JPH06333805A - Chip for dimensional reference of semiconductor process and dimensional correction method - Google Patents

Chip for dimensional reference of semiconductor process and dimensional correction method

Info

Publication number
JPH06333805A
JPH06333805A JP5116708A JP11670893A JPH06333805A JP H06333805 A JPH06333805 A JP H06333805A JP 5116708 A JP5116708 A JP 5116708A JP 11670893 A JP11670893 A JP 11670893A JP H06333805 A JPH06333805 A JP H06333805A
Authority
JP
Japan
Prior art keywords
pattern
chip
wafer
dimensional
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5116708A
Other languages
Japanese (ja)
Other versions
JP3068366B2 (en
Inventor
Teruyuki Kagami
照行 鏡味
Teiji Katsuta
禎治 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5116708A priority Critical patent/JP3068366B2/en
Publication of JPH06333805A publication Critical patent/JPH06333805A/en
Application granted granted Critical
Publication of JP3068366B2 publication Critical patent/JP3068366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a reference dimensional sample (reference chip) for semiconductor process wherein pattern dimensional error between processing processes in IC/LSI is reduced. CONSTITUTION:An Si reference dimensional pattern 8 and reference dimensional patterns 9 to 14 of various films formed in each processing process are formed on the same chip. Therefore, a reference chip which is free from dimensional error caused by absorption, scattering, etc., of electron beam based on difference of thickness, waviness, kink, etc., of a wafer can be acquired. Since a reference chip is used, pattern dimensional correction operation of a processing wafer wherein a measurement SEM, etc., is used can be made effective.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は荷電粒子を用いる半導体
装置の描画、加工装置のプロセス基準寸法測定用試料に
係り、とくに異なるプロセスにより形成された複数の薄
膜毎の微細寸法を精度高く測定するに好適な半導体プロ
セス寸法基準試料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample for measuring a process standard dimension of a semiconductor device using charged particles and a processing apparatus, and particularly, it accurately measures a fine dimension of each of a plurality of thin films formed by different processes. The present invention relates to a semiconductor process dimension standard sample suitable for.

【0002】[0002]

【従来の技術】IC,LSI等の半導体装置の製造にお
いては、加工プロセス毎に用意された基準寸法測定用試
料(基準チップ)の寸法を測定して基準寸法とし、当該
プロセスにおいて加工されるウエハパタ−ンの寸法計測
を行なうようにしていた。パターン寸法が1μm以下に
なると素子歩留まりがこの寸法計測の精度に大きく依存
するようになる。なお、上記寸法計測には測定用SEM
(Scanning Electron Microscope)や光干渉式座標測定装
置またはこれを内蔵する電子線描画装置等が用いられて
いる。また、従来の上記基準チップには加工プロセスに
応じた1種類の基準パタ−ンのみが設けられていた。
2. Description of the Related Art In the manufacture of semiconductor devices such as ICs and LSIs, the dimensions of a reference dimension measurement sample (reference chip) prepared for each processing process are measured and used as reference dimensions, and the wafer pattern processed in the process is measured. I was trying to measure the dimensions of the battery. When the pattern dimension is 1 μm or less, the device yield greatly depends on the precision of this dimension measurement. For the above dimension measurement, a measuring SEM
(Scanning Electron Microscope), an optical interference coordinate measuring device, an electron beam drawing device incorporating the same, or the like is used. Further, the above-mentioned conventional reference chip is provided with only one type of reference pattern corresponding to the processing process.

【0003】図8(a)は従来のホトレジスト用基準チ
ップの製造工程図である。Siウエハ1上にホトレジス
ト2を形成した後、縮小投影露光装置により基準図形マ
スクのパタ−ンを露光、現像して(b)図に示すように
レジストをパターニングしてホトレジスト用基準チップ
とする。また、図8(c)のように上記ホトレジスト2
の開口部をドライエッチングしてSiウエハ1をパター
ニングし、レジストを除去、洗浄して同図(d)のよう
なSi用基準チップを得ていた。
FIG. 8A is a manufacturing process diagram of a conventional photoresist reference chip. After the photoresist 2 is formed on the Si wafer 1, the pattern of the reference pattern mask is exposed and developed by the reduction projection exposure apparatus, and the resist is patterned as shown in FIG. Also, as shown in FIG.
The Si wafer 1 was patterned by dry-etching the openings of the above, and the resist was removed and washed to obtain the Si reference chip as shown in FIG.

【0004】また、1988年、Nov/DecのJ,
Vac.Sci.Technol.B,vol.6,に
はレ−ザ干渉露光によりSiウエハ1上にSiパタ−ン
を直接加工して図9に示すようなSiの基準チップを作
製することが記載されている。また図10に示すよう
に、Siウエハ1上に形成したSiN膜7にパタ−ン加
工を行なうことも行なわれている。
In 1988, Nov / Dec J,
Vac. Sci. Technol. B, vol. 6 describes that a Si pattern is directly processed on the Si wafer 1 by laser interference exposure to produce a Si reference chip as shown in FIG. Further, as shown in FIG. 10, patterning is also performed on the SiN film 7 formed on the Si wafer 1.

【0005】[0005]

【発明が解決しようとする課題】従来のIC/LSI製
造においては各製造工程毎に基準チップを用意してパタ
−ン加工前に基準チップを計測して計測値を当該工程の
制御装置(コンピュ−タ)に格納し、以後の加工寸法精
度を管理するようにしていた。しかし、上記基準チップ
は異なるウエハから切り出したものを用いていたので、
下記のような問題点が付随していた。
In the conventional IC / LSI manufacturing, a reference chip is prepared for each manufacturing process, the reference chip is measured before patterning, and the measured value is used as a control device (computer) for the process. It was stored in the (-)), and the subsequent processing dimensional accuracy was managed. However, since the reference chip used was one cut out from a different wafer,
The following problems were involved.

【0006】すなわち、周知のようにウエハが異なると
その厚み、うねり、捩じれ等の相違による電子線の吸
収、散乱等による寸法誤差が異なり、結果的に各工程の
基準チップの寸法誤差が異なるので各工程間の精度管理
に混乱が生じる。とくに大容量のDRAMのようにサブ
ミクロンの寸法精度が要求され、工程数が30に近くな
ると上記誤差の累積により歩留まりが急速に低下するこ
とが大きな問題であった。また、同一プロセスにおいて
も基準チップをウエハの異なるものに交換すると誤差が
発生するという問題もあった。
That is, as is well known, different wafers have different dimensional errors due to absorption, scattering, etc. of electron beams due to differences in thickness, waviness, twist, etc. As a result, dimensional errors in the reference chip in each process are different. There is confusion in quality control between each process. In particular, submicron dimensional accuracy is required as in a large capacity DRAM, and when the number of processes approaches 30, the yield is rapidly reduced due to the accumulation of the above errors, which has been a serious problem. Further, even in the same process, if the reference chip is replaced with a different wafer, an error occurs.

【0007】また、現状ではIC/LSI加工装置はそ
のメ−カ側が作成した基準チップにより較正されてユ−
ザに納入され、ユ−ザ側は自己用の基準チップを別途作
成して精度管理を行なっているので、基準ウエハの違い
によって必然的にメ−カとユ−ザが算出する寸法誤差間
に食違いが生じ、深刻なトラブルを発生する場合があっ
た。例えば、ライン幅1.1μmが得られる露光時間を
上記基準チップを用いた計測用SEMの計測値から算出
すると、プロセス現場では平均0.80sとなり、装置
メ−カ側の算出値は0.91sとなり、この相違により
ラインピッチ1μm当りの誤差はプロセス現場では−4
%、装置メ−カ側では0.5%となり、大きな違いが発
生する。この原因はプロセス現場と装置メ−カ側が用い
ている基準チップのウエハが異なることに由来してい
る。このような問題はIC/LSIの微細化により顕在
化したものであり、ISO(International Standard Or
ganization)ではIC/LSI用の基準寸法素子の標準
化に関する検討され始めている。本発明の目的は、上記
寸法計測誤差を低減することのできる半導体プロセス基
準寸法試料(基準チップ)を提供することにある。
At present, the IC / LSI processing equipment is calibrated by a reference chip prepared by the manufacturer of the IC / LSI processing equipment.
It is delivered to the user, and the user side creates a reference chip for himself and performs accuracy control, so the dimensional error calculated by the user and the user is inevitably caused by the difference in the reference wafer. There was a case where a discrepancy occurred and a serious trouble occurred. For example, when the exposure time for obtaining a line width of 1.1 μm is calculated from the measurement value of the measurement SEM using the above-mentioned reference chip, the average is 0.80 s at the process site, and the calculated value on the device maker side is 0.91 s. Due to this difference, the error per 1 μm line pitch is -4 at the process site.
%, And 0.5% on the device maker side, which is a big difference. This is because the wafer of the reference chip used at the process site and the device maker side are different. Such problems have become apparent due to the miniaturization of IC / LSI, and ISO (International Standard Or
ganization) has begun to study the standardization of standard size devices for IC / LSI. An object of the present invention is to provide a semiconductor process standard size sample (standard chip) capable of reducing the above-mentioned size measurement error.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、上記基準チップを共通のウエハ上に形成した互いに
異なる半導体プロセス用の寸法基準用パタ−ン部から切
り出して形成するようにする。さらに、上記寸法基準用
パタ−ン部を当該半導体プロセスにより生成されるプロ
セス層に形成する。さらに、上記基準チップは共通のウ
エハ上に形成した互いに異なる半導体プロセス用の寸法
基準用パタ−ン部の複数を含むようにする。
In order to solve the above-mentioned problems, the above-mentioned reference chip is formed by being cut out from the dimensional reference pattern parts for different semiconductor processes formed on a common wafer. Further, the dimensional reference pattern portion is formed on the process layer formed by the semiconductor process. Further, the reference chip includes a plurality of dimensional reference pattern parts for different semiconductor processes formed on a common wafer.

【0009】また、上記基準チップの互いに異なる半導
体プロセス用の各寸法基準用パタ−ン部を当該半導体プ
ロセスの作業順に積層されるプロセス層上に順次形成す
る。また、寸法計測装置内に同一ウエハ上に形成した互
いに異なる半導体プロセス用の寸法基準用パタ−ン部の
複数を含む寸法基準チップを装着し、半導体プロセスの
作業順に順次形成されるウエハ上のパタ−ンの寸法を前
記寸法基準チップの当該半導体プロセス用の寸法基準用
パタ−ン部と比較して較正するようにする。
Further, different dimensional reference pattern portions for different semiconductor processes of the reference chip are sequentially formed on process layers laminated in the order of operation of the semiconductor process. In addition, a dimension reference chip including a plurality of different dimension reference pattern portions for different semiconductor processes formed on the same wafer is mounted in the dimension measurement apparatus, and pattern patterns on the wafer are sequentially formed in the operation order of the semiconductor process. The size of the pattern is calibrated by comparing it with the pattern part of the standard chip for the semiconductor process.

【0010】[0010]

【作用】互いに異なる半導体プロセス用の寸法基準用パ
タ−ン部を共通のウエハ上に形成したり当該半導体プロ
セスにより生成されるプロセス層に形成することによ
り、ウエハの厚み、捩じれ等のバラツキにより生じる基
準チップ間の寸法偏差が消滅する。さらに、上記基準チ
ップに共通のウエハ上に形成した互いに異なる半導体プ
ロセス用の寸法基準用パタ−ン部の複数を含ませること
により、複数の半導体プロセス装置がウエハを共通とす
る基準チップにより校正される。
By forming pattern reference patterns for different semiconductor processes on a common wafer or forming process layers formed by the semiconductor process, variations in thickness, twist, etc. of the wafer occur. The dimensional deviation between the reference chips disappears. Further, by including a plurality of dimensional reference pattern portions for different semiconductor processes formed on a common wafer in the reference chip, a plurality of semiconductor process devices can be calibrated by the reference chip having a common wafer. It

【0011】また、当該半導体プロセスの作業順に積層
されるプロセス層上に各寸法基準用パタ−ン部を順次形
成することにより、当該半導体プロセスにより製作され
る半導体素子専用の基準チップが形成される。また、寸
法計測装置内に複数の上記基準パタ−ン部を含む寸法基
準チップを装着することにより、半導体プロセス作業毎
に形成されるウエハ上のパタ−ンが基準チップを交換す
ることなく較正される。
Further, by sequentially forming the respective pattern patterns for dimensional reference on the process layers laminated in the working order of the semiconductor process, the reference chip dedicated to the semiconductor device manufactured by the semiconductor process is formed. . Further, by mounting the dimension reference chip including the plurality of reference pattern portions in the dimension measuring apparatus, the pattern on the wafer formed for each semiconductor process operation is calibrated without replacing the reference chip. It

【0012】[0012]

【実施例】〔実施例 1〕図1は本発明による基準チッ
プ実施例の平面ならびに断面図である。図1(a)にお
いて、Siウエハ1面を複数の基準チップ区画に分割
し、各基準チップ15内には一連の半導体プロセスに必
要な各種無機膜の基準パタ−ンを設ける。例えば図1
(b)に示すように、上記基準チップ面にSiのパタ−
ン8、Siの熱酸化膜のパタ−ン9、Poly−Si膜
のパタ−ン10、SiN膜のパタ−ン11、PSG膜
(Phosphor Silicate Grass)のパタ−ン12、BPSG
膜(Born Phosphor Silicate Grass)のパタ−ン13、
Al膜のパタ−ン14等を形成する。
[Embodiment 1] FIG. 1 is a plan view and a sectional view of an embodiment of a reference chip according to the present invention. In FIG. 1A, one surface of a Si wafer is divided into a plurality of reference chip sections, and reference patterns of various inorganic films required for a series of semiconductor processes are provided in each reference chip 15. Figure 1
As shown in (b), a pattern of Si is formed on the reference chip surface.
Pattern 8, thermal oxidation film pattern 9 of Si, pattern 10 of Poly-Si film, pattern 11 of SiN film, pattern 12 of PSG film (Phosphor Silicate Grass), BPSG
Pattern 13 of the membrane (Born Phosphor Silicate Grass),
An Al film pattern 14 and the like are formed.

【0013】上記Si熱酸化膜、Poly−Si膜、S
iN膜、PSG膜、BPSG膜、Al膜等はそれぞれの
プロセスを用いて生成し、マスキングにより線幅を0.
1〜1μmの範囲のものにする。また、図2は上記Si
のパタ−ン8の表面にPoly−Si膜やSiN膜31
を形成した本発明実施例の断面図である。図2ではレ−
ザ干渉露光法によりSiのパタ−ン8を加工し、その上
にPoly−Si膜またはSiN膜31等を形成する。
パタ−ン8をレ−ザ干渉露光法により加工するのでパタ
−ン精度を0.02μm(3σ)以下にまで高めること
ができる。
The Si thermal oxide film, Poly-Si film, S
The iN film, the PSG film, the BPSG film, the Al film, etc. are formed by using respective processes, and the line width is set to 0.
It should be in the range of 1 to 1 μm. 2 shows the above Si
Poly-Si film or SiN film 31 on the surface of the pattern 8 of
It is sectional drawing of the Example of this invention which formed. In Figure 2,
The Si pattern 8 is processed by the interference exposure method, and the Poly-Si film or the SiN film 31 is formed thereon.
Since the pattern 8 is processed by the laser interference exposure method, the pattern accuracy can be increased to 0.02 μm (3σ) or less.

【0014】図3は同様にレ−ザ干渉露光法により形成
したSiのパタ−ン8上にSiO2/PSG/SiN等
の積層膜36を形成した場合の断面図である。上記Si
ウエハ1からは多数の基準チップ15が得られるので、
これらを当該IC/LSIの製造に必要な一連の無機膜
パタ−ンの各加工装置に配布することにより、各加工装
置はウエハを共通とする基準チップを用いて自己の加工
寸法を管理することができる。この結果、従来技術にお
けるウエハの厚みや捩じれ等の相違による基準寸法誤差
を排除することができる。
FIG. 3 is a sectional view of the case where a laminated film 36 of SiO 2 / PSG / SiN or the like is formed on the Si pattern 8 similarly formed by the laser interference exposure method. Si above
Since a large number of reference chips 15 are obtained from the wafer 1,
By distributing these to each processing device of a series of inorganic film patterns necessary for manufacturing the IC / LSI, each processing device manages its own processing dimension by using a reference chip having a common wafer. You can As a result, it is possible to eliminate the reference dimensional error due to the difference in the thickness and twist of the wafer in the conventional technique.

【0015】なお、現在でSuper Flat Waferと称してそ
の厚みの均一性や平坦度が十分によいウエハが使用され
ているので、ウエハが共通である限り切り出し位置に関
わらず厚みと平坦度の均一な多数の基準チップを得るこ
とができるのである。
At present, a wafer called Super Flat Wafer is used, which has good thickness uniformity and flatness. Therefore, as long as the wafer is common, the thickness and flatness are uniform regardless of the cutting position. It is possible to obtain a large number of reference chips.

【0016】〔実施例 2〕図4は本発明による他の基
準チップ実施例の断面図である。図4においては、図1
(b)に示した無機膜の基準チップ15上に次ぎの工程
に必要なホトレジスト(有機膜)2の基準パタ−ンを形
成する。まず、図1(a)のウエハ1上にホトレジスト
膜2を塗布、乾燥し、縮小投影露光法、電子線描画法、
レ−ザ干渉露光法等によりレジスト2に所定の基準寸法
パタ−ンを形成する。この基準寸法幅は例えば0.1〜
1μmの範囲である。このようにして作製された基準チ
ップ16は、他の工程の基準チップとウエハが共通にな
るので、基準チップの厚みや捩じれ等の相違による基準
寸法誤差を排除することができる。
[Embodiment 2] FIG. 4 is a sectional view of another embodiment of the reference chip according to the present invention. In FIG. 4, FIG.
A reference pattern of the photoresist (organic film) 2 necessary for the next step is formed on the reference chip 15 of the inorganic film shown in FIG. First, a photoresist film 2 is applied onto a wafer 1 of FIG. 1A, dried, and then subjected to a reduction projection exposure method, an electron beam drawing method,
A predetermined reference pattern is formed on the resist 2 by the laser interference exposure method or the like. This standard dimension width is, for example, 0.1 to
It is in the range of 1 μm. Since the reference chip 16 manufactured in this way has the same wafer as the reference chip in the other steps, it is possible to eliminate the reference dimensional error due to the difference in the thickness and twist of the reference chip.

【0017】〔実施例 3〕図5は本発明による他の基
準チップ実施例の断面図である。IC/LSIでは半導
体加工工程順にプロセス層がウエハ上に積層されていく
ので、基準チップ上にも上記工程順に形成されるプロセ
ス層毎に基準パタ−ンを形成するようにすることが望ま
しい。図5はこのような基準チップ断面の一例である。
まず、基準チップ面にSiの熱酸化膜のパタ−ン9、P
oly−Si膜のパタ−ン10、SiN膜のパタ−ン1
1、Al膜のパタ−ン14およびレジストパタ−ン2、
およびSiのパタ−ン8、81等を順次生成する。また
Siのパタ−ン81に被覆する熱酸化膜はプロセスに応
じて他の熱酸化膜9と同時または別途形成される。
[Third Embodiment] FIG. 5 is a cross-sectional view of another reference chip embodiment according to the present invention. In IC / LSI, since process layers are stacked on a wafer in the order of semiconductor processing steps, it is desirable to form a reference pattern on the reference chip for each process layer formed in the above step order. FIG. 5 is an example of such a reference chip cross section.
First, on the reference chip surface, a pattern 9 of a thermal oxide film of Si and P
Poly-Si film pattern 10, SiN film pattern 1
1, Al film pattern 14 and resist pattern 2,
And Si patterns 8, 81 and the like are sequentially generated. The thermal oxide film covering the Si pattern 81 is formed simultaneously with or separately from the other thermal oxide film 9 depending on the process.

【0018】次いで、中央部のSi熱酸化膜のパタ−ン
9、SiN膜のパタ−ン11等の上にPoly−Si膜
のパタ−ン10を被せ、さらにBPSG膜のパタ−ン1
3、PSG膜のパタ−ン12、Al膜のパタ−ン14等
を順次形成する。このように、IC/LSIの加工工程
順に積層されるプロセス層毎に基準パタ−ンを形成する
ようにすると、各プロセス層の高さが実際に製造される
IC/LSIの各プロセス層の高さと等しくなるので、
露光装置や電子線描画装置の焦点位置を等しく保つこと
ができ、焦点ずれによる誤差を低減することができる。
Then, the pattern 9 of the Si thermal oxide film, the pattern 11 of the SiN film and the like in the central portion are covered with the pattern 10 of the Poly-Si film, and further the pattern 1 of the BPSG film.
3. The pattern 12 of the PSG film, the pattern 14 of the Al film, etc. are sequentially formed. As described above, when the reference pattern is formed for each process layer stacked in the order of processing steps of IC / LSI, the height of each process layer is higher than that of each actually manufactured IC / LSI. Is equal to
The focus positions of the exposure device and the electron beam drawing device can be kept the same, and errors due to defocus can be reduced.

【0019】〔実施例 4〕上記本発明の各実施例にお
いては同一のウエハから切りだしたチップ上にIC/L
SIの製造に必要な一連の基準パタ−ンの複数を搭載す
るようにした。しかし図6に示すように、単一の基準パ
タ−ンを搭載したチップを製造プロセス数に応じて組み
合わせて一つの台の上に取付け、これを基準チップ15
の替わりに用いることもできる。
[Embodiment 4] In each of the embodiments of the present invention, the IC / L is formed on a chip cut from the same wafer.
A plurality of series of reference patterns required for manufacturing SI were installed. However, as shown in FIG. 6, chips having a single reference pattern are combined according to the number of manufacturing processes and mounted on one table, and the chips are attached to the reference chip 15.
It can also be used instead of.

【0020】図6は一例として、金属サセプタ24上に
Siパタ−ンの基準試料21と熱酸化膜形成試料22と
Poly−Si膜パタ−ンの基準試料23を取付け、金
属サセプタ24を金属の治具25へ装着し、全体を一つ
の基準試料として用いる。なお一般的には、一枚のSi
ウエハ上に当該LSIの各製造プロセスの基準パタ−ン
を形成して各製造プロセスの基準パタ−ンを個別に切り
出し、これらを組み合わせて図5のように治具化する。
In FIG. 6, as an example, a Si pattern reference sample 21, a thermal oxide film forming sample 22, and a Poly-Si film pattern reference sample 23 are mounted on the metal susceptor 24, and the metal susceptor 24 is made of metal. It is attached to the jig 25 and the whole is used as one reference sample. Note that, in general, one sheet of Si
A reference pattern for each manufacturing process of the LSI is formed on the wafer, the reference pattern for each manufacturing process is individually cut out, and these are combined to form a jig as shown in FIG.

【0021】例えば上記各製造プロセスの基準パタ−ン
数を10、同基準パタ−ンのチップサイズを3mm角と
して6インチSiウエハから切り出すと10種類の基準
パタ−ンチップがそれぞれ約100個づつ得られるの
で、100台の寸法計測装置に同一Siウエハから取れ
た10種類の基準パタ−ンチップを搭載した治具25を
供給することができる。この結果、100台の寸法計測
装置間ではウエハの相違によって生じる誤差が発生しな
いので、当該LSIの各加工プロセスのパタ−ンサイズ
を極めて高精度に評価することができる。
For example, when the standard pattern number of each manufacturing process is 10 and the standard pattern chip size is 3 mm square and cut out from a 6-inch Si wafer, about 100 standard pattern chips of about 100 each are obtained. Therefore, it is possible to supply the jig 25 having ten types of reference pattern chips taken from the same Si wafer to 100 dimension measuring devices. As a result, an error caused by a difference in wafers does not occur between the 100 dimension measuring devices, so that the pattern size of each processing process of the LSI can be evaluated with extremely high accuracy.

【0022】〔実施例 5〕図7は上記本発明による基
準チップ15、16、17等を用いて被加工ウエハ10
0の寸法計測を行なう測定用SEMの構成図である。な
お、説明の簡単化のため以後基準チップ15、16、1
7等を150で代表して示すことにする。図7におい
て、被加工ウエハ100と基準チップ150は測定用S
EM101のチャンバ−102内のテ−ブル上に設置さ
れる。
[Embodiment 5] FIG. 7 shows a wafer 10 to be processed using the reference chips 15, 16, 17 and the like according to the present invention.
It is a block diagram of the measuring SEM which performs 0 dimension measurement. In order to simplify the description, the reference chips 15, 16, and 1 will be referred to hereinafter.
7 will be represented by 150 as a representative. In FIG. 7, the wafer 100 to be processed and the reference chip 150 are S for measurement.
It is installed on a table in the chamber 102 of the EM 101.

【0023】まず、基準チップ150を電子ビ−ムの走
査範囲内に置いて所定プロセスの基準パタ−ンを電子ビ
−ム103により走査し、基準チップ150からの2次
電子検出により上記基準パタ−ンのピッチ寸法を検出す
る。次いで上記テ−ブルを移動して被加工ウエハ100
の上記所定プロセスの加工パタ−ンを電子ビ−ム103
により走査し、その2次電子検出により上記加工パタ−
ンのピッチ寸法を検出して上記基準パタ−ンのピッチ寸
法と比較し、加工誤差を評価する。
First, the reference chip 150 is placed within the scanning range of the electron beam, the reference pattern of a predetermined process is scanned by the electron beam 103, and the reference pattern is detected by the secondary electron detection from the reference chip 150. -Detect the pitch dimension of the pitch. Next, the table is moved to move the wafer 100 to be processed.
The processing pattern of the above predetermined process of the electronic beam 103
Scanning by the secondary electron detection, and the processing pattern is detected by the secondary electron detection.
The pitch dimension of the pattern is detected and compared with the pitch dimension of the reference pattern to evaluate the processing error.

【0024】従来のや加工誤差評価においては、基準チ
ップ上の基準パタ−ン数が1種類であったので、加工プ
ロセスが替わる毎に被加工ウエハと基準チップの双方を
入れ替え、位置合わせして設定する必要があった。しか
し、図7においては基準チップが多数の加工プロセスに
対応する基準パタ−ンを備えているので、プロセス毎に
被加工ウエハ100のみを出し入れすればよくなり加工
誤差の評価作業を大幅に効率化することができる。
In the conventional or processing error evaluation, since the number of reference patterns on the reference chip is one, both the wafer to be processed and the reference chip are replaced and aligned each time the processing process is changed. Had to set. However, in FIG. 7, since the reference chip has the reference pattern corresponding to a large number of processing processes, only the wafer 100 to be processed needs to be taken in and out for each process, and the efficiency of the processing error evaluation work is greatly improved. can do.

【0025】[0025]

【発明の効果】本発明により、異なる加工プロセス間の
パタ−ン寸法誤差を低減した半導体プロセス用の基準寸
法試料(基準チップ)を提供することができる。すなわ
ち本発明では、各加工プロセス毎の基準寸法パタ−ンを
同一のウエハ上に形成するので、ウエハの厚み、うね
り、捩じれ等の相違に基づく電子線の吸収、散乱等によ
る寸法誤差のない基準チップを提供することができる。
According to the present invention, it is possible to provide a reference size sample (reference chip) for a semiconductor process in which a pattern size error between different processing processes is reduced. That is, in the present invention, since the reference size pattern for each processing process is formed on the same wafer, the reference size does not have a size error due to absorption or scattering of electron beams due to differences in wafer thickness, waviness, twist, etc. Chips can be provided.

【0025】実験によれば、3枚の被加工ウエハのSi
N膜の0.8μm幅のラインパタ−ンをウエハの異なる
従来の基準チップを用いて測定した結果、約−5〜10
%(−0.04〜+0.08μm)のライン幅誤差が生
じたが、本発明による基準チップを用いると上記ライン
幅誤差は約0〜2.5%(0〜+0.02μm)であっ
た。これより本発明によりライン幅誤差を略1/4に低
減できることがわかる。
According to the experiment, Si of three processed wafers
The line pattern of the N film with a width of 0.8 μm was measured by using the conventional reference chips of different wafers, and the result was about −5 to 10
% (-0.04 to +0.08 .mu.m), the line width error was about 0 to 2.5% (0 to +0.02 .mu.m) using the reference chip according to the present invention. . From this, it is understood that the present invention can reduce the line width error to about 1/4.

【0026】また、各加工プロセス毎の基準寸法パタ−
ンをまとめて一つの上記基準チップ上に設けることもで
きるので、例えば測定用SEM等を用いた基準チップに
よる被加工ウエハのパタ−ン寸法較正作業を効率化する
ことができる。本発明はとくに大容量DRAMのように
30近い工程数数を有し、同じ各工程にサブミクロンの
寸法精度が要求される場合に、寸法誤差の累積を低減で
きるのでその歩留まりを向上することができる。また、
本発明の基準チップは同一ウエハから多数取り出すこと
ができるので、複数の寸法計測装置間の誤差レベルを一
致させて製造現場の寸法精度水準を高く維持することが
できる。
Further, the standard size pattern for each machining process.
Since it is also possible to collectively provide the reference chips on one of the reference chips, it is possible to improve the efficiency of the pattern size calibration work of the wafer to be processed by the reference chips using, for example, a measuring SEM. The present invention has a number of steps close to 30 as in a large capacity DRAM, and when sub-micron dimensional accuracy is required for the same steps, the accumulation of dimensional errors can be reduced and the yield can be improved. it can. Also,
Since a large number of reference chips of the present invention can be taken out from the same wafer, it is possible to maintain a high dimensional accuracy level at the manufacturing site by matching error levels among a plurality of dimension measuring devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるウエハの平面図と基準チップ実施
例の断面図である。
FIG. 1 is a plan view of a wafer according to the present invention and a cross-sectional view of a reference chip embodiment.

【図2】本発明による基準チップの他のパタ−ンの断面
図である。
FIG. 2 is a cross-sectional view of another pattern of the reference chip according to the present invention.

【図3】本発明による基準チップの他のパタ−ンの断面
図である。
FIG. 3 is a cross-sectional view of another pattern of the reference chip according to the present invention.

【図4】本発明による他の基準チップ実施例の断面図で
ある。
FIG. 4 is a cross-sectional view of another reference chip embodiment according to the present invention.

【図5】本発明による他の基準チップ実施例の断面図で
ある。
FIG. 5 is a cross-sectional view of another reference chip embodiment according to the present invention.

【図6】本発明による基準チップ治具の断面図である。FIG. 6 is a cross-sectional view of a reference chip jig according to the present invention.

【図7】本発明によるパタ−ン寸法較正方法を示す測定
用SEMの概念図である。
FIG. 7 is a conceptual diagram of a measuring SEM showing a pattern size calibration method according to the present invention.

【図8】從来の基準チップの製造工程図である。FIG. 8 is a manufacturing process diagram of a standard reference chip.

【図9】從来の基準チップの断面図である。FIG. 9 is a cross-sectional view of a standard reference chip.

【図10】從来の他の基準チップの断面図である。FIG. 10 is a cross-sectional view of another reference chip of the traditional model.

【符号の説明】 1…Siウエハ、2…ホトレジスト、3…パタ−ニグ
部、4…Siパタ−ン、7…SiN膜、8…Siのパタ
−ン、9…熱酸化膜のパタ−ン、10…のパタ−ン、1
2…PSG膜のパタ−ン、13…BPSG膜のパタ−
ン、14…Al膜のパタ−ン、15、16…基準チッ
プ、24…金属サセプタ、25…治具、100…被加工
ウエハ、101…測定用SEM、105…基準チップ、
31…Poly−Si膜/SiN膜、36…積層膜。
[Explanation of symbols] 1 ... Si wafer, 2 ... Photoresist, 3 ... Pattern portion, 4 ... Si pattern, 7 ... SiN film, 8 ... Si pattern, 9 ... Thermal oxide film pattern Pattern of 10, ..., 1
2 ... PSG film pattern, 13 ... BPSG film pattern
14 ... Al film pattern, 15, 16 ... Reference chip, 24 ... Metal susceptor, 25 ... Jig, 100 ... Wafer, 101 ... SEM for measurement, 105 ... Reference chip,
31 ... Poly-Si film / SiN film, 36 ... Laminated film.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体プロセスにおけるパタ−ン寸法較
正用の基準チップにおいて、共通のウエハ上に形成した
各種半導体プロセス用の複数の寸法基準用パタ−ン部の
中の少なくとも一つを切り出して形成したことを特徴と
する半導体プロセスの寸法基準用チップ。
1. A reference chip for pattern size calibration in a semiconductor process, which is formed by cutting out at least one of a plurality of size reference pattern parts for various semiconductor processes formed on a common wafer. A chip for a dimensional reference of a semiconductor process, which is characterized in that
【請求項2】 請求項1において、上記寸法基準用パタ
−ン部は当該半導体プロセスにより生成されるプロセス
層に形成されたものであることを特徴とする半導体プロ
セスの寸法基準用チップ。
2. The chip for dimensional reference in a semiconductor process according to claim 1, wherein the dimensional reference pattern part is formed in a process layer formed by the semiconductor process.
【請求項3】 請求項1または2において、上記パタ−
ン寸法較正用の基準チップは上記共通のウエハ上に形成
した互いに異なる半導体プロセス用の寸法基準用パタ−
ン部の複数を含むようにしたことを特徴とする半導体プ
ロセスの寸法基準用チップ。
3. The pattern according to claim 1 or 2.
The reference chip for dimensional calibration is a dimensional reference pattern for different semiconductor processes formed on the common wafer.
A chip for a dimensional reference in a semiconductor process, characterized by including a plurality of internal parts.
【請求項4】 請求項4において、上記互いに異なる半
導体プロセス用の各寸法基準用パタ−ン部を当該半導体
装置製造プロセスの作業順に積層されるプロセス層上に
順次形成するようにしたことを特徴とする半導体プロセ
スの寸法基準用チップ。
4. The dimensional reference pattern part for different semiconductor processes according to claim 4, wherein the different dimensional reference pattern parts are sequentially formed on process layers stacked in the order of operation of the semiconductor device manufacturing process. Chip for dimensional reference of semiconductor process.
【請求項5】 寸法計測装置によりウエハ上のパタ−ン
と寸法基準用チップのパタ−ンの双方を計測してウエハ
上のパタ−ン寸法を較正する半導体プロセスのパタ−ン
寸法較正方法において、上記寸法計測装置内に共通のウ
エハ上に形成された互いに異なる半導体プロセス用の寸
法基準用パタ−ン部の複数を含む寸法基準チップを装着
し、半導体プロセスの作業順に順次形成されるウエハ上
のパタ−ンの寸法を前記寸法基準チップの当該半導体プ
ロセス用の寸法基準用パタ−ン部と比較して較正するよ
うにしたことを特徴とする半導体プロセスの寸法較正方
法。
5. A pattern size calibration method for a semiconductor process, wherein a pattern size on a wafer is calibrated by measuring both a pattern on a wafer and a pattern of a size reference chip by a size measuring device. On a wafer which is formed in the above-mentioned dimension measuring apparatus, a dimension reference chip including a plurality of dimension reference pattern portions for different semiconductor processes formed on a common wafer is sequentially mounted, and which are sequentially formed in a semiconductor process operation order. A method for calibrating a dimension of a semiconductor process, wherein the dimension of the pattern is calibrated by comparing it with a dimension reference pattern portion of the dimension reference chip for the semiconductor process.
JP5116708A 1993-05-19 1993-05-19 Chip for dimension reference of semiconductor process and dimension calibration method Expired - Lifetime JP3068366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5116708A JP3068366B2 (en) 1993-05-19 1993-05-19 Chip for dimension reference of semiconductor process and dimension calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5116708A JP3068366B2 (en) 1993-05-19 1993-05-19 Chip for dimension reference of semiconductor process and dimension calibration method

Publications (2)

Publication Number Publication Date
JPH06333805A true JPH06333805A (en) 1994-12-02
JP3068366B2 JP3068366B2 (en) 2000-07-24

Family

ID=14693859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5116708A Expired - Lifetime JP3068366B2 (en) 1993-05-19 1993-05-19 Chip for dimension reference of semiconductor process and dimension calibration method

Country Status (1)

Country Link
JP (1) JP3068366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027979A1 (en) * 1999-10-15 2001-04-19 Nikon Corporation Reference wafer for controlling accuracy and method for producing the same, aligner, and method for fabricating device
KR100319898B1 (en) * 2000-03-20 2002-01-10 윤종용 Method and apparatus for measuring the dimensional parameter of wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027979A1 (en) * 1999-10-15 2001-04-19 Nikon Corporation Reference wafer for controlling accuracy and method for producing the same, aligner, and method for fabricating device
KR100319898B1 (en) * 2000-03-20 2002-01-10 윤종용 Method and apparatus for measuring the dimensional parameter of wafer

Also Published As

Publication number Publication date
JP3068366B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
US7241541B2 (en) Method of the adjustable matching map system in lithography
US7186488B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing system
JP2859855B2 (en) Fine pattern alignment method for semiconductor device
US6737205B2 (en) Arrangement and method for transferring a pattern from a mask to a wafer
US6309944B1 (en) Overlay matching method which eliminates alignment induced errors and optimizes lens matching
KR100481787B1 (en) Method for controlling the quality of a lithographic structuring step
JP4387583B2 (en) Calibration plate, calibration plate generation method, and semiconductor device manufacturing method
US20060246359A1 (en) Semiconductor device, fabricating method thereof, and photomask
JP3068366B2 (en) Chip for dimension reference of semiconductor process and dimension calibration method
US6238936B1 (en) Method of using critical dimension mapping to qualify a new integrated circuit fabrication etch process
US6410357B1 (en) Structure of critical dimension bar
TWI764562B (en) Multi-step process inspection method
TWI820371B (en) Inspection tool for use in lithographic device manufacturing processes and metrology method
JP3380941B2 (en) Line width management pattern and line width management method using the same
JP4066483B2 (en) Semiconductor manufacturing method and manufacturing apparatus
JP3721655B2 (en) Alignment error measurement method, exposure method, and overlay accuracy management method in semiconductor device manufacturing process
US5516605A (en) Photo mask provided with development rate measuring pattern and method for measuring development rate uniformity
JP2000292906A (en) Mask and pattern transfer method
US20070052114A1 (en) Alignment checking structure and process using thereof
EP4361727A1 (en) Method of tilt metrology and associated apparatuses
US6844235B1 (en) Reticle repeater monitor wafer and method for verifying reticles
JP2003224061A (en) Misalignment measuring method
JP4255677B2 (en) Exposure method and semiconductor device manufacturing method using the same
Barry et al. Scatterometry for contact hole lithography
TW494512B (en) In-situ post-develop inspection performing in polysilicon etch platform system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13

EXPY Cancellation because of completion of term