JPH06333480A - Relay driving device - Google Patents

Relay driving device

Info

Publication number
JPH06333480A
JPH06333480A JP11691293A JP11691293A JPH06333480A JP H06333480 A JPH06333480 A JP H06333480A JP 11691293 A JP11691293 A JP 11691293A JP 11691293 A JP11691293 A JP 11691293A JP H06333480 A JPH06333480 A JP H06333480A
Authority
JP
Japan
Prior art keywords
relay
contact
commercial power
power supply
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11691293A
Other languages
Japanese (ja)
Inventor
Masaaki Matsuda
政昭 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11691293A priority Critical patent/JPH06333480A/en
Publication of JPH06333480A publication Critical patent/JPH06333480A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lengthen the life of a relay by driving the relay through a D type FF with an oscillation output which is outputted from an oscillation circuit and asynchronous with a commercial power source. CONSTITUTION:An electric power from a commercial power supply 1 is supplied to a load 9 through a switch 8 and also supplied to a D.C. power supply circuit 2. By D.C. power from the circuit 2, an oscillation output which is asynchronous with the synchronization of the power supply 1 is generated, and applied to a clock terminal DK of a D type FF 11 as the clock. The temperature of the load 9 measured with a temperature sensor 4 and the temperature set with a temperature setting device 3 are compared with a comparison circuit, and the compared result is applied to a data terminal of the FF 11, and by a Q output of the FF 11, ON-OFF of a transistor is controlled, and an contact electrode of the relay 7 randomly repeats a positive electrode and a negative electrode independent of the synchronization of the commercial power supply. The contact of the relay does not generate projections and recesses, and the life of the relay is lengthened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は商用電源に接続された負
荷への通電および遮断を行うリレー駆動装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a relay drive device for energizing and interrupting a load connected to a commercial power source.

【0002】[0002]

【従来の技術】従来から商用電源に接続された負荷への
通電および遮断を行う為にリレーが用いられている。以
下に従来のリレー駆動装置について説明する。
2. Description of the Related Art Conventionally, a relay has been used to energize and interrupt a load connected to a commercial power source. The conventional relay drive device will be described below.

【0003】図4は従来のリレー駆動装置のブロック
図、図5は従来のリレー駆動装置のリレーの開閉タイミ
ング図、図6は従来のリレー駆動装置の商用電源周期と
リレーの開閉タイミングとの関係図である。図4におい
て1は商用電源、2は商用電源1から回路用直流電源を
作る直流電源回路、3は温度を設定する温度設定器、4
は温度センサ、5は温度設定器3の設定値と温度センサ
4の信号を比較しリレー7の開閉を行なうための駆動信
号を発生する比較回路、6は比較回路5からの駆動信号
によりリレー7を駆動するトランジスタ、8はリレー7
の接点、9は熱源等の負荷である。
FIG. 4 is a block diagram of a conventional relay driving device, FIG. 5 is a timing diagram of relay opening / closing of a conventional relay driving device, and FIG. 6 is a relationship between a commercial power source cycle of the conventional relay driving device and a relay opening / closing timing. It is a figure. In FIG. 4, 1 is a commercial power supply, 2 is a DC power supply circuit for making a circuit DC power supply from the commercial power supply 1, 3 is a temperature setter for setting a temperature, 4
Is a temperature sensor, 5 is a comparison circuit which compares the set value of the temperature setter 3 with the signal of the temperature sensor 4 and generates a drive signal for opening and closing the relay 7, and 6 is a relay signal by the drive signal from the comparison circuit 5. 8 is a transistor for driving
, 9 is a load such as a heat source.

【0004】以上の回路構成において、図5に示すよう
に、まず負荷9の温度が低く温度設定器3の信号が温度
センサ4の信号より小さい場合は、比較回路5のHレベ
ルの出力信号を発生し、トランジスタ6がONとなりリ
レー7もONとなる事によりリレー7の接点8は閉とな
る。その為に負荷9へ商用電源1が通電され負荷9が熱
源であれば温度が上昇する。次に温度が上昇し温度設定
器3の信号が温度センサ4の信号より大きい場合は、比
較回路5はLレベルの出力信号を発生し、トランジスタ
6がOFFとなりリレー7もOFFとなる事によりリレ
ー7の接点8は開となる。そのために負荷9への商用電
源2の通電が遮断され負荷9が熱源であれば温度は下降
する。以上の動作により温度センサ4の信号が温度設定
器3の信号と同じ値になるよう温度制御が行われる。
In the above circuit configuration, as shown in FIG. 5, when the temperature of the load 9 is low and the signal of the temperature setter 3 is smaller than the signal of the temperature sensor 4, the output signal of H level of the comparison circuit 5 is output. As a result, the transistor 6 is turned on and the relay 7 is also turned on, so that the contact 8 of the relay 7 is closed. Therefore, the commercial power supply 1 is energized to the load 9, and if the load 9 is a heat source, the temperature rises. Next, when the temperature rises and the signal of the temperature setter 3 is larger than the signal of the temperature sensor 4, the comparison circuit 5 generates an L level output signal, the transistor 6 is turned off, and the relay 7 is also turned off. The contact 8 of 7 is open. Therefore, if the commercial power supply 2 is not energized to the load 9 and the load 9 is a heat source, the temperature drops. By the above operation, temperature control is performed so that the signal of the temperature sensor 4 has the same value as the signal of the temperature setter 3.

【0005】ところが温度センサ4や温度設定器3は直
流電源回路2に接続されているため、温度センサ4や温
度設定器3の信号は図6に示すように極めて微小ではあ
るが商用電源1の周期に同期したリプルを含んでおり、
しかも温度設定器3に比べ温度センサ4は一般的に温度
による僅かの抵抗値の変化を電圧値に変換するためリプ
ルが大きく、温度センサ4の信号が低下し温度設定器3
の信号と交差するタイミングと温度センサ4の信号が増
加し温度設定器3の信号と交差するタイミングは必ず商
用電源1の周期に同期したタイミングとなっている。そ
のため、比較回路5からの出力信号が商用電源1の周期
に同期しており、リレー7の接点8も商用電源1の周期
に同期するタイミングで開閉する事になる。
However, since the temperature sensor 4 and the temperature setting device 3 are connected to the DC power supply circuit 2, the signals of the temperature sensor 4 and the temperature setting device 3 are very small as shown in FIG. Includes ripple synchronized with the cycle,
Moreover, since the temperature sensor 4 generally converts a slight change in resistance value due to temperature to a voltage value as compared with the temperature setter 3, ripples are large, and the signal of the temperature sensor 4 is lowered, so that the temperature setter 3 is changed.
2 and the timing of the signal of the temperature sensor 4 increasing and intersecting with the signal of the temperature setting device 3 are always the timings synchronized with the cycle of the commercial power supply 1. Therefore, the output signal from the comparison circuit 5 is synchronized with the cycle of the commercial power supply 1, and the contact 8 of the relay 7 is also opened and closed at the timing synchronized with the cycle of the commercial power supply 1.

【0006】次にリレー7の接点8について説明する。
図7は従来のリレー駆動装置に用いられる一般的なリレ
ー7の接点8の側面図である。この様に構成されたリレ
ー7の接点8は開閉時に電流が持続して流れようとする
作用によりアークが発生しそのアークによる高熱のため
に各々の接点15,16の金属材料がイオン化し、接点
15が接点16に対し正極である場合、接点16の金属
イオン(M−)が正極である接点15へ引き寄せられ付
着し凸の形状となり、逆に接点16の接点面はその分だ
け凹の形状となる。この接点15が接点16に対し常に
正極となるタイミングで接点8の開閉を繰り返すと接点
16の接点面は凹、接点15の接点面は凸の形状が大き
くなり、リレー7の接点8が閉となった時、各々の接点
15,16の凹凸部が噛み合いリレー7自体が開となっ
ても各々の接点15,16が噛み合ったままはなれず閉
の状態が持続し動作不良を起こす。また、接点15が接
点16に対し常に負極となるタイミングで接点8を開閉
した場合においても接点16が凸、接点15が凹となり
同様に各々の接点15,16が噛み合い動作不良を起こ
す。
Next, the contact 8 of the relay 7 will be described.
FIG. 7 is a side view of a contact 8 of a general relay 7 used in a conventional relay drive device. The contact 8 of the relay 7 configured as described above generates an arc due to the action of the current continuously flowing at the time of opening / closing, and the metal material of each of the contacts 15 and 16 is ionized due to the high heat generated by the arc, and the contact is made. When 15 is a positive electrode with respect to the contact 16, the metal ion (M−) of the contact 16 is attracted to and adheres to the contact 15, which is a positive electrode, and has a convex shape. On the contrary, the contact surface of the contact 16 is concave accordingly. Becomes When the contact 8 is repeatedly opened and closed at the timing when the contact 15 is always positive with respect to the contact 16, the contact surface of the contact 16 becomes concave, and the contact surface of the contact 15 becomes convex, and the contact 8 of the relay 7 is closed. When the contact points 15 and 16 are meshed with each other, the contact points 15 and 16 do not remain engaged even if the relay 7 itself is opened, and the closed state continues and malfunction occurs. Further, even when the contact 8 is opened and closed at a timing when the contact 15 is always negative with respect to the contact 16, the contact 16 becomes convex and the contact 15 becomes concave, and similarly, the respective contacts 15 and 16 mesh with each other to cause defective operation.

【0007】ところが、接点15,接点16の電極がラ
ンダムに正極・負極を繰り返すと、接点15、接点16
の金属イオンは各々の接点15,16間で移動を繰り返
すため、各々の接点15,16に凹凸が発生せず、噛み
合う事がないため接点8の寿命が長くなり信頼性の高い
ものとなる。
However, when the electrodes of the contact points 15 and 16 repeat positive and negative electrodes randomly, the contact points 15 and 16 are contacted.
Since the metal ions of (6) repeatedly move between the contacts 15 and 16, no unevenness is generated on the contacts 15 and 16 and they do not engage with each other, so that the life of the contact 8 is extended and reliability is improved.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の構成ではリレー7の接点8の開閉が商用電源1の周期
に同期して行なわれるため、リレー7の各々の接点1
5,16を開閉させるとき、これらの接点15,16が
正極、負極の何れかに固定されてしまい、各々の接点1
5,16に凹凸が形成されて噛み合い、接点8の寿命が
短くなるとともに、閉のままで開とならない状態となる
ため負荷9が連続して通電されてしまい負荷9が熱源の
場合は異常温度上昇をまねき、火災等が発生するという
問題点を有していた。
However, since the contacts 8 of the relay 7 are opened and closed in synchronization with the cycle of the commercial power source 1 in the above-described conventional configuration, the contacts 1 of the relays 7 are not connected.
When the contacts 5 and 16 are opened and closed, the contacts 15 and 16 are fixed to either the positive electrode or the negative electrode.
When the concavities and convexities 5 and 16 are meshed with each other, the life of the contact 8 is shortened, and the contact 9 remains closed and does not open, the load 9 is continuously energized and the load 9 is a heat source. There was a problem in that it would lead to rising and cause a fire.

【0009】[0009]

【課題を解決するための手段】本発明は上記問題点を解
決するため、商用電源の周期と非同期で発振する発振手
段からの信号によりリレーを駆動する駆動信号を遅延す
る信号遅延手段を備えた。
In order to solve the above problems, the present invention comprises signal delay means for delaying a drive signal for driving a relay by a signal from an oscillating means that oscillates asynchronously with a cycle of a commercial power source. .

【0010】[0010]

【作用】本発明は上記構成により、リレーの駆動信号を
商用電源の周期と非同期とし、リレーの開閉タイミング
を商用電源の周期と非同期とすることができる。
According to the present invention, the drive signal of the relay can be made asynchronous with the cycle of the commercial power source, and the opening / closing timing of the relay can be made asynchronous with the cycle of the commercial power source.

【0011】[0011]

【実施例】図1は本発明の一実施例におけるリレー駆動
装置のブロック図である。図1において、1は商用電
源、2は商用電源1から回路用直流電源を作る直流電源
回路、3は温度を設定する温度設定器、4は温度セン
サ、5は温度設定器3の設定値と温度センサ4の信号を
比較しリレー7の開閉を行うための駆動信号を発生する
比較回路、6は比較回路5からの駆動信号によりリレー
7を駆動するトランジスタ、8はリレー7の接点、9は
熱源等の負荷、10は商用電源1の周期と非同期で発振
する発振回路、11は遅延用のDフリップフロップIC
である。
1 is a block diagram of a relay drive device according to an embodiment of the present invention. In FIG. 1, 1 is a commercial power supply, 2 is a DC power supply circuit for producing a circuit DC power supply from the commercial power supply 1, 3 is a temperature setter for setting temperature, 4 is a temperature sensor, 5 is a set value of the temperature setter 3. A comparison circuit that compares the signal of the temperature sensor 4 and generates a drive signal for opening and closing the relay 7, 6 is a transistor that drives the relay 7 by the drive signal from the comparison circuit 5, 8 is a contact of the relay 7, and 9 is A load such as a heat source, 10 is an oscillation circuit that oscillates asynchronously with the cycle of the commercial power supply 1, 11 is a delay D flip-flop IC
Is.

【0012】以上のように構成されたリレー駆動装置に
ついて以下にその動作を説明する。ここで発振回路10
とDフリップフロップIC11の動作以外は従来の技術
で説明した動作と同様なので説明を省略する。まず、比
較回路5の出力信号はDフリップフロップIC11のデ
ータ入力用端子Dへ、発振回路10の出力信号はDフリ
ップフロップIC11のクロック端子CKへ入力され、
DフリップフロップIC11の出力用端子Qはリレー駆
動用信号としてトランジスタ6へ出力される。Dフリッ
プフロップIC11は図3に示す様にデータ入力端子D
に入力れた信号をクロック端子CKに入力された信号の
立ち上がりタイミングにて出力用端子Qから出力する作
用があるため、図2に示すように比較回路5が商用電源
1の周期と同期した信号をDフリップフロップIC11
のデータ入力端子Dへ出力しても、その時点ではDフリ
ップフロップIC11の出力用端子Qからの出力信号は
変化しない。
The operation of the relay drive device configured as described above will be described below. Here, the oscillation circuit 10
The operation other than the operation of the D flip-flop IC11 and the operation of the conventional flip-flop IC11 is the same as the operation described in the related art, and thus the description thereof is omitted. First, the output signal of the comparison circuit 5 is input to the data input terminal D of the D flip-flop IC11, and the output signal of the oscillation circuit 10 is input to the clock terminal CK of the D flip-flop IC11.
The output terminal Q of the D flip-flop IC11 is output to the transistor 6 as a relay drive signal. The D flip-flop IC11 has a data input terminal D as shown in FIG.
2 has a function of outputting from the output terminal Q at the rising timing of the signal input to the clock terminal CK, so that the comparator circuit 5 synchronizes with the cycle of the commercial power source 1 as shown in FIG. D flip-flop IC11
, The data output terminal Q of the D flip-flop IC11 does not change.

【0013】次に、DフリップフロップIC11のクロ
ック端子CKに発振回路10からの信号が入力されると
この信号の立ち上がったタイミングで比較回路5からの
信号はDフリップフロップIC11の出力用端子Qから
出力されリレー7の駆動信号となる。
Next, when a signal from the oscillation circuit 10 is input to the clock terminal CK of the D flip-flop IC11, the signal from the comparison circuit 5 is output from the output terminal Q of the D flip-flop IC11 at the rising timing of this signal. It is output and becomes a drive signal for the relay 7.

【0014】ところが、発振回路10からの信号は商用
電源1の周期とは非同期であるため、Dフリップフロッ
プIC11の出力用端子Qからの出力信号、すなわちリ
レー7の駆動信号は商用電源1の周期に対し非同期とな
る。このためリレー7の動作は商用電源1の周期とは非
同期となりリレー7の接点8の各々が正極と負極とをく
り返すため接点8の金属イオンは各々の接点8間で移動
を繰り返し、凹凸が発生せず、接点8の寿命が向上す
る。
However, since the signal from the oscillation circuit 10 is asynchronous with the cycle of the commercial power source 1, the output signal from the output terminal Q of the D flip-flop IC 11, that is, the drive signal of the relay 7 is the cycle of the commercial power source 1. Will be asynchronous to. For this reason, the operation of the relay 7 becomes asynchronous with the cycle of the commercial power supply 1, and each of the contacts 8 of the relay 7 repeats the positive and negative polarities, so that the metal ions of the contacts 8 repeatedly move between the respective contacts 8, resulting in unevenness. It does not occur and the life of the contact 8 is improved.

【0015】[0015]

【発明の効果】以上のように本発明のリレー駆動装置
は、商用電源の周期と非同期で発振する発振手段からの
信号によりリレーを駆動する駆動信号を遅延する信号遅
延手段を備えたことによりリレーの駆動信号を商用電源
の周期と非同期とし、リレーの開閉タイミングを商用電
源の周期と非同期とすることができリレーの接点寿命を
向上させ、製品の信頼性を高めることが可能となる。
As described above, the relay drive device of the present invention includes the signal delay means for delaying the drive signal for driving the relay by the signal from the oscillation means which oscillates asynchronously with the cycle of the commercial power source. The drive signal can be made asynchronous with the cycle of the commercial power source, and the opening / closing timing of the relay can be made asynchronous with the cycle of the commercial power source, so that the contact life of the relay can be improved and the reliability of the product can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるリレー駆動装置のブ
ロック図
FIG. 1 is a block diagram of a relay drive device according to an embodiment of the present invention.

【図2】本発明の一実施例におけるリレー駆動装置に用
いられるDフリップフロップICのタイミング図
FIG. 2 is a timing diagram of a D flip-flop IC used in a relay drive device according to an embodiment of the present invention.

【図3】本発明の一実施例におけるリレー駆動装置のリ
レーの開閉タイミング図
FIG. 3 is a timing chart of opening / closing of a relay of a relay drive device according to an embodiment of the present invention.

【図4】従来のリレー駆動装置のブロック図FIG. 4 is a block diagram of a conventional relay drive device.

【図5】従来のリレー駆動装置のリレーの開閉タイミン
グ図
FIG. 5 is a timing chart of opening / closing of a relay of a conventional relay drive device.

【図6】従来のリレー駆動装置の商用電源周期とリレー
の開閉タイミングとの関係図
FIG. 6 is a relationship diagram between a commercial power supply cycle of a conventional relay drive device and a relay opening / closing timing.

【図7】従来のリレー駆動装置に用いられる一般的なリ
レーの接点の側面図
FIG. 7 is a side view of contacts of a general relay used in a conventional relay drive device.

【符号の説明】[Explanation of symbols]

1 商用電源 2 直流電源回路 3 温度設定器 4 温度センサ 5 比較回路 6 トランジスタ 7 リレー 8 接点 9 負荷 10 発振回路 11 DフリップフロップIC 1 Commercial Power Supply 2 DC Power Supply Circuit 3 Temperature Setting Device 4 Temperature Sensor 5 Comparison Circuit 6 Transistor 7 Relay 8 Contact 9 Load 10 Oscillation Circuit 11 D Flip-Flop IC

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】商用電源に接続された負荷への通電および
遮断を行うリレー駆動装置であって、前記リレーを駆動
する信号を出力する駆動信号出力手段と、商用電源の周
期と非同期で発振する発振手段と、前記発振手段からの
信号により前記駆動信号出力手段から出力される信号を
遅延する信号遅延手段とを備えたことを特徴とするリレ
ー駆動装置。
1. A relay drive device for energizing and interrupting a load connected to a commercial power source, the drive signal output means outputting a signal for driving the relay, and oscillating asynchronously with a cycle of the commercial power source. A relay drive device comprising: an oscillating means; and a signal delay means for delaying a signal output from the drive signal output means by a signal from the oscillating means.
JP11691293A 1993-05-19 1993-05-19 Relay driving device Pending JPH06333480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11691293A JPH06333480A (en) 1993-05-19 1993-05-19 Relay driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11691293A JPH06333480A (en) 1993-05-19 1993-05-19 Relay driving device

Publications (1)

Publication Number Publication Date
JPH06333480A true JPH06333480A (en) 1994-12-02

Family

ID=14698734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11691293A Pending JPH06333480A (en) 1993-05-19 1993-05-19 Relay driving device

Country Status (1)

Country Link
JP (1) JPH06333480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518098A (en) * 2018-09-28 2021-07-29 エルジー・ケム・リミテッド Relay control system and method using flip-flops

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518098A (en) * 2018-09-28 2021-07-29 エルジー・ケム・リミテッド Relay control system and method using flip-flops

Similar Documents

Publication Publication Date Title
US4153922A (en) Relay control circuit
US4769737A (en) Circuit for driving a relay used in an AC circuit, with a protection against contact welding
JPH06333480A (en) Relay driving device
JP2600690B2 (en) Power supply circuit
KR890001959B1 (en) Power relay on/off control device of microwave oven
KR0162389B1 (en) Power relay control method of microwave oven
RU2636052C1 (en) Device to control electromagnet of constant voltage
US4435089A (en) Power circuit for an electronic timepiece
JPH0574297A (en) Relay driving apparatus
JP3244580U (en) Single pulse generation configuration reduces chattering
JPS61256608A (en) Direct current electric magnet device
SU1614048A2 (en) Device for monitoring inter-contact gap of electromagnet relay
JPH033325B2 (en)
JP2596052B2 (en) Hybrid relay
JPH02160318A (en) Power switch
SU1404833A1 (en) Device for checking frequency of mechanical vibrations
JP3976909B2 (en) Voltage controlled oscillator
SU1163384A1 (en) Programmed time relay
JPH0676708A (en) Time limit relay
JPS61214919A (en) Electric discharge machine
SU1200352A1 (en) Time relay
JPH0321992U (en)
JP2005128858A (en) Contact input type communication device
JP2001267901A (en) Method for opening switch for inductive load and its controller
JP2000058276A (en) Discharge lamp lighting device