JPH06333437A - Superconductor and manufacture thereof and device therefor - Google Patents

Superconductor and manufacture thereof and device therefor

Info

Publication number
JPH06333437A
JPH06333437A JP5119903A JP11990393A JPH06333437A JP H06333437 A JPH06333437 A JP H06333437A JP 5119903 A JP5119903 A JP 5119903A JP 11990393 A JP11990393 A JP 11990393A JP H06333437 A JPH06333437 A JP H06333437A
Authority
JP
Japan
Prior art keywords
carbon
superconducting conductor
coated
thin film
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5119903A
Other languages
Japanese (ja)
Inventor
Hiroe Yamamoto
広衛 山本
Kunishige Kuroda
邦茂 黒田
Teigo Okada
定五 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5119903A priority Critical patent/JPH06333437A/en
Publication of JPH06333437A publication Critical patent/JPH06333437A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconductor provided with a detecting means having a high sensitivity and a high mechanical strength, which can detect the fine temperature rise immediately before the quench securely. CONSTITUTION:Both surfaces or one surface of a superconductor 3 is coated with the organic insulating solvent 6, and fed with carbon coated insulating material 22, 23, which are respectively formed of a carbon thin film body 10 and an organic insulating film 9, to a bonding roller 7, and they are adhered to each other to form a carbon thin film coated superconductor. A temperature sensor is formed at a desired position of the carbon coated superconductor through a leader. A temperature detecting element having the excellent flexibility and the excellent mechanical strength can be thereby structured at a desired position with a desired space, and the winding work is facilitated and the working efficiency is improved, and since a very thin insulating film can be formed between the superconductor and the carbon thin film, a temperature detecting element having a high detecting accuracy is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クエンチ検知手段を有
する超電導導体に関し、特に熱擾乱等により超電導状態
から常電導状態に転移する直前の微小な温度上昇及びそ
の発生位置の検知手段を有する超電導導体及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting conductor having a quench detecting means, and more particularly to a superconducting means having a detecting means for detecting a minute temperature rise just before the superconducting state is changed to the normal conducting state due to thermal disturbance or the like and a position where the temperature rises. The present invention relates to a conductor and a manufacturing method thereof.

【0002】[0002]

【従来の技術】超電導磁石は、一般に液体ヘリウム等の
冷却媒体で冷却されているが、通電して磁界を発生した
際に、超電導磁石の一部分に導体の動きや含浸材の破損
等の異常が発生すると、それらが熱擾乱となって超電導
導体の一部が温度上昇し常電導転移、すなわちクエンチ
する事態が発生する。クエンチが発生すると巻線導体か
ら発生した大量の熱で冷媒が沸騰し、巻線導体が溶断す
るなどの大事故につながる危険があるため、超電導磁石
ではこのクエンチを防止することが重要な課題である。
2. Description of the Related Art Superconducting magnets are generally cooled by a cooling medium such as liquid helium. However, when a magnetic field is generated by energizing, a part of the superconducting magnet is not affected by abnormalities such as movement of the conductor and damage of the impregnated material. When they occur, they become a thermal disturbance, and a part of the superconducting conductor rises in temperature, causing a normal conduction transition, that is, quenching. When a quench occurs, a large amount of heat generated from the winding conductor may cause the refrigerant to boil, which may lead to a major accident such as melting of the winding conductor.Therefore, it is an important issue to prevent this quench in superconducting magnets. is there.

【0003】従来のクエンチへの対処法として、巻線導
体となる超電導導体に電圧端子線を設け、常電導転移時
に発生する電圧で通電電流を遮断する方法があるが、こ
れは超電導コイルの保護の視点に立つものであり、必ず
しもクエンチを予知したり、積極的に抑制するものでは
なかった。超電導導体の温度を測定してクエンチを検知
する方法もあるが、通常は銅とコンスタンタン又は金鉄
とクロメル等の熱電対線を温度センサーとして用い、そ
れを直接超電導導体に取付け、その熱起電力から超電導
導体の温度を測定していた。また、「共和技報」第27
6巻(1981年)第1937頁〜第1940頁には、
薄いプラスチックフィルム上にカーボンを塗布して幅
3.4mm、長さ13.3mm、厚さ約1mmの極低温
高速温度計を形成することが記載されている。
As a conventional countermeasure against quenching, there is a method in which a voltage terminal wire is provided on a superconducting conductor serving as a winding conductor to cut off an energizing current with a voltage generated at the time of transition to normal conduction. This is for protecting the superconducting coil. It was not based on the viewpoint of, but did not necessarily predict or actively suppress the quench. There is also a method to detect the quench by measuring the temperature of the superconducting conductor, but usually, using a thermocouple wire such as copper and constantan or gold iron and chromel as a temperature sensor, attach it directly to the superconducting conductor, Was measuring the temperature of the superconducting conductor. In addition, "Kyowa Technical Report" No. 27
Volume 6 (1981), pages 1937 to 1940,
It is described that carbon is applied on a thin plastic film to form a cryogenic high-speed thermometer having a width of 3.4 mm, a length of 13.3 mm and a thickness of about 1 mm.

【0004】[0004]

【発明が解決しようとする課題】上記巻線導体の端子電
圧によるクエンチ検知方法では、超電導磁石の超電導状
態が破れ常電導転移しない限りクエンチを検出すること
ができない。すなわち、巻線導体がクエンチしてしまっ
た後でないと検出できないという問題がある。また、最
近の超電導磁石の高磁界化、高電流密度化にともない、
巻線導体間の電磁誘導によるノイズや電源ノイズ等は高
いレベルに達しているので、この端子電圧から常電導転
移によって発生した微小信号を検出する方法は、その信
頼性が著しく低下している。
In the quench detection method based on the terminal voltage of the winding conductor, the quench cannot be detected unless the superconducting state of the superconducting magnet is broken and the superconducting transition occurs. That is, there is a problem that it cannot be detected until after the winding conductor has been quenched. Also, with the recent increase in magnetic field and current density of superconducting magnets,
Since noise due to electromagnetic induction between winding conductors, power supply noise, etc. have reached a high level, the reliability of the method of detecting a minute signal generated from this terminal voltage due to a normal conduction transition is significantly reduced.

【0005】また、超電導状態から常電導状態に転移す
る分流開始温度は、磁界の強さ及び電流密度によっても
異なるが、超電導状態の維持温度に近く通常は極めて微
小な温度上昇である。そのため、温度センサーとして熱
電対線を利用する方法では、感度としての熱起電力が小
さいため測定が困難であった。また、前述のカーボンを
用いた温度センサーによるクエンチ検知方法には、温度
センサーの機械的強度が非常に弱く破損率が高い、高抵
抗値がとれないため感度が低いという問題があり、さら
に温度センサーをコイルの巻線導体の長さ方向に沿って
連続的に設けることができないため長尺の超電導導体の
温度測定には無数の温度センサーが必要になるという問
題があった。
Although the shunt start temperature at which the superconducting state changes to the normal conducting state varies depending on the strength of the magnetic field and the current density, it is close to the superconducting state maintaining temperature and is usually an extremely small temperature rise. Therefore, in the method of using a thermocouple wire as the temperature sensor, measurement is difficult because the thermoelectromotive force as the sensitivity is small. In addition, the quench detection method using the temperature sensor using carbon has problems that the mechanical strength of the temperature sensor is very weak and the damage rate is high, and the sensitivity is low because a high resistance value cannot be obtained. There is a problem that innumerable temperature sensors are necessary for measuring the temperature of a long superconducting conductor because the coil cannot be continuously provided along the length direction of the coil winding conductor.

【0006】本発明は、前記した従来技術の問題を克服
し、超電導状態にある超電導磁石が熱擾乱により温度上
昇する際に、常電導転移する前の微小な温度上昇を確実
に検出できる高感度で機械的強度の強い検出手段を備え
た超電導導体及びその製造方法を提供することを目的と
する。
The present invention overcomes the above-mentioned problems of the prior art, and when the temperature of a superconducting magnet in a superconducting state rises due to thermal agitation, it is possible to reliably detect a minute temperature rise before the normal conduction transition. It is an object of the present invention to provide a superconducting conductor having a detecting means having high mechanical strength and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明においては、超電
導導体に温度検知素子としてのカーボン薄膜を巻線導体
全長に渡って連続的、あるいは断続的に設けることによ
って前記目的を達成する。また、本発明においては、超
電導磁石を巻回する超電導導体を、該超電導導体の周部
に温度に対する電気抵抗変化率の大きいカーボン薄膜を
ホルマールあるいはポリエステルの有機絶縁溶剤で接
着、あるいは有機絶縁テープにカーボン液を塗布または
スパッタリングしたカーボン薄膜付き絶縁テープを絶縁
溶剤で接着、または超電導導体の長さ方向に部分的、も
しくは連続的に溝を設け、該溝にカーボン薄膜被覆芯
線、あるいはカーボン液を含浸したガラス繊維材または
有機繊維材を埋設したカーボン薄膜被覆超電導導体を製
造して巻線することにより前記目的を達成する。
In the present invention, the above object is achieved by providing a carbon thin film as a temperature detecting element on the superconducting conductor continuously or intermittently over the entire length of the winding conductor. Further, in the present invention, a superconducting conductor around which a superconducting magnet is wound, a carbon thin film having a large rate of change in electric resistance with respect to temperature is adhered to the peripheral portion of the superconducting conductor with an organic insulating solvent of formal or polyester, or an organic insulating tape. Insulating tape with carbon thin film coated or sputtered with carbon liquid is adhered with an insulating solvent, or a groove is partially or continuously provided in the length direction of the superconducting conductor, and the groove is impregnated with a carbon thin film-coated core wire or carbon liquid. The above object is achieved by manufacturing and winding a carbon thin film-coated superconducting conductor in which the glass fiber material or the organic fiber material is embedded.

【0008】[0008]

【作用】本発明者らが先の出願(特願平4−12542
8号)において開示したように、カーボン薄膜は極低温
における電気抵抗の温度係数が非常に大きい。そして、
カーボンを薄膜とすることにより、電気抵抗を大きくす
ることができると共に柔軟性を増すことができるので、
非常に高感度かつ機械的耐性の高い温度センサーを構成
することができる。
[Function] The inventors of the present invention filed an earlier application (Japanese Patent Application No. 4-1542).
As disclosed in (No. 8), the carbon thin film has a very large temperature coefficient of electric resistance at extremely low temperatures. And
By using carbon as a thin film, the electrical resistance can be increased and flexibility can be increased,
It is possible to construct a temperature sensor having extremely high sensitivity and high mechanical resistance.

【0009】このカーボン薄膜からなる温度センサーを
巻線導体全長に渡って連続的あるいは断続的に設けるこ
とにより、クエンチ予知装置を構成する温度検知部を超
電導導体の任意の位置に容易に設定することができ、超
電導導体のクエンチ検知を高い信頼性をもって高感度に
行うことが可能になる。本発明のカーボン被覆超電導導
体製造方法によって、超電導導体に接着被覆されるカー
ボン薄膜は、厚さ数十ミクロンの非常に薄い薄膜体に、
または薄い有機絶縁テープに薄膜状に形成し、ホルマー
ルあるいはポリエステル等の有機絶縁溶剤で超電導導体
に接着被覆するので、カーボン液が絶縁材に浸透して超
電導導体と短絡することはなく、超電導導体を長距離に
わたってカーボン被覆できる。同時にカーボン薄膜の接
着力は非常に強固なもので、折り曲げたり衝撃を与えた
り、あるいは叩いて多少の導体伸縮があっても剥離や亀
裂の発生がなく、柔軟性があり機械的強度の強いカーボ
ン被覆超電導導体を得ることができる。
By providing the temperature sensor made of the carbon thin film continuously or intermittently over the entire length of the winding conductor, the temperature detecting portion constituting the quench predicting device can be easily set at an arbitrary position of the superconducting conductor. Therefore, quench detection of the superconducting conductor can be performed with high reliability and high sensitivity. By the carbon-coated superconducting conductor manufacturing method of the present invention, the carbon thin film adhesively coated on the superconducting conductor is a very thin thin film having a thickness of several tens of microns,
Alternatively, it is formed into a thin film on a thin organic insulating tape, and the superconducting conductor is adhesively coated with an organic insulating solvent such as formal or polyester, so that the carbon liquid does not penetrate into the insulating material and short-circuit with the superconducting conductor. Can be carbon coated over long distances. At the same time, the adhesion strength of the carbon thin film is very strong, and even if there is some expansion and contraction of the conductor when it is bent, shocked, or hit, there is no peeling or cracking, and it is flexible and has high mechanical strength. A coated superconducting conductor can be obtained.

【0010】また、カーボン被覆芯線やカーボン液を含
浸したガラス繊維材あるいは有機繊維材の埋設構造とし
ても、芯線のカーボン被覆層または含浸材を厚さ数十ミ
クロンの非常に薄いものを埋設するので、前記同様機械
的強度の強い、そして温度変化に対する感度の高いカー
ボン被覆超電導導体が製造でき、該カーボン被覆超電導
導体で超電導磁石を巻線し、温度検知装置を構成するこ
とにより、超電導導体の極微小な動きや含浸材の破損、
クラックの発生に伴って生じる微小な温度上昇、すなわ
ち超電導体が常電導転移を始める分流開始温度以前の微
小な温度変化でも正確に検知でき、安全で信頼性に優れ
た超電導磁石の製作が可能となる。
Further, even in the embedded structure of the carbon-coated core wire or the glass fiber material or the organic fiber material impregnated with the carbon liquid, since the carbon coating layer or the impregnation material of the core wire is embedded in a very thin one having a thickness of several tens of microns. Similarly to the above, a carbon-coated superconducting conductor having high mechanical strength and high sensitivity to temperature change can be manufactured. By winding a superconducting magnet with the carbon-coated superconducting conductor and forming a temperature detecting device, the superconducting conductor has an extremely small size. Small movements or damage to the impregnated material,
It is possible to manufacture a superconducting magnet that is safe and highly reliable because it can accurately detect even a minute temperature rise caused by the occurrence of cracks, that is, even a minute temperature change before the shunt start temperature at which the superconductor starts the normal conduction transition. Become.

【0011】[0011]

【実施例】以下、本発明の実施例を図を参照して説明す
る。 〔実施例1〕図1は、本発明の一実施例によるカーボン
被覆超電導導体の製造工程を示す。図2は、本実施例の
方法で製造したカーボン被覆超電導導体の部分拡大斜視
図である。
Embodiments of the present invention will now be described with reference to the drawings. [Embodiment 1] FIG. 1 shows a manufacturing process of a carbon-coated superconducting conductor according to an embodiment of the present invention. FIG. 2 is a partially enlarged perspective view of the carbon-coated superconducting conductor manufactured by the method of this embodiment.

【0012】巻線ボビン2に巻回された例えば裸平角超
電導導体3は、送りローラ4で連続的に繰り出され、両
面に絶縁溶剤塗布装置5からホルマールあるいはポリエ
ステル等の有機絶縁溶剤6を塗布された後、接合ローラ
7に押入される。接合ローラ7には、有機絶縁溶剤6を
塗布した裸平角超電導導体3と共に、有機絶縁膜9で覆
われたカーボン薄膜体10を担持するテフロン(登録商
標)等のフッ素樹脂製ベルト8、15が上面と下面の双
方から押入され、裸平角超電導導体3にカーボン薄膜体
10が被覆される。
The bare flat superconducting conductor 3 wound around the winding bobbin 2, for example, is continuously fed out by the feed roller 4 and coated with an organic insulating solvent 6 such as formal or polyester from the insulating solvent coating device 5 on both sides. After that, it is pushed into the joining roller 7. The bonding roller 7 is provided with fluororesin belts 8 and 15 such as Teflon (registered trademark) carrying a carbon thin film body 10 covered with an organic insulating film 9 together with a bare rectangular superconducting conductor 3 coated with an organic insulating solvent 6. The bare thin rectangular superconducting conductor 3 is pressed in from both the upper surface and the lower surface to cover the carbon thin film body 10.

【0013】接合ローラ7と回転ボビン11、12に巻
回されて駆動されるフッ素樹脂製ベルト8上、及び接合
ローラ7と回転ボビン13、14に巻回されて駆動され
るフッ素樹脂製ベルト15上には、夫々カーボン噴射装
置16、17でカーボン液が吹き付けられ又は塗り付け
られて厚さ数十ミクロンのカーボン薄膜体10が形成さ
れ、このカーボン薄膜体10は乾燥装置18、19で乾
燥成形され、表面に絶縁溶剤塗布装置20、21でホル
マールあるいはポリエステル等の有機絶縁溶剤を塗布し
て有機絶縁膜9を形成することによってカーボン被覆絶
縁体22、23が形成される。図1には、積層状態の説
明のためにのみ、カーボン被覆超電導導体1からカーボ
ン被覆絶縁体22、23を剥離して示してある。
On the fluororesin belt 8 wound and driven by the joining roller 7 and the rotating bobbins 11 and 12, and on the fluororesin belt 15 wound and driven by the joining roller 7 and the rotating bobbins 13 and 14. A carbon liquid is sprayed or painted on the carbon thin film bodies 10 and 17 to form a carbon thin film body 10 having a thickness of several tens of microns, and the carbon thin film body 10 is dry-molded by drying devices 18 and 19, respectively. Then, the carbon coating insulators 22 and 23 are formed by applying an organic insulating solvent such as formal or polyester to the surface with the insulating solvent applying devices 20 and 21 to form the organic insulating film 9. In FIG. 1, the carbon coated insulators 22 and 23 are shown separated from the carbon coated superconducting conductor 1 only for explanation of the laminated state.

【0014】裸平角超電導導体3と個別のフッ素樹脂製
ベルト8、15上に形成されたカーボン被覆絶縁体2
2、23は、前記のように、接合ローラ7で回転するフ
ッ素樹脂製ベルト8、15から剥離して裸平角超電導導
体3の有機絶縁溶剤6が塗布された面に接着され、完全
に密着されてカーボン被覆超電導導体1が形成される。
こうして全長にわたってカーボン被覆された超電導導体
1は接着ローラ24によってさらに成形された後、乾燥
装置25で完全に乾燥され、接着ローラ26及びガイド
ローラ27を介して巻取ボビン(図示せず)に巻回され
る。
The carbon-coated insulator 2 formed on the bare rectangular superconducting conductor 3 and the individual fluororesin belts 8 and 15
As described above, 2 and 23 are peeled off from the fluororesin belts 8 and 15 rotated by the joining roller 7 and are adhered to the surface of the bare flat rectangular superconducting conductor 3 coated with the organic insulating solvent 6, so that they are completely adhered. As a result, the carbon-coated superconducting conductor 1 is formed.
The superconducting conductor 1 thus covered with carbon over the entire length is further molded by the adhesive roller 24, then completely dried by the drying device 25, and wound on the winding bobbin (not shown) via the adhesive roller 26 and the guide roller 27. To be turned.

【0015】フッ素樹脂製ベルト上に付着されるカーボ
ン含有液は、例えばカーボン又はグラファイト粉末をホ
ルマール等の有機絶縁溶剤中に攪拌分散したカーボン
液、あるいは合成樹脂系接着剤で溶融してできたカーボ
ンペーストとすることができる。カーボン薄膜体10の
幅には特に制限はないが、幅方向端部で超電導導体と接
触して短絡を生じることがないように、超電導導体3の
幅より少し狭く設定するのが好適である。
The carbon-containing liquid deposited on the fluororesin belt is, for example, a carbon liquid prepared by stirring and dispersing carbon or graphite powder in an organic insulating solvent such as formal, or carbon prepared by melting with a synthetic resin adhesive. It can be a paste. The width of the carbon thin film body 10 is not particularly limited, but it is preferable to set it to be slightly smaller than the width of the superconducting conductor 3 so as not to come into contact with the superconducting conductor at the widthwise end and to cause a short circuit.

【0016】計測線の取付けは、カーボン被覆超電導導
体1を巻回するとき接する超電導導体の上下面のカーボ
ン薄膜体10の間に、例えば厚さ20μmの平銅線を介
在させることによって行うことができる。このように、
本実施例のカーボン被覆超電導導体1は、超電導導体3
の両面に有機絶縁溶剤6を塗布し、その上に別途成形し
たカーボン被覆絶縁体22、23を接着配置するもので
あることから、カーボン薄膜体10作成時のカーボン液
が有機絶縁溶剤6を浸透して超電導導体3と接触し電気
的短絡を生じることがない。したがって、超電導導体3
からカーボン薄膜10に電気的ノイズが入ることがな
く、温度検知の精度を高めることができる。
The measurement line is attached by interposing a flat copper wire having a thickness of, for example, 20 μm between the carbon thin film bodies 10 on the upper and lower surfaces of the superconducting conductor which are in contact with each other when the carbon-coated superconducting conductor 1 is wound. it can. in this way,
The carbon-coated superconducting conductor 1 of this embodiment is the same as the superconducting conductor 3.
Since the organic insulating solvent 6 is applied to both surfaces of the carbon coating and the separately molded carbon coated insulators 22 and 23 are bonded and arranged thereon, the carbon liquid at the time of forming the carbon thin film body 10 permeates the organic insulating solvent 6. Then, it does not come into contact with the superconducting conductor 3 to cause an electrical short circuit. Therefore, the superconducting conductor 3
Therefore, electrical noise does not enter the carbon thin film 10, and the accuracy of temperature detection can be improved.

【0017】また、カーボン薄膜体10およびカーボン
薄膜体10を接着させる有機絶縁膜9等は非常に薄い薄
膜体に作成されるので柔軟性に富み、導体変形のために
叩いたり、折り曲げたりあるいは衝撃を与えたり、また
熱伸び変形や引っ張り応力による導体伸縮があっても、
カーボン薄膜が剥離したり亀裂が発生することなく、機
械的強度に優れたカーボン被覆超電導導体1を製造でき
る。
Further, since the carbon thin film body 10 and the organic insulating film 9 for adhering the carbon thin film body 10 and the like are made to be a very thin thin film body, they are highly flexible and can be hit, bent or impacted for conductor deformation. , Or even if the conductor expands or contracts due to thermal expansion deformation or tensile stress,
The carbon-coated superconducting conductor 1 having excellent mechanical strength can be manufactured without peeling or cracking of the carbon thin film.

【0018】そして、本実施例のカーボン被覆超電導導
体1を採用して超電導磁石を巻線することにより、カー
ボン薄膜体10が超電導導体3全長に渡って接着被覆さ
れているので計測線の取付けが容易で、クエンチ発生前
の数ケルビン程度の微小な温度上昇及びその位置を正確
に検知できる高精度の温度検出素子を任意の位置に連続
して、又は任意の間隔で容易に形成することができる。
By using the carbon-coated superconducting conductor 1 of this embodiment and winding the superconducting magnet, the carbon thin film body 10 is adhesively coated over the entire length of the superconducting conductor 3 so that the measurement line can be attached. A high-precision temperature detecting element that can easily detect a minute temperature rise of about several Kelvin before the occurrence of quench and its position can be easily formed continuously at any position or at any interval. .

【0019】〔実施例2〕図3は、本発明の第2の実施
例によるカーボン被覆超電導導体の製造工程を示す。図
4は、本実施例によって製造した片面カーボン被覆超電
導導体の部分拡大図である。本実施例においては、カー
ボン薄膜体を非常に薄い絶縁薄膜テープ上に形成して一
体化したカーボン被覆絶縁テープを作成し、それを超電
導導体の上下一方の面に接着被覆する。
[Embodiment 2] FIG. 3 shows a manufacturing process of a carbon-coated superconducting conductor according to a second embodiment of the present invention. FIG. 4 is a partially enlarged view of the single-sided carbon-coated superconducting conductor manufactured according to this example. In this example, a carbon thin film is formed on a very thin insulating thin film tape to form an integrated carbon-coated insulating tape, and the upper and lower surfaces of the superconducting conductor are adhesively covered.

【0020】一方のボビン28に巻回された例えばホル
マール又はポリエステルの厚さ数十ミクロンの絶縁薄膜
テープ29の片面に、前記実施例1と同様に、カーボン
噴射器30でホルマール等に攪拌分散したカーボン液を
吹き付け、あるいは塗り付けてカーボン薄膜体10を形
成し、このカーボン薄膜体10を予熱乾燥器31で完全
に乾燥成形してカーボン被覆絶縁テープ32を形成す
る。カーボン薄膜体10の形成はスパッタリング等の方
法によることもできる。その場合には、乾燥器31が不
要になるため装置構成が簡単になる。他方のボビン33
にはホルマールあるいはポリエステルの厚さ数十ミクロ
ンの有機絶縁テープ34が巻回されている。
On one side of an insulating thin film tape 29 of, for example, formal or polyester having a thickness of several tens of microns wound around one bobbin 28, the carbon injector 30 was used to stir and disperse in formal or the like as in the first embodiment. The carbon thin film 10 is formed by spraying or applying a carbon liquid, and the carbon thin film 10 is completely dry-molded by the preheat dryer 31 to form the carbon-coated insulating tape 32. The carbon thin film body 10 can be formed by a method such as sputtering. In that case, the dryer 31 is not required, and the device configuration is simplified. The other bobbin 33
An organic insulating tape 34 of formal or polyester having a thickness of several tens of microns is wound around.

【0021】巻線ボビン2に巻回された平角超電導導体
35が接合ローラ7に押し出し案内されるとき、平角超
電導導体35の一方の面に薄膜状のホルマール又はポリ
エステル等の有機絶縁溶剤36が絶縁溶剤塗布装置37
で塗布された後、前記カーボン被覆絶縁テープ32が案
内接着され、他方の面にはボビン33の有機絶縁テープ
34が案内接着されて片面カーボン被覆超電導導体40
が形成される。有機絶縁テープ34の接着面には、絶縁
溶剤塗布装置38で有機絶縁溶剤39が塗布されている
が、この有機絶縁溶剤39の塗布は平角超電導体35の
方に行ってもよい。
When the flat superconducting conductor 35 wound around the winding bobbin 2 is extruded and guided to the joining roller 7, one surface of the flat superconducting conductor 35 is insulated with a thin-film organic insulating solvent 36 such as formal or polyester. Solvent coating device 37
The carbon-coated insulating tape 32 is guided and adhered thereto, and the organic insulating tape 34 of the bobbin 33 is guided and adhered to the other surface of the single-sided carbon-coated superconducting conductor 40.
Is formed. Although the organic insulating solvent 39 is applied to the adhesive surface of the organic insulating tape 34 by the insulating solvent applying device 38, the application of the organic insulating solvent 39 may be applied to the rectangular superconductor 35.

【0022】片面カーボン被覆超電導導体40は、接合
ローラ7から送り出され、接着ローラ24で成形された
後、乾燥装置25で完全に乾燥成形され、接着ローラ2
6とガイドローラ27を介して巻取ボビン(図示せず)
に巻回される。図3には、積層状態の説明のためにの
み、カーボン被覆超電導導体40からカーボン被覆絶縁
テープ及び有機絶縁テープを剥離して示してある。
The single-sided carbon-coated superconducting conductor 40 is sent out from the joining roller 7, molded by the adhesive roller 24, and then completely dried and molded by the drying device 25.
Take-up bobbin (not shown) via 6 and guide roller 27
Is wound around. In FIG. 3, the carbon-coated insulating tape and the organic insulating tape are shown separated from the carbon-coated superconducting conductor 40 only for the purpose of explaining the laminated state.

【0023】ここで、前記カーボン被覆絶縁テープ32
を接着しない他方の面に、有機絶縁テープ34を接着す
るのではなく、平角超電導導体35の面に直接有機絶縁
溶剤を塗布した片面絶縁超電導導体を製造し、非絶縁面
に前記カーボン被覆絶縁テープ32を接着しても、前記
同様の片面カーボン被覆超電導導体としたカーボン被覆
超電導導体を得ることができる。なお、絶縁薄膜テープ
29上に形成するカーボン薄膜体10は、全長にわたっ
て必ずしも連続したものである必要はなく、途中に途切
れる個所があってもかまわない。
Here, the carbon-coated insulating tape 32 is used.
Is not adhered to the other surface, which is not adhered to the other side, but the organic insulation solvent is directly applied to the surface of the flat superconducting conductor 35 instead of adhering the organic insulation tape 34. Even if 32 is adhered, a carbon-coated superconducting conductor which is the same single-sided carbon-coated superconducting conductor as described above can be obtained. The carbon thin film body 10 formed on the insulating thin film tape 29 does not necessarily have to be continuous over the entire length, and there may be a break in the middle.

【0024】本実施例の片面カーボン被覆超電導導体4
0は、超電導導体に成形した時の導体厚みを薄くするこ
とができ、巻線コイルの径を小さくすることができる。
また、本実施例によると、巻線作業時の巻線導体間の接
触面がカーボン薄膜体の面と有機絶縁体面の接触となる
ので、導体成形締め上げ時の導体と導体の滑りがよくな
り、カーボン薄膜が破損する心配はなく、必要に応じて
任意に引っ張り応力をかけられることから、巻線導体の
緩みや弛みの発生がなく、寸法精度の高い超電導磁石を
巻線できる。また、本実施例によると、カーボン薄膜体
10を接着している絶縁薄膜テープ29の方の絶縁層に
対して密着される側の絶縁層を薄くできることから、よ
り精度の高い温度検出素子を形成できるので、クエンチ
現象を早期に捕えてクエンチを防止し、安定性維持と信
頼性向上を図ることができる。
Single-sided carbon-coated superconducting conductor 4 of this embodiment
With 0, the conductor thickness when formed into a superconducting conductor can be made thin, and the diameter of the winding coil can be made small.
Further, according to the present embodiment, since the contact surface between the winding conductors during the winding work is in contact with the surface of the carbon thin film body and the surface of the organic insulator, slipping between the conductor and the conductor during tightening the conductor is improved. Since the carbon thin film does not have a risk of being damaged and a tensile stress can be arbitrarily applied as needed, the winding conductor is not loosened or loosened, and a superconducting magnet with high dimensional accuracy can be wound. Further, according to the present embodiment, the insulating thin film tape 29 to which the carbon thin film body 10 is adhered can be made thinner in the insulating layer on the side closely adhered to the insulating layer, so that a more accurate temperature detecting element is formed. Therefore, it is possible to catch the quench phenomenon at an early stage, prevent the quench, and maintain stability and improve reliability.

【0025】〔実施例3〕図5は、本発明の第3の実施
例による超電導導体の製造工程を示す。本実施例におい
ては、超電導導体に凹部又は溝を設け、非磁性金属芯線
や有機絶縁繊維線材又はガラス繊維線材にカーボン被覆
をした芯線材を埋設する。電線ボビン41に巻回された
平角超電導導体35は、案内ローラ42で繰り出されな
がら溝切りローラ43に案内される。そして溝切りロー
ラ43で溝44が切られた後、絶縁被覆装置45、46
で絶縁被覆され、乾燥装置47で乾燥されて絶縁成形さ
れ接合ローラ48に送り出される。
[Embodiment 3] FIG. 5 shows a manufacturing process of a superconducting conductor according to a third embodiment of the present invention. In this embodiment, a recess or a groove is provided in the superconducting conductor, and a non-magnetic metal core wire, an organic insulating fiber wire material or a glass fiber wire material is embedded with a carbon-coated core wire material. The rectangular superconducting conductor 35 wound around the electric wire bobbin 41 is guided by the groove cutting roller 43 while being fed by the guide roller 42. After the groove 44 is cut by the groove cutting roller 43, the insulating coating devices 45 and 46 are formed.
Is insulation-coated with, is dried by a drying device 47, is insulation-molded, and is sent to a joining roller 48.

【0026】別個のボビン49には、銅又はステンレス
鋼等の非磁性金属芯線、あるいは生糸や木綿糸をホルマ
ール等の有機絶縁溶剤に浸した有機絶縁繊維材あるいは
ガラス繊維材等の絶縁線材からなる芯線50が巻回され
ている。ここでは、芯線50が平角芯線である場合につ
いて説明する。この芯線50は、送りローラ51で押し
出され、絶縁被覆装置52でホルマール等の有機絶縁溶
剤を塗布されて絶縁された後、乾燥装置53で乾燥さ
れ、成形ローラ54に案内されて絶縁成形された後、カ
ーボン被覆装置55で数十ミクロンの厚さにカーボンを
被覆され、その後乾燥器56で乾燥してカーボン被覆平
角芯線57が形成される。カーボン被覆装置55には、
使用量に応じて注入容器64からカーボン液が適宜注入
される。
The separate bobbin 49 is made of a non-magnetic metal core wire such as copper or stainless steel, or an insulating wire material such as an organic insulating fiber material or a glass fiber material in which raw thread or cotton thread is dipped in an organic insulating solvent such as formal. The core wire 50 is wound. Here, a case where the core wire 50 is a rectangular core wire will be described. The core wire 50 is extruded by a feed roller 51, coated with an organic insulating solvent such as formal by an insulating coating device 52 to be insulated, dried by a drying device 53, and guided by a molding roller 54 to be insulated and molded. After that, carbon is coated by a carbon coating device 55 to a thickness of several tens of microns, and then dried by a drier 56 to form a carbon-coated rectangular core wire 57. The carbon coating device 55 includes
The carbon liquid is appropriately injected from the injection container 64 according to the amount used.

【0027】こうして形成されたカーボン被覆平角芯線
57は、案内ローラ58とガイドローラ59を介して前
記接合ローラ48に案内され、絶縁成形した平角超電導
導体35の溝44に嵌合埋設され、再度絶縁装置61で
絶縁を施され乾燥器62で乾燥されてカーボン被覆芯線
埋設構造の超電導導体60が形成される。超電導磁石の
巻線導体として十分な長さに製造するときは、ガイドロ
ーラ63の先にもう一つの巻線ドラムを設け、ガイドロ
ーラ63を介して巻回する。
The carbon-coated flat rectangular core wire 57 thus formed is guided to the joining roller 48 via the guide roller 58 and the guide roller 59, and is fitted and embedded in the groove 44 of the flat-shaped superconducting conductor 35 formed by insulation molding, and then insulated again. The device 61 is insulated and dried by the drier 62 to form the superconducting conductor 60 having the carbon-coated core wire embedded structure. When manufacturing the winding conductor of the superconducting magnet to have a sufficient length, another winding drum is provided at the tip of the guide roller 63 and is wound via the guide roller 63.

【0028】本実施例のカーボン被覆芯線埋設構造の超
電導導体によっても超電導導体にカーボン薄膜を緊密に
密着でき、超電導導体の温度変化を敏感に検知できる温
度検出素子を構成できることから、前記実施例と同様
に、クエンチ現象を早期に捕えてクエンチを防止し、安
定性維持と信頼性向上を図ることができる。また、本実
施例は超電導導体に設けた絶縁した溝にカーボン被覆芯
線を嵌合埋設するものであることから、コイルの巻線作
業時に導体変形修正の衝撃の他、多少の損傷があっても
カーボン被覆芯線が断線することがなく、巻線の作業性
が向上できる。
Since the carbon thin film can be closely adhered to the superconducting conductor even by the superconducting conductor having the carbon-coated core wire burying structure of the present embodiment, the temperature detecting element capable of sensitively detecting the temperature change of the superconducting conductor can be constructed. Similarly, it is possible to catch the quench phenomenon at an early stage to prevent the quench phenomenon, thereby maintaining stability and improving reliability. Further, in this embodiment, since the carbon-coated core wire is fitted and buried in the insulated groove provided in the superconducting conductor, even if some damage is caused in addition to the impact of the conductor deformation correction during the coil winding work. The carbon coated core wire is not broken, and the workability of the winding can be improved.

【0029】ここでは平角超電導導体35にカーボン被
覆平角芯線57を嵌合埋設した例を説明したが、平角絶
縁超電導導体に溝を設けてカーボン被覆丸形芯線を埋設
する方法、あるいは丸形絶縁超電導導体の周部に溝を切
り、これにカーボン被覆丸形芯線を埋設する方法によっ
ても、前記実施例と同等の温度検出素子を構成できる超
電導導体を製造することができる。
Here, an example in which the carbon-coated rectangular core wire 57 is fitted and embedded in the rectangular superconducting conductor 35 has been described. However, a method of embedding a carbon-coated round core wire by providing a groove in the rectangular insulated superconducting conductor, or a circular insulated superconducting wire. A superconducting conductor capable of forming a temperature detecting element equivalent to that of the above-mentioned embodiment can also be manufactured by cutting a groove around the conductor and embedding a carbon-coated round core wire in the groove.

【0030】〔実施例4〕図6は、本発明の第4の実施
例による超電導導体の製造工程を示す。本実施例は数m
m径の太い単線の超電導導体に適用されるもので、超電
導導体をカーボン被覆絶縁テープで螺旋被覆する。本実
施例においては、予め前記実施例の要領で厚み数十ミク
ロンの有機絶縁テープ65にカーボン薄膜66を形成し
たカーボン被覆絶縁テープ67を製作してテープドラム
68に巻回しておく。そして、超電導導体69が押し出
し機(図示しない)から押し出されて線成形ローラ70
に入るときに、テープドラム68からカーボン被覆絶縁
テープ67を取り出し、接着剤塗布装置71でホルマー
ルやポリエステル等の有機絶縁溶剤を塗布して超電導導
体69を螺旋被覆し、線成形ローラ70でカーボン被覆
絶縁テープ67と超電導導体69を一体的に成形した
後、乾燥装置72で乾燥してカーボン薄膜螺旋被覆超電
導導体73を得る。有機絶縁テープへのカーボン薄膜の
形成はスパッタリング等の方法によることも可能であ
る。
[Embodiment 4] FIG. 6 shows a process of manufacturing a superconducting conductor according to a fourth embodiment of the present invention. This embodiment is several meters
It is applied to a thick single-wire superconducting conductor with a diameter of m, and the superconducting conductor is spirally coated with a carbon-coated insulating tape. In this embodiment, a carbon-coated insulating tape 67 in which a carbon thin film 66 is formed on an organic insulating tape 65 having a thickness of several tens of microns is manufactured in advance and wound around a tape drum 68 in the same manner as in the above embodiment. Then, the superconducting conductor 69 is extruded from an extruding machine (not shown) to form the wire forming roller 70.
When entering, the carbon coated insulating tape 67 is taken out from the tape drum 68, an organic insulating solvent such as formal or polyester is applied by an adhesive application device 71 to spirally coat the superconducting conductor 69, and a wire forming roller 70 is coated with carbon. After the insulating tape 67 and the superconducting conductor 69 are integrally molded, they are dried by the drying device 72 to obtain the carbon thin film spiral coated superconducting conductor 73. The carbon thin film may be formed on the organic insulating tape by a method such as sputtering.

【0031】本実施例でもカーボン薄膜は連続的に塗布
されているので、前述の実施例と同様に任意の場所に任
意の間隔で温度検出素子を構成することができる。ま
た、線径が太くなり巻線作業時の導体加圧や引っ張り応
力が増加して巻線作業が手荒になり、カーボン薄膜の破
損が心配されるが、カーボン被覆絶縁テープ67が数十
ミクロンと非常に薄いうえ、これをホルマールあるいは
ポリエステル等の有機絶縁溶剤で超電導導体69に一体
的に接着することから機械的強度が高く、巻線作業が容
易になり、特に大型超電導磁石の巻線導体として有用な
超電導導体を製造することができる。
Also in this embodiment, since the carbon thin film is continuously applied, the temperature detecting element can be formed at any place and at any interval as in the above-mentioned embodiments. In addition, the wire diameter becomes large, the conductor pressure and tensile stress at the time of winding work increase, and the winding work becomes rough, and the carbon thin film may be damaged. In addition to being very thin, it has a high mechanical strength because it is integrally bonded to the superconducting conductor 69 with an organic insulating solvent such as formal or polyester, which facilitates winding work, especially as a winding conductor for a large superconducting magnet. A useful superconducting conductor can be manufactured.

【0032】〔実施例5〕図7に本発明の第5の実施例
による超電導導体を示す。本実施例は、絶縁膜75を有
する複数の絶縁超電導素線74と、その絶縁膜75の周
部を全長にわたってカーボン薄膜を被覆した1本ないし
数本のカーボン被覆超電導素線76を製造し、それらを
撚り合わせてカーボン被覆超電導撚線77とするもので
ある。
[Fifth Embodiment] FIG. 7 shows a superconducting conductor according to a fifth embodiment of the present invention. In this embodiment, a plurality of insulating superconducting wires 74 having an insulating film 75 and one or several carbon-coated superconducting wires 76 in which a carbon thin film is coated over the entire circumference of the insulating film 75 are manufactured. They are twisted together to form a carbon-coated superconducting stranded wire 77.

【0033】このようにカーボン被覆超電導素線76と
絶縁超電導素線74を撚り合わせても、絶縁超電導素線
74の絶縁膜75が数十ミクロン厚と非常に薄いので、
その絶縁膜75の上に厚さ10μm程度のカーボン薄膜
78を形成しても撚線径には余り影響はなく、カーボン
被覆超電導素線76と絶縁超電導素線74の密着性もよ
く、柔軟性のある細線にもできるので、前述の実施例と
同等の効果が得られる。本実施例は、小さな巻線コイル
であっても温度検出素子を任意の位置に容易に形成でき
るので、小型超電導磁石の巻線導体に適用するに好適で
ある。
Even if the carbon-coated superconducting element wire 76 and the insulating superconducting element wire 74 are twisted together in this way, the insulating film 75 of the insulating superconducting element wire 74 is very thin, which is several tens of microns thick.
Even if a carbon thin film 78 having a thickness of about 10 μm is formed on the insulating film 75, the stranded wire diameter is not significantly affected, and the carbon-coated superconducting element wire 76 and the insulating superconducting element wire 74 have good adhesion and flexibility. Since it is possible to form a thin wire, the same effect as that of the above-described embodiment can be obtained. The present embodiment is suitable for application to the winding conductor of a small-sized superconducting magnet because the temperature detecting element can be easily formed at any position even with a small winding coil.

【0034】〔実施例6〕図8は、本発明の第6の実施
例であるカーボン含浸材埋設構造の超電導導体の製造工
程を示す。本実施例は、特に大電流高磁界用超電導磁石
装置の巻線導体を対象とするもので、巻線導体は銅等の
常電導金属からなる安定化材中に超電導導体を埋設した
厚みが数mm以上の平角超電導導体とする。
[Embodiment 6] FIG. 8 shows a process for producing a superconducting conductor having a carbon-impregnated material embedded structure according to a sixth embodiment of the present invention. The present embodiment is particularly intended for a winding conductor of a superconducting magnet device for a large current and a high magnetic field, and the winding conductor has a thickness in which a superconducting conductor is embedded in a stabilizing material made of a normal conducting metal such as copper. Use a rectangular superconducting conductor of mm or more.

【0035】案内ローラ80から送り出された平角超電
導導体79は溝切りローラ81に入り、銅等からなる安
定化材82に深さ1mm程度の埋設溝83が設けられた
後、絶縁塗布装置84で有機絶縁溶剤によって完全に絶
縁され、乾燥装置85で乾燥された後、埋設接合ローラ
86に送られる。埋設接合ローラ86には、別の絶縁ド
ラム87から案内ローラ88を介して送り出された薄い
有機絶縁繊維材89又はガラス繊維材にカーボン含浸被
覆装置90でカーボンを含浸した柔軟なカーボン繊維材
91が平角超電導線79と共に送り込まれ、平角超電導
線79の埋設溝83に嵌合埋設される。有機絶縁繊維材
は、例えば生糸や木綿糸のような繊維をホルマール等の
有機絶縁溶剤に浸したものである。埋設接合ローラ86
から繰り出された後、カーボン繊維材91は予熱乾燥器
92で強固に乾燥接着され、送りローラ93から繰り出
されてカーボン含浸材埋設構造の超電導導体94が得ら
れる。
The flat superconducting conductor 79 sent from the guide roller 80 enters the groove cutting roller 81, and the stabilizing material 82 made of copper or the like is provided with the buried groove 83 having a depth of about 1 mm, and then the insulating coating device 84 is used. It is completely insulated by the organic insulating solvent, dried by the drying device 85, and then sent to the embedded joining roller 86. The embedded joining roller 86 is provided with a soft carbon fiber material 91 obtained by impregnating carbon into a thin organic insulating fiber material 89 or glass fiber material sent from another insulating drum 87 through a guide roller 88 with a carbon impregnation coating device 90. It is sent together with the flat superconducting wire 79, and is fitted and embedded in the embedding groove 83 of the flat superconducting wire 79. The organic insulating fiber material is obtained by immersing fibers such as raw thread and cotton thread in an organic insulating solvent such as formal. Embedded bonding roller 86
Then, the carbon fiber material 91 is firmly dried and adhered by the preheat dryer 92, and is fed from the feed roller 93 to obtain the superconducting conductor 94 having the carbon-impregnated material embedded structure.

【0036】本実施例によると、コイル巻線作業に影響
を与えることがなく、巻線張力や導体変形修正の衝撃が
かかっても破損する心配がなく、機械的強度の強いカー
ボン埋設超電導導体94が得られる。
According to this embodiment, there is no influence on the coil winding work, there is no fear of damage even if the winding tension or the impact of the conductor deformation correction is applied, and the carbon-embedded superconducting conductor 94 having a high mechanical strength. Is obtained.

【0037】[0037]

【発明の効果】本発明によれば、厚み数十ミクロンのカ
ーボン薄膜体を剥離容易な絶縁ベルト上に、あるいは有
機絶縁テープ、または非磁性金属芯線や繊維線材等に形
成し、柔軟性を持ったカーボン薄膜を超電導導体の全長
に渡って連続的あるいは任意の間隔で、有機絶縁溶剤で
接着もしくは嵌合埋設することにより、折曲げたり衝撃
を与えたり、また熱伸びや引っ張りによる導体伸縮が発
生しても剥離や亀裂発生のない、機械的強度の優れた、
そして導体長さの任意の位置で温度検出素子を構成でき
るカーボン被覆超電導導体を得ることができる。
According to the present invention, a carbon thin film having a thickness of several tens of microns is formed on an insulating belt which can be easily peeled off, or formed on an organic insulating tape, a non-magnetic metal core wire, a fiber wire material or the like to have flexibility. By bonding or embedding the carbon thin film continuously or at arbitrary intervals over the entire length of the superconducting conductor with an organic insulating solvent, bending or impact may be caused, and the conductor may expand or contract due to thermal expansion or tension. Even if it does not peel or crack, it has excellent mechanical strength.
Then, it is possible to obtain a carbon-coated superconducting conductor capable of forming a temperature detecting element at an arbitrary position of the conductor length.

【0038】また、本カーボン被覆超電導導体で超電導
磁石を巻線することにより、コイル含浸剤の破損、クラ
ックの発生に伴うコイルの微小な動きや温度変化でも正
確かつ敏感に検知できる温度検出素子を構成できるの
で、クエンチ前の微小な温度変化をも確実に検知し、ク
エンチを早期に予知することのできる超電導磁石を製作
することができる。
Further, by winding a superconducting magnet with the carbon-coated superconducting conductor, a temperature detecting element capable of accurately and sensitively detecting even a minute movement of the coil or a temperature change due to damage of the coil impregnating agent or generation of cracks. Since it can be configured, it is possible to manufacture a superconducting magnet that can reliably detect even a minute temperature change before quenching and predict the quenching early.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による両面カーボン被覆
超電導導体の製造工程を示す説明図。
FIG. 1 is an explanatory view showing a manufacturing process of a double-sided carbon-coated superconducting conductor according to a first embodiment of the present invention.

【図2】本発明の第1の実施例による両面カーボン被覆
超電導導体の部分拡大斜視図。
FIG. 2 is a partially enlarged perspective view of a double-sided carbon-coated superconducting conductor according to the first embodiment of the present invention.

【図3】本発明の第2の実施例による片面カーボン被覆
超電導導体の製造工程を示す説明図。
FIG. 3 is an explanatory view showing a manufacturing process of a single-sided carbon-coated superconducting conductor according to a second embodiment of the present invention.

【図4】本発明の第2の実施例による片面カーボン被覆
超電導導体の部分拡大斜視図。
FIG. 4 is a partially enlarged perspective view of a single-sided carbon-coated superconducting conductor according to a second embodiment of the present invention.

【図5】本発明の第3の実施例によるカーボン被覆芯線
埋設構造の超電導導体の製造工程を示す説明図。
FIG. 5 is an explanatory view showing a manufacturing process of a superconducting conductor having a carbon-coated core wire burying structure according to a third embodiment of the present invention.

【図6】本発明の第4の実施例によるカーボン薄膜螺旋
被覆超電導導体の製造工程を示す説明図。
FIG. 6 is an explanatory view showing a manufacturing process of a carbon thin film spirally coated superconducting conductor according to a fourth embodiment of the present invention.

【図7】本発明の第5の実施例によるカーボン被覆超電
導撚線の部分拡大斜視図。
FIG. 7 is a partially enlarged perspective view of a carbon-coated superconducting stranded wire according to a fifth embodiment of the present invention.

【図8】本発明の第6の実施例によるカーボン繊維材埋
設超電導導体の製造工程を示す説明図。
FIG. 8 is an explanatory view showing a manufacturing process of a carbon fiber material-embedded superconducting conductor according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…カーボン被覆超電導導体 2…巻線ボビン 3
…裸平角超電導導体 4,51,93…送りローラ 5,20,21…絶溶
剤塗布縁装置 6,36,39…有機絶縁溶剤 7,48…接合ロー
ラ 8,15…フッ素樹脂製ベルト 9…有機絶縁膜
10…カーボン薄膜体 16,17…カーボン噴射装置 18,19,25,
53,72…乾燥装置 22,23…カーボン被覆絶縁体 29…絶縁薄膜テ
ープ 30…カーボン噴射器 31…予熱乾燥器 32…
カーボン被覆絶縁テープ 34,65…有機絶縁テープ 35,79…平角超電
導導体 37,38,61…絶縁装置 40…片面カーボン被
覆超電導導体 43,81…溝切りローラ 44…溝 45,46
…絶縁被覆装置 47,85…乾燥装置 50…平角芯線 52…
絶縁被覆装置 54…成形ローラ 55…カーボン被覆装置 5
6,62…乾燥器 57…カーボン被覆平角芯線 64…カーボン注入容
器 66…カーボン薄膜 67…カーボン被覆絶縁テープ
69…超電導導体 70…線成形ローラ 71…接着剤塗布装置 73…カーボン薄膜螺旋被覆超電導線 74…絶縁超
電導素線 75…絶縁膜 76…カーボン被覆超電導素線 77…カーボン被覆超電導撚線 78…カーボン薄膜
82…安定化材 83…埋設溝 84…絶縁塗布装置 86…埋設接
合ローラ 89…有機絶縁繊維材 90…カーボン含浸被覆装置 91…カーボン繊維材 92…予熱乾燥器 94…
カーボン埋設超電導導体
1 ... Carbon coated superconducting conductor 2 ... Winding bobbin 3
... Bare rectangular superconducting conductors 4, 51, 93 ... Feed rollers 5, 20, 21 ... Solvent coating edge device 6, 36, 39 ... Organic insulating solvent 7, 48 ... Joining roller 8, 15 ... Fluororesin belt 9 ... Organic Insulation film
10 ... Carbon thin film body 16, 17 ... Carbon injection device 18, 19, 25,
53, 72 ... Drying device 22, 23 ... Carbon coated insulator 29 ... Insulating thin film tape 30 ... Carbon injector 31 ... Preheat dryer 32 ...
Carbon coated insulating tape 34, 65 ... Organic insulating tape 35, 79 ... Rectangular superconducting conductor 37, 38, 61 ... Insulating device 40 ... Single-sided carbon coated superconducting conductor 43, 81 ... Grooving roller 44 ... Groove 45, 46
... Insulation coating device 47, 85 ... Drying device 50 ... Rectangular core wire 52 ...
Insulation coating device 54 ... Forming roller 55 ... Carbon coating device 5
6, 62 ... Dryer 57 ... Carbon coated rectangular core wire 64 ... Carbon injection container 66 ... Carbon thin film 67 ... Carbon coated insulating tape 69 ... Superconducting conductor 70 ... Wire forming roller 71 ... Adhesive coating device 73 ... Carbon thin film spiral coated superconducting wire 74 ... Insulated superconducting element wire 75 ... Insulating film 76 ... Carbon coated superconducting element wire 77 ... Carbon coated superconducting twisted wire 78 ... Carbon thin film 82 ... Stabilizing material 83 ... Embedding groove 84 ... Insulation coating device 86 ... Embedding joining roller 89 ... Organic Insulating fiber material 90 ... Carbon impregnation coating device 91 ... Carbon fiber material 92 ... Preheat dryer 94 ...
Carbon buried superconducting conductor

Claims (50)

【特許請求の範囲】[Claims] 【請求項1】 表面にカーボン薄膜体を絶縁材で接着被
覆したことを特徴とするカーボン被覆超電導導体。
1. A carbon-coated superconducting conductor having a surface coated with a carbon thin film by an insulating material.
【請求項2】 超電導導体の表面に全長にわたってカー
ボン薄膜体を絶縁材で連続的に接着被覆したことを特徴
とするカーボン被覆超電導導体。
2. A carbon-coated superconducting conductor characterized in that a carbon thin film body is continuously adhered and coated with an insulating material over the entire surface of the superconducting conductor.
【請求項3】 超電導導体の表面に長さ方向に間隔をあ
けてカーボン薄膜体を絶縁材で接着被覆したことを特徴
とするカーボン被覆超電導導体。
3. A carbon-coated superconducting conductor characterized in that a carbon thin film body is adhesively coated on the surface of the superconducting conductor at intervals in the lengthwise direction with an insulating material.
【請求項4】 長尺板状超電導導体の表裏両面にカーボ
ン薄膜体を絶縁材で連続的に接着被覆したことを特徴と
するカーボン被覆超電導導体。
4. A carbon-coated superconducting conductor comprising a long thin plate-shaped superconducting conductor, on both sides of which a carbon thin film is continuously adhered and coated with an insulating material.
【請求項5】 長尺板状超電導導体の片面にカーボン薄
膜体を絶縁材で連続的に接着被覆したことを特徴とする
カーボン被覆超電導導体。
5. A carbon-coated superconducting conductor, wherein a carbon thin film body is continuously adhered and coated with an insulating material on one surface of a long plate-shaped superconducting conductor.
【請求項6】 長尺板状超電導導体の片面の長さ方向に
間隔をあけてカーボン薄膜体を絶縁材で接着被覆したこ
とを特徴とするカーボン被覆超電導導体。
6. A carbon-coated superconducting conductor, characterized in that a carbon thin film body is adhesively coated with an insulating material at intervals on one side of a long plate-shaped superconducting conductor.
【請求項7】 長尺板状超電導導体の他方の面に絶縁材
薄膜を接着したことを特徴とする請求項5又は6記載の
カーボン被覆超電導導体。
7. The carbon-coated superconducting conductor according to claim 5, wherein an insulating material thin film is adhered to the other surface of the long plate-shaped superconducting conductor.
【請求項8】 長尺線状超電導導体の周囲表面にカーボ
ン薄膜体を絶縁材で螺旋状に接着被覆したことを特徴と
するカーボン被覆超電導導体。
8. A carbon-coated superconducting conductor, characterized in that a carbon thin film body is spirally adhered and coated with an insulating material on the peripheral surface of a long linear superconducting conductor.
【請求項9】 前記カーボン薄膜体は絶縁材薄膜上にカ
ーボンの薄膜を形成したものであることを特徴とする請
求項1〜8のいずれか1項記載のカーボン被覆超電導導
体。
9. The carbon-coated superconducting conductor according to claim 1, wherein the carbon thin film body is formed by forming a carbon thin film on an insulating material thin film.
【請求項10】 前記カーボン薄膜体は有機絶縁溶剤に
よって前記超電導導体表面に接着されていることを特徴
とする請求項1〜9のいずれか1項記載のカーボン被覆
超電導導体。
10. The carbon-coated superconducting conductor according to claim 1, wherein the carbon thin film body is adhered to the surface of the superconducting conductor with an organic insulating solvent.
【請求項11】 カーボン被覆芯線を長尺超電導導体の
長手方向に形成した溝に埋設したことを特徴とする超電
導導体。
11. A superconducting conductor comprising a carbon-coated core wire embedded in a groove formed in the longitudinal direction of the long superconducting conductor.
【請求項12】 前記カーボン被覆芯線は非磁性金属材
の表面に絶縁材を被覆し、その上にカーボンを被覆した
ものであることを特徴とする請求項11記載の超電導導
体。
12. The superconducting conductor according to claim 11, wherein the carbon-coated core wire is a non-magnetic metal material having a surface coated with an insulating material and carbon coated thereon.
【請求項13】 前記カーボン被覆芯線は有機絶縁繊維
線材又はガラス繊維線材であることを特徴とする請求項
11記載の超電導導体。
13. The superconducting conductor according to claim 11, wherein the carbon-coated core wire is an organic insulating fiber wire or a glass fiber wire.
【請求項14】 複数本の超電導素線で構成される超電
導撚線において、少なくとも一本の超電導素線をカーボ
ン被覆超電導素線とすることを特徴とする超電導撚線。
14. A superconducting stranded wire comprising a plurality of superconducting stranded wires, wherein at least one superconducting stranded wire is a carbon-coated superconducting stranded wire.
【請求項15】 常電導金属母材中に超電導導体を埋設
した長尺超電導導体の長手方向に断続的に形成された溝
にカーボン含浸材を埋設したことを特徴とするカーボン
含浸材埋設超電導導体。
15. A carbon-impregnated material-embedded superconducting conductor characterized in that a carbon-impregnated material is embedded in grooves formed intermittently in the longitudinal direction of a long superconducting conductor in which a superconducting conductor is embedded in a normal-conducting metal base material. .
【請求項16】 前記カーボン含浸材は有機繊維材又は
ガラス繊維材にカーボン液を含浸させたものであること
を特徴とする請求項15記載のカーボン含浸材埋設超電
導導体。
16. The carbon-impregnated-material-embedded superconducting conductor according to claim 15, wherein the carbon-impregnated material is an organic fiber material or a glass fiber material impregnated with a carbon liquid.
【請求項17】 フッ素樹脂製ベルト上に厚さ数十ミク
ロンのカーボン薄膜を形成する工程と、該カーボン薄膜
を乾燥させる工程と、乾燥したカーボン薄膜上に有機絶
縁溶剤を塗布乾燥させてカーボン被覆絶縁材膜を形成す
る工程と、該カーボン被覆絶縁材膜を有機絶縁溶剤によ
って長尺超電導導体の表面に接着被覆すると共に前記ベ
ルトから剥離させる工程とを含むカーボン被覆超電導導
体の製造方法。
17. A step of forming a carbon thin film having a thickness of several tens of microns on a fluororesin belt, a step of drying the carbon thin film, and an organic insulating solvent applied on the dried carbon thin film to dry the carbon coating. A method for producing a carbon-coated superconducting conductor, comprising: a step of forming an insulating material film; and a step of adhesively coating the carbon-coated insulating material film on the surface of a long superconducting conductor with an organic insulating solvent and peeling it from the belt.
【請求項18】 前記カーボン被覆絶縁材膜は長尺超電
導導体の上下に位置する別個のフッ素樹脂製ベルト上に
各々作成し、長尺超電導導体の両面に接着被覆させるこ
とを特徴とする請求項17記載のカーボン被覆超電導導
体の製造方法。
18. The carbon-coated insulating material film is formed on separate fluororesin belts above and below the long superconducting conductor, and both surfaces of the long superconducting conductor are adhesively coated. 18. The method for producing a carbon-coated superconducting conductor according to 17.
【請求項19】 前記フッ素樹脂はポリテトラフルオロ
エチレンであることを特徴とする請求項17又は18記
載のカーボン被覆超電導導体の製造方法。
19. The method for producing a carbon-coated superconducting conductor according to claim 17, wherein the fluororesin is polytetrafluoroethylene.
【請求項20】 前記有機絶縁溶剤はホルマール又はポ
リエステルであることを特徴とする請求項17、18又
は19記載のカーボン被覆超電導導体の製造方法。
20. The method for producing a carbon-coated superconducting conductor according to claim 17, wherein the organic insulating solvent is formal or polyester.
【請求項21】 有機絶縁薄膜テープの表面にカーボン
薄膜を形成してカーボン被覆絶縁テープを作成する工程
と、該カーボン被覆絶縁テープを長尺板状超電導導体の
一方の面に有機絶縁溶剤によって接着被覆する工程と、
前記長尺超電導導体の他方の面に絶縁薄膜テープを接着
する工程を含むことを特徴とするカーボン被覆超電導導
体の製造方法。
21. A step of forming a carbon thin film on the surface of an organic insulating thin film tape to prepare a carbon coated insulating tape, and bonding the carbon coated insulating tape to one surface of a long plate-shaped superconducting conductor with an organic insulating solvent. The step of coating,
A method for producing a carbon-coated superconducting conductor, comprising a step of adhering an insulating thin film tape to the other surface of the long superconducting conductor.
【請求項22】 前記有機絶縁溶剤はホルマール又はポ
リエステルであることを特徴とする請求項21記載のカ
ーボン被覆超電導導体の製造方法。
22. The method for producing a carbon-coated superconducting conductor according to claim 21, wherein the organic insulating solvent is formal or polyester.
【請求項23】 前記有機絶縁薄膜テープはホルマール
又はポリエステル製であることを特徴とする請求項21
又は22記載のカーボン被覆超電導導体の製造方法。
23. The organic insulating thin film tape is made of formal or polyester.
22. A method for producing a carbon-coated superconducting conductor according to item 22.
【請求項24】 前記カーボン薄膜の形成はカーボン分
散液の噴射、塗布又はスパッタリングによることを特徴
とする請求項21、22又は23記載のカーボン被覆超
電導導体の製造方法。
24. The method for producing a carbon-coated superconducting conductor according to claim 21, 22 or 23, wherein the carbon thin film is formed by spraying, coating or sputtering a carbon dispersion liquid.
【請求項25】 一方の面にカーボン薄膜を形成したカ
ーボン被覆絶縁テープの他方の面に有機絶縁溶剤を塗布
する工程と、該カーボン被覆絶縁テープを長尺線状超電
導導体に螺旋被覆する工程を含むことを特徴とするカー
ボン被覆超電導導体の製造方法。
25. A step of applying an organic insulating solvent to the other surface of a carbon-coated insulating tape having a carbon thin film formed on one surface, and a step of spirally coating the carbon-coated insulating tape on a long linear superconducting conductor. A method for producing a carbon-coated superconducting conductor, comprising:
【請求項26】 前記カーボン薄膜の形成はカーボン分
散液の噴射、塗布又はスパッタリングによることを特徴
とする請求項25記載のカーボン被覆超電導導体の製造
方法。
26. The method for producing a carbon-coated superconducting conductor according to claim 25, wherein the carbon thin film is formed by spraying, coating or sputtering a carbon dispersion liquid.
【請求項27】 非磁性金属又は絶縁材からなる芯線の
表面にカーボン薄膜を被覆した後乾燥してカーボン被覆
芯線を製造する工程と、長尺超電導導体の一方の表面に
長手方向に連続する溝を形成する工程と、前記長尺超電
導導体の表面に絶縁材を塗布し乾燥する工程と、前記長
尺超電導導体に形成された溝に前記カーボン被覆芯線を
埋設する工程を含むことを特徴とするカーボン被覆芯線
埋設超電導導体の製造方法。
27. A step of coating a carbon thin film on the surface of a core wire made of a non-magnetic metal or an insulating material and then drying the core wire to produce a carbon-coated core wire, and a groove continuous in one longitudinal direction on one surface of the long superconducting conductor. And a step of applying an insulating material to the surface of the long superconducting conductor and drying, and a step of burying the carbon-coated core wire in a groove formed in the long superconducting conductor. Method for manufacturing superconducting conductor with embedded carbon-coated core wire.
【請求項28】 前記カーボン被覆芯線を製造する工程
はカーボン薄膜を被覆する前に芯線の表面に絶縁材を被
覆する工程を含むことを特徴とする請求項27記載のカ
ーボン被覆芯線埋設超電導導体の製造方法。
28. The carbon-coated core wire-embedded superconducting conductor according to claim 27, wherein the step of producing the carbon-coated core wire includes the step of coating the surface of the core wire with an insulating material before coating the carbon thin film. Production method.
【請求項29】 前記芯線を構成する絶縁材は有機絶縁
繊維又はガラス繊維であることを特徴とする請求項27
又は28記載のカーボン被覆芯線埋設超電導導体の製造
方法。
29. The insulating material forming the core wire is an organic insulating fiber or a glass fiber.
Or the method for producing a carbon-coated core wire-embedded superconducting conductor according to item 28.
【請求項30】 周囲を絶縁膜で被覆した複数本の超電
導素線と、絶縁膜の上にさらにカーボン薄膜を被覆した
少なくとも1本のカーボン被覆超電導素線を撚り合わせ
ることを特徴とする超電導撚線の製造方法。
30. A superconducting twist, characterized in that a plurality of superconducting element wires, the periphery of which is covered with an insulating film, and at least one carbon-coated superconducting element wire, wherein an insulating film is further covered with a carbon thin film, are twisted together. Wire manufacturing method.
【請求項31】 長尺板状超電導導体を構成する常電導
金属母材の長手方向に所定長さの溝を複数個設ける工程
と、前記常電導金属母材表面及び前記溝を絶縁材で被覆
する工程と、繊維材にカーボン液を含浸する工程と、前
記カーボン液を含浸した繊維材を前記溝中に埋設する工
程とを含むことを特徴とするカーボン含浸材埋設超電導
導体の製造方法。
31. A step of providing a plurality of grooves having a predetermined length in a longitudinal direction of a normal conducting metal base material constituting a long plate-shaped superconducting conductor, and covering the surface of the normal conducting metal base material and the grooves with an insulating material. And a step of impregnating the fiber material with a carbon liquid, and a step of burying the carbon material-impregnated fiber material in the groove, a method of manufacturing a carbon-impregnated material-embedded superconducting conductor.
【請求項32】 前記繊維材は有機繊維材又はガラス繊
維であることを特徴とする請求項31記載のカーボン含
浸材埋設超電導導体の製造方法。
32. The method for producing a carbon-impregnated-material-embedded superconducting conductor according to claim 31, wherein the fiber material is an organic fiber material or glass fiber.
【請求項33】 請求項1〜16のいずれか1項に記載
されたカーボン被覆超電導導体、超電導導体、超電導撚
線、又はカーボン含浸材埋設超電導導体を巻回したこと
を特徴とする超電導磁石。
33. A superconducting magnet, characterized in that the carbon-coated superconducting conductor, the superconducting conductor, the superconducting stranded wire, or the carbon-impregnated material-embedded superconducting conductor according to any one of claims 1 to 16 is wound.
【請求項34】 カーボンの抵抗を測定するための引き
出し線が設けられていることを特徴とする請求項33記
載の超電導磁石。
34. The superconducting magnet according to claim 33, wherein a lead wire for measuring the resistance of carbon is provided.
【請求項35】 前記カーボンは温度センサーとして使
用されることを特徴とする請求項33又は34記載の超
電導磁石。
35. The superconducting magnet according to claim 33, wherein the carbon is used as a temperature sensor.
【請求項36】 前記カーボンは温度センサーとして使
用されることを特徴とする請求項1〜16のいずれか1
項に記載された被覆超電導導体、超電導導体、超電導撚
線、又はカーボン含浸材埋設超電導導体。
36. The carbon according to claim 1, wherein the carbon is used as a temperature sensor.
The coated superconducting conductor, the superconducting conductor, the superconducting stranded wire, or the carbon-impregnated-material-embedded superconducting conductor as described in the above item.
【請求項37】 長尺板状超電導導体を長手方向に搬送
する手段と、搬送される長尺板状超電導導体の表面に有
機絶縁溶剤を塗布する手段と、フッ素樹脂ベルトと、前
記フッ素樹脂ベルト上にカーボン薄膜を形成する手段
と、前記カーボン薄膜を乾燥する手段と、前記乾燥され
たカーボン薄膜上に有機絶縁膜を形成する手段と、前記
有機絶縁膜を乾燥する手段と、前記フッ素樹脂ベルトを
前記長尺板状超電導導体の有機絶縁溶剤を塗布された表
面に押圧して前記有機絶縁膜で覆われたカーボン薄膜を
前記長尺板状超電導導体の表面に接着する接合手段と、
前記長尺板状超電導導体の表面に有機絶縁溶剤で接着さ
れた有機絶縁膜を乾燥する手段とを含むカーボン被覆超
電導導体の製造装置。
37. A means for conveying a long plate-shaped superconducting conductor in the longitudinal direction, a means for applying an organic insulating solvent to the surface of the conveyed long plate-shaped superconducting conductor, a fluororesin belt, and the fluororesin belt. Means for forming a carbon thin film thereon, means for drying the carbon thin film, means for forming an organic insulating film on the dried carbon thin film, means for drying the organic insulating film, and the fluororesin belt Joining means for adhering the carbon thin film covered with the organic insulating film to the surface of the long plate-shaped superconducting conductor by pressing the organic insulating solvent of the long plate-shaped superconducting conductor on the surface,
An apparatus for producing a carbon-coated superconducting conductor, comprising: a means for drying an organic insulating film adhered to the surface of the long plate-shaped superconducting conductor with an organic insulating solvent.
【請求項38】 前記フッ素樹脂ベルト、前記フッ素樹
脂ベルト上にカーボン薄膜を形成する手段、前記カーボ
ン薄膜を乾燥する手段、前記乾燥されたカーボン薄膜上
に有機絶縁膜を形成する手段、前記有機絶縁膜を乾燥す
る手段、前記フッ素樹脂ベルトを前記長尺板状超電導導
体の有機絶縁溶剤を塗布された表面に押圧して前記有機
絶縁膜で覆われたカーボン薄膜を前記長尺板状超電導導
体の表面に接着する接合手段は前記長尺板状超電導導体
の搬送経路の上下にそれぞれ設置されていることを特徴
とする請求項37記載のカーボン被覆超電導導体の製造
装置。
38. The fluororesin belt, means for forming a carbon thin film on the fluororesin belt, means for drying the carbon thin film, means for forming an organic insulating film on the dried carbon thin film, the organic insulation Means for drying a film, the fluororesin belt is pressed against the surface of the long plate-shaped superconducting conductor coated with an organic insulating solvent, and a carbon thin film covered with the organic insulating film is attached to the long plate-shaped superconducting conductor. 38. The carbon-coated superconducting conductor manufacturing apparatus according to claim 37, wherein the joining means for adhering to the surface are respectively provided above and below the conveying path of the long plate-shaped superconducting conductor.
【請求項39】 前記フッ素樹脂はポリテトラフルオロ
エチレンであることを特徴とする請求項37又は38記
載のカーボン被覆超電導導体の製造装置。
39. The carbon-coated superconducting conductor manufacturing apparatus according to claim 37, wherein the fluororesin is polytetrafluoroethylene.
【請求項40】 前記有機絶縁溶剤はホルマール又はポ
リエステルであることを特徴とする請求項37、38又
は39記載のカーボン被覆超電導導体の製造装置。
40. The carbon-coated superconducting conductor manufacturing apparatus according to claim 37, 38 or 39, wherein the organic insulating solvent is formal or polyester.
【請求項41】 長尺板状超電導導体を長手方向に搬送
する手段と、搬送される長尺板状超電導導体の表面に有
機絶縁溶剤を塗布する手段と、有機絶縁薄膜テープ供給
手段と、前記有機絶縁薄膜テープの表面にカーボン薄膜
を形成してカーボン被覆絶縁テープを作成する手段と、
前記カーボン被覆絶縁テープの有機絶縁薄膜テープ側を
前記長尺板状超電導導体の有機絶縁溶剤を塗布された表
面に押圧して前記長尺板状超電導導体の表面に接着する
接合手段と、前記長尺板状超電導導体の表面に有機絶縁
溶剤で接着された有機絶縁薄膜テープを乾燥する手段と
を含むカーボン被覆超電導導体の製造装置。
41. A means for conveying a long plate-shaped superconducting conductor in the longitudinal direction, a means for applying an organic insulating solvent to the surface of the conveyed long plate-shaped superconducting conductor, an organic insulating thin film tape supplying means, and A means for forming a carbon thin film on the surface of an organic insulating thin film tape to form a carbon-coated insulating tape,
Bonding means for pressing the organic insulating thin-film tape side of the carbon-coated insulating tape to the surface of the long plate-shaped superconducting conductor coated with the organic insulating solvent to adhere to the surface of the long plate-shaped superconducting conductor; An apparatus for producing a carbon-coated superconducting conductor, which comprises a means for drying an organic insulating thin film tape adhered to the surface of a scale plate-shaped superconducting conductor with an organic insulating solvent.
【請求項42】 前記有機絶縁溶剤はホルマール又はポ
リエステルであることを特徴とする請求項41記載のカ
ーボン被覆超電導導体の製造装置。
42. The carbon-coated superconducting conductor manufacturing apparatus according to claim 41, wherein the organic insulating solvent is formal or polyester.
【請求項43】 前記有機絶縁薄膜テープはホルマール
又はポリエステル製であることを特徴とする請求項41
又は42記載のカーボン被覆超電導導体の製造装置。
43. The organic insulating thin film tape is made of formal or polyester.
42. An apparatus for producing a carbon-coated superconducting conductor according to item 42.
【請求項44】 前記カーボン薄膜を形成する手段はカ
ーボン分散液噴射手段、塗布手段又はスパッタリング手
段であることを特徴とする請求項41、42又は43記
載のカーボン被覆超電導導体の製造装置。
44. An apparatus for producing a carbon-coated superconducting conductor according to claim 41, 42 or 43, wherein the means for forming the carbon thin film is a carbon dispersion liquid jetting means, a coating means or a sputtering means.
【請求項45】 長尺線状超電導導体を長手方向に搬送
する手段と、一方の面にカーボン薄膜を形成したカーボ
ン被覆絶縁テープを供給する手段と、前記カーボン被覆
絶縁テープの他方の面に有機絶縁溶剤を塗布する手段
と、前記カーボン被覆絶縁テープを長尺線状超電導導体
に螺旋被覆する手段とを含むことを特徴とするカーボン
被覆超電導導体の製造装置。
45. A means for conveying a long linear superconducting conductor in the longitudinal direction, a means for supplying a carbon-coated insulating tape having a carbon thin film formed on one surface thereof, and an organic material for the other surface of the carbon-coated insulating tape. An apparatus for producing a carbon-coated superconducting conductor, comprising: a means for applying an insulating solvent; and a means for spirally coating the carbon-coated insulating tape on a long linear superconducting conductor.
【請求項46】 長尺板状超電導導体を長手方向に搬送
する手段と、前記長尺板状超電導導体の表面に長手方向
に連続する溝を形成する手段と、前記溝を形成した長尺
板状超電導導体の表面に絶縁材を塗布する手段と、前記
絶縁材を乾燥する手段と、非磁性金属又は絶縁材からな
る芯線を供給する手段と、前記芯線の表面にカーボン薄
膜を被覆する手段と、前記カーボン薄膜を乾燥する手段
と、前記乾燥したカーボン薄膜を被覆した芯線を前記長
尺板状超電導導体の長手方向の溝に埋設する手段とを含
むことを特徴とするカーボン被覆芯線埋設超電導導体の
製造装置。
46. A means for conveying a long plate-shaped superconducting conductor in a longitudinal direction, a means for forming a groove continuous in the longitudinal direction on the surface of the long plate-shaped superconducting conductor, and a long plate having the groove formed therein. Means for applying an insulating material to the surface of the superconducting conductor, means for drying the insulating material, means for supplying a core wire made of a non-magnetic metal or an insulating material, and means for coating the surface of the core wire with a carbon thin film. A carbon-coated core wire-embedded superconducting conductor, including means for drying the carbon thin film, and means for burying a core wire coated with the dried carbon thin film in a longitudinal groove of the long plate-shaped superconducting conductor. Manufacturing equipment.
【請求項47】 前記芯線の表面にカーボン薄膜を被覆
する前に芯線の表面に絶縁材を被覆する手段を有するこ
とを特徴とする請求項46記載のカーボン被覆芯線埋設
超電導導体の製造装置。
47. The carbon-coated core wire-embedded superconducting conductor manufacturing apparatus according to claim 46, further comprising means for coating the surface of the core wire with an insulating material before coating the surface of the core wire with the carbon thin film.
【請求項48】 前記芯線を構成する絶縁材は有機絶縁
繊維又はガラス繊維であることを特徴とする請求項46
又は47記載のカーボン被覆芯線埋設超電導導体の製造
装置。
48. The insulating material forming the core wire is an organic insulating fiber or a glass fiber.
Or 47, an apparatus for producing a carbon-coated core wire-embedded superconducting conductor.
【請求項49】 常電導金属母材中に超電導導体を埋設
した長尺板状超電導導体を長手方向に搬送する手段と、
前記常電導金属母材の長手方向に所定長さの溝を設ける
手段と、前記常電導金属母材表面及び前記溝を絶縁材で
被覆する手段と、繊維材を供給する手段と、前記繊維材
にカーボン液を含浸する手段と、前記カーボン液を含浸
した繊維材を前記溝中に埋設する手段とを含むことを特
徴とするカーボン含浸材埋設超電導導体の製造装置。
49. A means for conveying a long plate-shaped superconducting conductor in which a superconducting conductor is embedded in a normal conducting metal base material in a longitudinal direction,
Means for providing a groove of a predetermined length in the longitudinal direction of the normal conductive metal base material, means for coating the normal conductive metal base material surface and the groove with an insulating material, means for supplying a fibrous material, and the fibrous material 1. A manufacturing apparatus for a carbon-impregnated material-embedded superconducting conductor, comprising: a means for impregnating a carbon liquid with a means; and a means for embedding a fiber material impregnated with the carbon solution in the groove.
【請求項50】 前記繊維材は有機繊維材又はガラス繊
維であることを特徴とする請求項49記載のカーボン含
浸材埋設超電導導体の製造装置。
50. The carbon-impregnated-material-embedded superconducting conductor manufacturing apparatus according to claim 49, wherein the fiber material is an organic fiber material or glass fiber.
JP5119903A 1993-05-21 1993-05-21 Superconductor and manufacture thereof and device therefor Pending JPH06333437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5119903A JPH06333437A (en) 1993-05-21 1993-05-21 Superconductor and manufacture thereof and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5119903A JPH06333437A (en) 1993-05-21 1993-05-21 Superconductor and manufacture thereof and device therefor

Publications (1)

Publication Number Publication Date
JPH06333437A true JPH06333437A (en) 1994-12-02

Family

ID=14773073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5119903A Pending JPH06333437A (en) 1993-05-21 1993-05-21 Superconductor and manufacture thereof and device therefor

Country Status (1)

Country Link
JP (1) JPH06333437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181500A (en) * 2010-03-02 2011-09-15 Korea Electrotechnology Research Inst Superconductive wire
JP2018026222A (en) * 2016-08-09 2018-02-15 古河電気工業株式会社 Tape type high temperature superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181500A (en) * 2010-03-02 2011-09-15 Korea Electrotechnology Research Inst Superconductive wire
JP2018026222A (en) * 2016-08-09 2018-02-15 古河電気工業株式会社 Tape type high temperature superconducting wire

Similar Documents

Publication Publication Date Title
RU2363053C1 (en) Irretrievable linear thermal sensor
WO2017039299A1 (en) High-temperature superconducting coil having smart insulation, high-temperature superconducting wire used therefor, and manufacturing method therefor
JPH06139835A (en) Signal transmission cable
US20170125924A1 (en) Generation of a Splice Between Superconductor Materials
EP2755216B1 (en) Superconducting coil protection method and superconducting magnet device
JP4223744B2 (en) Critical current measurement method for high temperature superconducting wire
JPH02253517A (en) Superconducting wire
US4236109A (en) Dielectric monitored composite assembly
JPH06333437A (en) Superconductor and manufacture thereof and device therefor
US2804592A (en) Methods of and apparatus for measuring the capacitance of an insulated wire
CN113345641B (en) Superconducting tape with quench detection protection, superconducting cable and protection method
JPH08273924A (en) Superconducting magnet
CA2042071A1 (en) Broken wire detector for wire scribing machines
CN108982950B (en) Sensor for testing YBCO film superconducting loop voltage signal and manufacturing method thereof
US5954909A (en) Direct adhesive process
CA2231790A1 (en) Microminiature planar signal transmission cable
JPH08222426A (en) Coil structure of superconducting magnet
Kishi et al. Breakdown and space charge formation in polyimide film under DC high stress at various temperatures
JP2577682B2 (en) Method and apparatus for measuring temperature of superconductor and method and apparatus for predicting quench of superconducting magnet
GB2126028A (en) Quench detector for superconducting winding
US3085216A (en) Temperature sensor
JPH1082807A (en) Superconductor and measuring method for its alternating current loss
Tommasini et al. A new cable insulation scheme improving heat transfer in Nb-Ti superconducting accelerator magnets
JPH07335423A (en) Superconductive magnet
JP2018026222A (en) Tape type high temperature superconducting wire