-06-23 1992-06-23 Method for retaining ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4164559A JPH063340A (en) 1992-06-23 1992-06-23 Method for retaining ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH063340A true JPH063340A (en) 1994-01-11

Family

ID=15795470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4164559A Pending JPH063340A (en) 1992-06-23 1992-06-23 Method for retaining ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH063340A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326288A (en) * 1998-05-15 1999-11-26 Babcock Hitachi Kk Probe hold mechanism for use in tube inner face
KR100925881B1 (en) * 2007-07-13 2009-11-06 한국전력공사 Apparatus for controlling contact pressure of ultrasonic probe
JP2010014582A (en) * 2008-07-04 2010-01-21 Hitachi-Ge Nuclear Energy Ltd Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2013529791A (en) * 2010-06-30 2013-07-22 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Turbine disk mobile inspection system
KR20160023176A (en) * 2014-08-21 2016-03-03 한국수력원자력 주식회사 Apparatus for non-destructive inspections
KR101645976B1 (en) * 2016-04-12 2016-08-05 주식회사 에네스지 Ultrasonic Inspection Device for Dovetail of Turbine Rotor Wheel and Bucket

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326288A (en) * 1998-05-15 1999-11-26 Babcock Hitachi Kk Probe hold mechanism for use in tube inner face
KR100925881B1 (en) * 2007-07-13 2009-11-06 한국전력공사 Apparatus for controlling contact pressure of ultrasonic probe
JP2010014582A (en) * 2008-07-04 2010-01-21 Hitachi-Ge Nuclear Energy Ltd Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2013529791A (en) * 2010-06-30 2013-07-22 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Turbine disk mobile inspection system
KR20160023176A (en) * 2014-08-21 2016-03-03 한국수력원자력 주식회사 Apparatus for non-destructive inspections
KR101645976B1 (en) * 2016-04-12 2016-08-05 주식회사 에네스지 Ultrasonic Inspection Device for Dovetail of Turbine Rotor Wheel and Bucket

Similar Documents

Publication Publication Date Title
US6572710B2 (en) Brush force control method for a substrate cleaning apparatus
JPH02198312A (en) Apparatus for determining roughness of surface of material
JPH063340A (en) Method for retaining ultrasonic probe
JPH0581383B2 (en)
JPH06124126A (en) Positioning device
JPS6259389B2 (en)
JPH0854301A (en) Instrument for measuring frictional characteristic of paper feeding roller
JP2000214370A (en) Linear drive device and lens drive device
JPH11326288A (en) Probe hold mechanism for use in tube inner face
JP4603414B2 (en) Ultrasonic bone densitometer
JPH09329514A (en) Wire tension detecting device
JPS6210678Y2 (en)
JPS5849285A (en) Carriage moving device
JPH07127698A (en) Belt tension adjusting device
JP2739017B2 (en) Automatic guide device
JP2828159B2 (en) Bell trap type capstan
JPS6110953Y2 (en)
JPS6145310A (en) Matching device
JPS6099564A (en) Tool pressing force detecting apparatus
JP2000117326A (en) Device for automatically stopping tail end of strip coil
JPH11295278A (en) Device and method for detecting flaw in surface and interior of turbine blade
JPH05215622A (en) Frictional force measuring apparatus
JPH0544898Y2 (en)
JPH07270351A (en) Contact-type sensor apparatus
JP2907583B2 (en) Torque detector